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Boosting regulatory T cell
function for the treatment of
autoimmune diseases – That’s
only half the battle!
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1Department of Dermatology, University Medical Center of the Johannes Gutenberg-University,
Mainz, Germany, 2ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-
University, Mainz, Germany
Regulatory T cells (Treg) represent a subset of specialized T cells that are essential

for the regulation of immune responses and maintenance of peripheral

tolerance. Once activated, Treg exert powerful immunosuppressive properties,

for example by inhibiting T cell-mediated immune responses against self-

antigens, thereby protecting our body from autoimmunity. Autoimmune

diseases such as multiple sclerosis, rheumatoid arthritis or systemic lupus

erythematosus, exhibit an immunological imbalance mainly characterized by a

reduced frequency and impaired function of Treg. In addition, there has been

increasing evidence that – besides Treg dysfunction – immunoregulatory

mechanisms fail to control autoreactive T cells due to a reduced

responsiveness of T effector cells (Teff) for the suppressive properties of Treg,

a process termed Treg resistance. In order to efficiently treat autoimmune

diseases and thus fully induce immunological tolerance, a combined therapy

aimed at both enhancing Treg function and restoring Teff responsiveness could

most l ikely be beneficial . This review provides an overview of

immunomodulating drugs that are currently used to treat various autoimmune

diseases in the clinic and have been shown to increase Treg frequency as well as

Teff sensitivity to Treg-mediated suppression. Furthermore, we discuss strategies

on how to boost Treg activity and function, and their potential use in the

treatment of autoimmunity. Finally, we present a humanized mouse model for

the preclinical testing of Treg-activating substances in vivo.
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Introduction

Regulatory T cells (Treg) are important mediators of

peripheral tolerance and maintenance of immunological

homeostasis (1). In autoimmune diseases such as multiple

sclerosis (MS), rheumatoid arthritis (RA) or systemic lupus

erythematosus (SLE), the function and frequency of Treg are

severely impaired (2–5). To counteract this dysfunction,

adoptive transfer of Treg as well as the potential use of Treg-

enhancing substances represent attractive therapeutic options

for the treatment of immune-mediated pathologies such as

autoimmune diseases (6–8). In 2018, the effectiveness of

adoptively transferred autologous Treg was tested in one SLE

patient for the first time, in a study by Dall’Era et al. (9). Their

results suggest that this treatment leads to an increased amount

of activated Treg in the inflamed skin of the patient. However, a

Treg-based therapy can only work efficiently if the autoreactive

T effector cells (Teff) are also responsive to the suppressive

function of Treg. In the context of MS, RA, and SLE, a

significantly reduced ability to suppress Teff in the peripheral

blood of patients has been observed over the past decade (10–

12). This mechanism of decreased T cell responsiveness to Treg-

mediated suppression is termed Treg resistance. These findings

suggest that strategies for treating autoimmune diseases

probably need to be optimized. Since there is a defect on both

sides – Treg and Teff -, it could be beneficial to address both

deficiencies in one therapeutic approach. In this review, we

present the problem of Treg dysfunction and Treg resistance

in patients with autoimmune diseases. We summarize how

certain immunomodulating therapies in the treatment of

autoimmune disease affect Treg function and frequency, and

the responsiveness of T cells for Treg-mediated suppression.

Furthermore, we discuss potential therapies to specifically boost

Treg function, as well as several in vitro and in vivo methods for

the preclinical testing of such Treg-activating substances.

Characterization and subpopulations
of human Treg

Treg are a distinct heterogeneous population of CD4+ T cells

with high expression of forkhead box P3 (Foxp3) transcription

factor which is associated with the suppressive function of this

cell population (13, 14). Treg participate in controlling many

physiological processes by maintaining immunological

homeostasis and thus protecting our body from developing

diseases, such as autoimmune diseases or cancer. Lack of

Foxp3+ Treg or loss-of-function mutations of Foxp3 results in

devastating autoimmunity in humans (15). Immune

dysregulation, polyendocrinopathy, enteropathy, and X-linked

syndrome (IPEX), an early and severe form of autoimmunity,

represents an example of diseases directly associated with loss-

of-function mutation of Foxp3 (16, 17). Therefore, deficiency in
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either the number or the function of Treg in the peripheral blood

is a decisive factor in the regulatory burden on the immune

system (18).

The majority of Treg repertoire in secondary lymphoid

organs originates from the thymus (19). Treg lineage with a

distinct T cell receptor (TCR) repertoire naturally develops from

the autoreactive thymocytes in the thymus and forms a

suppressive population specific to self-antigens, termed

thymus-derived Treg (tTreg) (20, 21). During thymic

development, T cells encounter high-affinity self-antigens

presented by thymic epithelial cells and are clonally deleted

through negative selection at the early stage of T cell

development during central tolerance (22). Low to

intermediate-affinity antigen recognition results in a positive

selection of T cells which may leave the thymus and enter the

periphery. Only a minority of T cells differentiate to Treg lineage

at CD3+CD4+CD8+CD25+ stage in the thymus with an

intermediate degree of binding to antigens (23). Signals

mediated through interaction with TCR result in the

upregulation of the high-affinity IL-2 receptor a -chain

(CD25) on the cell surface of Treg, which is essential for the

maintenance of Foxp3 expression. Following TCR stimulation,

the IL-2 signaling cascade is the key second to TCR-mediated

signaling in Treg development, lineage differentiation, and

function (24). Studies have shown that IL-7 and IL-15

signaling may also play an important role in the survival and

differentiation of Foxp3+ cells (25, 26).

Moreover, Treg can derive from naive conventional CD4+ T

cells, which differentiate into Foxp3+ Treg in secondary

lymphoid organs upon antigen exposure, cytokines

stimulation, metabolic intermediates, and hormones in the

periphery under both non-inflammatory and inflammatory

conditions (27, 28). The development of peripheral Treg

(pTreg) appears in the mucosal surfaces and the lamina

propria of the colon and small intestine which confer immune

tolerance to food- and microbiota-derived antigens (29). In

addition to IL-2, transforming growth factor b (TGF-b),
retinoic acids (RA), and short-chain fatty acids (SCFA) can

induce Foxp3 expression in naïve T cells in vitro, however, TGF-

b stimulation alone does not produce fully suppressive and

stable Foxp3+ cells in vitro (30, 31).

Noticeably, tTreg and pTreg share significant features of

Treg characteristics. In humans, substantial numbers of

activated CD4+ T cells express low levels of Foxp3 which make

it challenging to describe Treg based on Foxp3 positivity alone

(32). Treg are also characterized by high expression of the

cytokine receptor CD25 and are mostly dependent on IL-2

cytokine signaling while CD4+ T cells require IL-7 cytokine

signaling (33). Therefore, in humans, as CD25 is expressed by

recently activated CD4+ T cells, low levels of the IL-7 receptor

a -chain (CD127) can be a suitable marker to identify human

Treg as CD3+CD4+CD25highCD127lowFoxp3+ cells (34).

However, there is still no definitive marker for the
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characterization of human Treg. Additionally, Treg express

distinct surface receptors to adjust in various peripheral

functional profiles, defined as Treg subsets (35).

Previous studies determined that tTreg have a stable Treg

phenotype in the periphery since the epigenetic stabilization of

Foxp3 expression is also imprinted in the thymus. The Treg

phenotype and function maintain stable by the DNA

demethylation of conserved noncoding region 2 (CNS2) in the

human Foxp3 locus, known as the Treg-specific-demethylated

region (TSDR) in thymic-derived Treg. CNS2 is a TCR-

responsive enhancer with binding sites for Runx1–CBFb
transcription-factor complexes (36–38). CNS2 is completely

demethylated in tTreg but methylated in naïve or activated

CD4+ Teff despite transient upregulation of Foxp3 (39),

therefore they can be distinguished from each other. Several

other transcription factors cooperate with Foxp3 to stabilize the

expression of the Treg signature such as CTLA-4 (cytotoxic T

lymphocyte antigen 4), GITR (glucocorticoid-induced TNF

receptor), and ICOS (inducible T cell co−stimulator) (40, 41).

Naïve Treg (nTreg) are the majority of Treg in the peripheral

blood and secondary lymphoid organs with strong suppressive

capacity. This resting population is characterized as Foxp3low

CD4+CD45RAhighCD45ROlowCD25low cells (42). Effector Treg

make up a small activated population of Treg in the circulation

and lymphatics. Effector Treg share phenotypic features with

activated CD4+ Teff as Foxp3highCD4+CD45RAlowCD45ROhigh

CD25high (35, 42, 43). This Treg subpopulation displays a greater

capacity to migrate into non-lymphoid or inflamed tissues to

maintain immunological tolerance or adopt additional functions

to modulate immune homeostasis. Current studies showed that

HLA-DR (human leukocyte antigen DR), TIM-3 (T cell

immunoglobulin mucin-3), and ICOS, which are mainly

expressed by effector Treg, can be used as additional markers to

characterize this Treg subset with suppressive function (44, 45).

However, the nTreg population is not a completely homogeneous

population and partially expresses these markers in some

inflammatory contexts too. Thus, it is difficult to determine both

of functional subsets – nTreg versus effector Treg - with specialized

markers in complex milieus. Additionally, similar markers in a

healthy individual may not necessarily express the same in the

potentially abnormal Treg in autoimmune settings. Therefore,

identifying better markers for characterizing human Treg may

help us advance more detailed information on this important

cell population.
Treg function in steady state
and disease

Treg control both immune and non-immune cell responses

by different mechanisms to mediate peripheral tolerance in the

steady-state. Until now, some functional mediators of Treg

suppression have been recognized. Treg produce inhibitory
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cytokines such as IL-10, IL-35, and TGF-b to inhibit Teff

activation in various immune responses (46–49). Treg interact

with dendritic cells (DC) and modulate their maturation and/or

function. CTLA-4 is a crucial molecule for Treg’s suppressive

properties and is constitutively expressed on the cell surface of

Treg. The CTLA-4 deficiency in the Treg population causes a

shift in susceptibility to different autoimmune diseases. CTLA-4

can exclude Teff from contact with DC. CTLA-4 has a higher

affinity to bind its costimulatory molecules CD80 (B7-1) and

CD86 (B7-2) on DC, thereby interfering with the binding of

CD28 in Teff, thus diminishing DC’s capacity to activate T cells

(50, 51).

However, the expression of other immune checkpoint

molecules such as lymphocyte activation gene-3 (LAG3) can

partly reimburse for the loss of CTLA-4 and suppress DC

maturation as well (52). Treg can also impede antigen-specific

Teff and reduce the capacity of the DC to present antigen by

removing MHC class II-antigen complexes from the surface of

DC. Treg have a higher trogocytic capacity than T cells by uptake

of DC membranes wi thout the CTLA-4-mediated

mechanisms (53).

Cytolysis by Treg is mediated by granzyme B and perforin in

humans (54). Furthermore, Treg can induce the production of

the immunoregulatory molecule indoleamine 2, 3-dioxygenase

(IDO) in DC (55). Treg consume more IL-2 with the expression

of the high-affinity a-chain receptor for IL-2 and deprive self-

reactive Teff or natural killer cells, which express only the low-

affinity IL-2 receptor complex (56). The consumption of

available IL-2 by Treg also adjusts the proliferative or

apoptotic rates of Treg to keep their population size stable (57).

Overproduction of IL-2 during an active immune response

such as infection permits Treg numbers to follow with

inflammation. Therefore, the excessive expansion of Treg in

some acute inflammatory responses leads to an anergic phase

and immune suppression (58, 59).

Besides extracellular factors, Treg also use intracellularly

expressed factors to exercise their suppressive function. Several

studies showed that Treg can disrupt the metabolic activity of

conventional T cells through the transfer of the inhibitory

second messenger cyclic adenosine monophosphate (cAMP)

via gap junctions, the production of adenosine by CD39 and

CD73, and the subsequent activation of the adenosine receptor

2A (A2A) on T cells (60–63).

Recent studies describe the functional role of Treg beyond

their suppressive capacity, which populate in specific tissues

(64). Effector Treg can adapt and gain additional functional

properties by expressing unique homing receptors, transcription

factors, immunomodulatory mediators, and TCR repertoire to

maintain the steady-state homeostasis in the different local

milieus (31, 65). They can be found in non-lymphoid tissues

such as the skin, lungs, liver, gastrointestinal tract, adipose tissue,

muscle, central nervous system, and placenta (66). The presence

of tissue-resident Treg makes it possible to respond and expand
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faster after local damage or inflammation. Treg are able to adjust

their molecular programs in distinct niches and gain unique

effector functions tailored for local immune regulation, tissue

homeostasis, and regenerative processes (64).

In the visceral adipose tissue (VAT), Treg are highly

abundant and different from their counterparts in lymphoid

tissues. VAT Treg show an increased IL-33 secretion as well as

expression of C-C motif chemokine receptor 2 (CCR2) and

CCR24. Furthermore, levels of specific transcription factors such

as GATA-3 and the adipocyte regulator peroxisome proliferator-

activated receptor−g (PPARg) are also elevated (67, 68).

Moreover, VAT Treg maintain the balance between anti-

inflammatory and pro-inflammatory macrophages, promoting

the differentiation of the anti-inflammatory monocyte-

macrophage population (31, 69). In the skeletal muscle, tissue-

resident Treg increase after muscle injury with a unique TCR

repertoire and produce the epidermal growth factor

amphiregulin and ST2 (the receptor for the alarmin IL-33).

Localized Treg in muscle tissue control inflammation after

injury by modulating myeloid cells from a pro-inflammatory

to a reparatory state and start regenerating muscle satellite cells

to potentiate muscle repair (70, 71).

In the vascular system unlike other non-lymphoid tissue

such as VAT or muscle, Treg are rare in steady-state but we have

recently shown that Treg accumulate in the thrombus over time

and form a resident Treg population. Clot Treg are a special

subset, characterized by the expression of secreted protein acidic

and rich in cysteines (SPARC) and secretion of IL-18, IL-33, and

amphiregulin. Clot Treg boost matrix metalloproteinases

(MMP) activity by monocytes and facilitates the resolution of

thrombi in mice (72). However, we still need to know whether

such a Treg population develops in humans upon induction of

thrombosis and increases the resolution of thrombi. Taken

together, the non-immune functions of Treg seem to be

critical for tissue homeostasis and repair in response to

different stimuli. However, how these additional functions are

imprinted in Treg remains unknown.

Investigations on Treg function in VAT, muscle, and clot

revealed that Treg may acquire additional unique functions to

maintain homeostasis in tissues that are distinct from their

canonical suppressive function (68, 71, 72). To what extent

these findings can be related to other pathological settings,

such as autoimmune disease, still remains unclear. Since tissue

Treg have similar transcription factors to other tissue cells, it is

possible that such a population can develop locally during the

progression of an autoimmune disease. However, it is not clear

whether these additional functional activities of tissue Treg have

beneficial or detrimental impacts on the development and the

pathogenesis of autoimmune diseases. We propose that the

signals directing the differentiation of tissue Treg population

may affect organ-specific tissue damages. Nevertheless, intensive

scientific studies are necessary to clarify whether tissue Treg play

an active role in the pathogenesis of other diseases.
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Effector Treg sense the inflammatory milieu of conventional

CD4+ T helper cell (Th) -mediated responses and polarize

further by the expression markers related to Th-like

phenotypes (73). This specific polarization confers Treg the

ability to migrate to the site of a specific type of inflammation

and restrain the corresponding T cells. Treg subsets expressing

specific chemokine receptors and transcription factors are

detectable in the peripheral blood of patients with different

disease settings. Recent studies revealed that Treg subtypes in

the peripheral blood showed effector-like properties of Th17,

Th1, and Th2 cells (45, 74, 75).

Cytokines determine the quality of an effector T cell

response and reprogramming of Treg. The expression of IFN-g
by Th1-like Treg requires STAT1 and T-bet (T-box expressed in

T cells) expression (76, 77), IL-6-driven Th17-like Treg express

RORgt and STAT3 for the secretion of IL-17A, and IL-4-driven

Th2-like Treg upregulate IRF4 and GATA-3 (78). However, it is

unclear whether Th-like Treg are differentiated before entering

the inflammatory niche or whether they are locally adapted to a

distinct inflammatory response.

In patients with autoimmune diseases, such as type 1

diabetes (T1D) or MS, the frequency of IFN-g+ Foxp3+ tTreg

with lower suppressive activity is augmented in the blood

compared to healthy donors. These Th1-like Treg upregulate

the transcription factor T-bet and chemokine receptors like

CCR5 and CXCR3 (79–81). It was shown that the frequency

of Th2-like Treg is increased in the skin of patients with systemic

sclerosis (SS). The enhancement of Th2-like Treg was

accompanied by the secretion of IL-4 and IL-13 and

upregulation of ST2, GATA-3, and IRF-4. However, it is not

clear whether these Treg have a functional role in disease

pathogenesis. While IPEX distinctly demonstrates the

fundamental function of Treg, it was shown that defects in the

genetic or environmental origin of Treg may drive the immune

system towards pathology in the context of unwanted or

insufficient immune responses. However, it is an emerging

concept that Treg instability, defects in trafficking abilities, and

very distinct heterogeneity imprinted by local niche might be

important causes in the dysregulation of Treg function as well

(Figure 1) (82).

It is known that changes of phenotype, function, and

population size of Treg lead to autoimmunity and deployment

of autoimmune diseases such as RA (83), T1D (84), andMS (80).

Studies showed that the significant reduction of Treg in the

peripheral blood of RA patients may be associated with the

initiation and progression of RA. However, the total Treg

frequency was not significantly different between RA patients and

healthy individuals rather CD25 expression was downregulated in

the total Treg population (4). Findings on T1D patients displayed

that the inhibitory function of Treg on the proliferation of

autologous Teff was impaired mainly age-dependently by reduced

production of IL-2, IFN-g, and TGF-b (85, 86). In the case of MS,

the numbers of recent thymic emigrant (RTE) naive Treg,
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characterized as CD4+CD25+CD45RA+CD45RO−Foxp3+CD31+,

are significantly reduced within the peripheral blood of MS

patients age-dependently. It has been suggested that the reduction

of RTE Treg may be compensated with the higher expansion of

effector Treg and may contribute to the Treg defect associated with

MS (2). Additionally, studies by Venken et al. revealed that the

suppressive function of nTreg is impaired in both early and chronic

stages of MS disease and that most effector Treg will be expanded

during the chronic stage of disease progression (3). Taken together,

there is a large body of evidence that Treg play a pivotal role in a

variety of autoimmune circumstances (Table 1) (80, 87–95). Apart

from the alterations in the function and frequency of Treg in

patients with autoimmune diseases, a number of recent studies also
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observed a disruption on the side of Teff. Such T cells exert a

disturbing lack of sensitivity towards Treg-mediated suppression, a

mechanism termed Treg resistance.
Treg resistance in autoimmune
diseases

Successful suppression of T cell activation depends not only

on efficient Treg function, but also on T cell susceptibility to Treg-

mediated suppression. T cells are crucial for triggering and

mediating immune responses, for example as a protection

against pathogens in the context of an infectious disease, but

also in adverse reactions to self-antigens in the context of

autoimmune diseases. T cell-mediated immune responses are

generally controlled by Treg-based regulatory mechanisms (96).

Under physiological conditions, T cells are able to transiently

evade Treg-mediated control to initiate a protective response

against an infectious agent. In recent years, however, there has

been increasing evidence that T cells can overcome Treg-mediated

suppression even under non-physiological conditions, thereby

contributing to the pathogenesis of autoimmune diseases such

as RA, T1D and MS (97–99). This mechanism is commonly

referred to as Treg resistance. In 2013, Trinschek et al. and

Schneider et al. reported for the first time about Treg resistance

in T cells from relapsing-remitting MS (RRMS) patients. Thus,

isolated CD4+CD25- Teff from the peripheral blood of RRMS

patients are characterized by a reduced sensitivity for Treg-

mediated suppression (97).

But how can T cells overcome regulation by Treg? In recent

years, some research work has focused on identifying molecular
TABLE 1 Impaired Treg function in autoimmune diseases.

Autoimmune disease Study

Autoimmune hepatitis Longhi et al. (87)

Autoimmune polyglandular syndrome type II Kriegel et al. (88)

Type 1 diabetes Lindley et al. (89)

Hepatitis C-mixed cryoglobulinemia vasculitis Boyer et al. (90)

Idiopathic thrombocytopenic purpura Ling et al. (91)

Immunodysregulation polyendocrinopathy
enteropathy X-linked

Bacchetta et al. (92)

Multiple sclerosis Viglietta et al. (80)

Myasthenia gravis Balandina et al. (93)

Sarcoidosis Rappl et al. (94)

Systemic lupus erythematosus Alvarado-Sánchez et al.
(95)
This table provides an overview of individual autoimmune diseases with potential
pathologic findings in Treg function, and the corresponding scientific study.
FIGURE 1

Treg function in steady state versus disease. Treg are active mediators of peripheral tolerance and protect us from excessive immune responses
including autoimmunity. Treg maintain homeostasis mainly through four modes of action: 1. inhibitory cytokine production, 2. modulating DC
function, 3. cytolysis, and 4. metabolic disruption. Aberrant Treg function results in disturbance of immune homeostasis and uncontrolled
proliferation of Teff.
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signaling pathways associated with Treg resistance in T cells. A

broad spectrum of extracellular as well as intracellular molecules

can affect T cell responsiveness towards Treg-mediated

suppression (100). IL-6 is the most prominent cytokine that

can induce Treg resistance in T cells. Studies have already

confirmed that elevated IL-6 levels play a pathological role in

MS and RA (101, 102). Isolated T cells from the peripheral blood

of RRMS patients exhibit an accelerated IL-6 production, which

correlates with a decreased suppression of T cell proliferation

(10). In addition, Treg-resistant T cells are marked by an

increased expression of IL-6 receptor (IL-6R). Direct blockade

of IL-6R by an anti-IL-6R antibody leads to abolition of Treg

resistance in T cells (10). Furthermore, binding of IL-6 to its

specific receptor induces phosphorylation of the transcription

factor STAT3 (signal transducer and activator of transcription

3). Interestingly, elevated levels of phosphorylated STAT3

molecules have been detected in T cells from the peripheral

blood of RRMS patients. These findings correlate with the

severity of the disease and impaired suppressibility of T

cells (97).

IL-6-STAT3 signaling initiates the activation of protein kinase

B (PKB/c-akt) in immune cells. Over the last years, there has been

increasing evidence that T cell sensitivity towards Treg-mediated

regulation depends on the activation state of PKB/c-akt (103). In

mice, the targeted knockout of TRAF6 (TNFR-associated factor 6)

and Cbl-b, both molecules that negatively regulate PKB/c-akt

activation, allows T cells to evade immune suppression by Treg

(104, 105). Further studies byWehrens et al. revealed an increased

phosphorylation of PKB/c-akt in T cells isolated from patients

with juvenile idiopathic arthritis (106). This hyperactivation of

PKB/c-akt correlates with a significantly reduced responsiveness

of T cells to Treg-mediated suppression. Similar results were

obtained in the context of MS: Treg-resistant T cells from the

peripheral blood of RRMS patients are also characterized by an

enhanced phosphorylation of PKB/c-akt (97). Specific inhibition

of PKB/c-akt activation restores T cell responsiveness to Treg-

mediated suppression (43). Thus, the activation and regulation of

PKB/c-akt seems to be a central node in the development of Treg

resistance in T cells from patients with autoimmune

diseases (100).

In order to successfully treat autoimmune diseases and

induce long-lasting tolerance, Treg dysfunction as well as the

impaired T cell responsiveness towards immune regulation

should be taken into consideration when establishing new

therapeutic approaches. Common first-line therapies in the

treatment of autoimmune diseases rely on a systemic

immunomodulatory effect in the patient to rebalance the

misguided immune system. In this context, it is interesting to

investigate whether these disease-modifying drugs (DMD) also

affect the regulation of the disturbed T cell population.

Fortunately, we have been able to identify certain DMD with a

positive effect on T cell susceptibility to Treg-mediated

suppression. Treatment with dimethyl fumarate (DMF,
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Tecfidera) has been shown to completely reverse Treg

resistance in CD4+CD25- T cells isolated from the peripheral

blood of RRMS patients (107). By co-culturing isolated

CD4+CD25- Teff from DMF-treated RRMS patients with

functionally active Treg from healthy donors, we observed a

pronounced suppression of T cell proliferation comparable to

isolated Teff from healthy controls. This restored Treg sensitivity

of T cells from DMF-treated RRMS patients correlates with

normalization of IL-6R expression. In addition to DMF,

treatment with IFN-b (Rebif) showed similar effects. Ex vivo

analyses of isolated Teff from the peripheral blood of therapy-

naïve versus IFN-b-treated RRMS patients showed that T cell

responsiveness to Treg-mediated suppression is restored after

IFN-b therapy (108). Furthermore, IL-6R expression as well as

IL-6 production in T cells from IFN-b-treated RRMS patients

are markedly diminished in comparison to untreated patients.

Further studies need to investigate the effect of other DMD

used in the treatment of MS. Additionally, these investigations

should be extended to other autoimmune diseases, such as RA or

SLE, which are also characterized by a reduced T cell

susceptibility to Treg-mediated suppression.
Immunomodulatory drugs and
Treg function

Since it has been reported that, in a variety of autoimmune

diseases, Treg frequencies are reduced and/or the function of

Treg is disturbed, this cell population has become of great

interest for therapeutic intervention. In this part of the review,

we discuss immunomodulatory drugs, used in the treatment of

MS and RA, and their effect on Treg frequency and function. All

findings are summarized in Table 2.

Up to now, there are some drugs reported that have

beneficial effects on Treg in RRMS patients. Glatiramer

acetate, the polymer of glutamic acid, lysine, alanine, and

tyrosine, showed a rapidly changed Treg frequency after

administration whereby especially the naïve Treg frequency

was increased. The exact mechanism behind the enhancement

in Treg frequency remains unclear, but it is speculated that there

might be an immunomodulatory effect on thymic T cell

development. In addition to the increased frequency, the

immunosuppressive function of Treg was also restored (109).

Treatment with IFN-b, which has been used in clinics for

almost 30 years, does not affect the overall Treg frequency in the

peripheral blood of MS patients. Interestingly, a shift from a

memory Treg phenotype towards a naïve Treg phenotype can be

detected. A slight improvement in the suppressive function of

Treg can be observed as early as four weeks after IFN-b
administration. This improvement peaks six months after

treatment: At this point, the suppressive function of Treg in

MS patients is fully restored and comparable to the Treg

function in the peripheral blood of healthy donors (110, 111).
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However, the exact mechanism of how IFN-b treatment

enhances Treg function needs to be further investigated.

DMF is another drug used to modulate the misguided

immune system in RRMS patients. Studies by Gross et al.

showed that DMF therapy positively affects the total Treg

number in the peripheral blood of MS patients (112). DMF

promotes Treg development under Th17-polarizing conditions,

which was linked to DMF-induced inactivation of GAPDH

(115). Further in vitro studies by Ghadiri et al. revealed a

decreased susceptibility of Treg to DMF-induced apoptosis

compared to conventional T cells (116). Unfortunately, to date

there are no results available which indicate a potential effect of

DMF therapy on the suppressive function of Treg.

Some immunomodulatory drugs used in the treatment of

RA patients also have an increased impact on Treg frequency

and function. Pro-inflammatory cytokines such as IL-6 and

tumor necrosis factor-a (TNF-a) play a crucial role in the

pathogenesis of RA. The blockade of IL-6-mediated signaling

by Tocilizumab, a humanized IgG1 monoclonal antibody (mAb)

(117), results in a significant enhancement of total Treg numbers

in the peripheral blood of RA patients and correlates with

disease remission (113). The underlying mechanism has not

yet been fully elucidated. However, studies by Dominitzki et al.

showed that IL-6 has a negative effect on Treg development and
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function due to the inhibition of Foxp3 expression (118). These

findings provide a possible explanation for the change in Treg

frequency in RA patients treated with Tocilizumab. Based on the

data available to date, it can be postulated that Tocilizumab

might also restore the suppressive function of Treg. Studies by

Samson et al. revealed a strong increase in the ability of Treg to

suppress Teff proliferation in patients with giant cell arteritis

undergoing Tocilizumab treatment (119).

Another successful therapeutic approach for RA patients is the

blocking of TNF-a activity with anti-TNF-a mAb (120). Patients

who received anti-TNF-a therapy show an enhancement of the

overall Treg frequency as well as a pronounced suppression of Teff.

Moreover, the increased Treg frequency was accompanied by RA

disease remission (114). Previous data show that TNF-a induces

apoptosis in Treg and decreases their suppressive function due to

downregulation of Foxp3, which would explain the changes in

Treg numbers after anti-TNF-a mAb administration (121–123).

Overall, there is a wide range of drugs in the treatment of

autoimmune diseases, in particular MS and RA, which lead to an

increase in Treg function and/or improvement of the

suppressive capacity of Treg via different mechanisms and

target structures. Unfortunately, some of these drugs lacking

data in which the immunomodulatory effect on Treg is directly

linked to disease activity
TABLE 2 Effect of immunomodulatory drugs on Treg frequency and function in MS and RA patients.

Autoimmune
disease

Treatment Treg in peripheral blood Effect onTreg
frequency

Effect on Treg
function

Study

MS Glatiramer acetate
(Copaxone)

CD4+CD25+Foxp3+(total Treg)
CD4+CD25+Foxp3+

CD45RA+CD45RO-(naïve Treg)
CD4+CD25+Foxp3+

CD45RA−CD45RO+ (memory Treg)
CD4+CD25+Foxp3+CD45RA+CD45RO-

CD31+

(RTE-Treg)

Increased

Increased
No effect

Reduced

Enhanced suppressive
function

Haas et al. (109)

MS IFN-b-1a
(Rebif, Avonex)

CD4+CD25+FoxP3+

(total Treg)
CD4+CD25+FoxP3+

CD45RA+CD45RO−

(naïve Treg)
CD4+CD25+Foxp3+

CD45RA−CD45RO+

(memory Treg)
CD4+CD45RA+

CD45RO−CD31+

Foxp3+ (RTE-Treg)

No effect

Increased

Reduced

Increased

Enhanced suppressive
function

Korporal et al.
(110)

De Andrés et al.
(111)

MS Dimethyl fumarate
(Tecfidera)

CD4+CD127low

CD25highFoxp3+

Helios−

Increased No data Gross et al. (112)

RA anti-IL-6R mAb
(Tocilizumab)

CD4+CD25highFoxp3+

(total Treg)
Increased No data Kikuchi et al.

(113)

RA anti-TNF-a mAb
(Etanercept)

CD4+CD25highFoxp3+ (total Treg) Increased No data Huang et al. (114)
This table provides an overview of common immunomodulatory drugs and their effect on the frequency of individual Treg subpopulations in the peripheral blood of MS and RA patients. In
addition, the influence of the DMD on the Treg function is listed. “No data”means that, according to the current state of research, no scientific studies are available showing an effect of the
respective DMD on Treg function.
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Treg-based therapies of
autoimmune diseases

Physiological Treg immunosuppression is induced upon

specific TCR and co-receptor stimulation and is the most

important mechanism of self-tolerance and immune

regulation. However, Treg immunosuppression is impeded or

blocked in vivo by a strong inflammatory environment and T

effector cell resistance, too small numbers of Treg, genetic

defects, or other unknown effects. Subsequently, impaired or

hindered immunosuppression is an important trigger for

unleashed autoimmunity, immunodeficiency disorders or

other unwanted immune reactions such as graft-versus-host

disease (GvHD), hypersensitivity reactions and allergies.

Intriguingly, it has been shown recently that Treg effectively

can exert their immunosuppressive activity in an established

inflammation and strong inflammatory environment as long as

Foxp3 expression is not lost (124). Excitingly, this finding may

offer new opportunities for future Treg-based therapies.

Preclinical studies using animal models have provided first

evidence for the concept of Treg cell-based therapies to

overcome a dysregulated immune response in autoimmune

diseases. It has been shown that adoptively transferred Treg

could reduce the pathology in several autoimmune disease-

related mouse models. A comprehensive compilation is given

by Baeten et al. (125). Further developed humanized

immunodeficient mouse models provided the opportunity to

analyze human Treg function (126). These studies built the basis

for the clinical translation of therapeutic Treg as a powerful

alternative to immunosuppressants for treating autoimmune

diseases. Today, the potential of Treg cell-based and non cell-

based therapies as a therapeutical approach for autoimmune and

other T cell-driven diseases is widely recognized. Treg therapies

offer the opportunity to substitute life-long and high-dosed

immunosuppress ive medicat ion without long-term

interference with immune regulation. Increased susceptibility

to opportunistic infections and malignancies as seen with

systemic immunosuppression is not anticipated. Positively, this

assumption could be confirmed in clinical trials so far (127). Due

to the physiological mechanism of suppression, Treg therapies

are even expected to have the potential to induce tolerance and

cure autoimmune diseases and other T cell-driven pathologies.
Polyclonal Treg as the primary basis of
Treg cell-based therapies

In first clinical studies using Treg to treat autoimmune

diseases, polyclonal Treg were applied in patients with T1D,

showing modest but promising results and importantly, being

safe (128, 129). However, the proof-of-concept was delivered

leading to a steadily growing number of clinical trials with
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different and improved modalities in a variety of clinical

settings. A comprehensive compilation of clinical studies using

Treg is given by Baeten et al. (125). The most challenging hurdle

for successful adoptive Treg therapies is to provide or induce a

clinically effective number of Treg exerting an efficacious

suppressive capacity. Starting point of all approaches is the

isolation of Treg from leukapheresis or umbilical cord blood

samples. Unfortunately, the number of Treg that can be isolated

from these sources is limited making expansion and/or activation

or genetical modification necessary prior to cell therapy.
Functional requirements and cellular
properties important for an efficacious
Treg-based cell therapy

Cell-based strategies enabling Treg to be clinically

efficacious, focus on the source of Treg, number of provided

Treg, conditioning of Treg, applying combination therapies and

the immunosuppressive potency of Treg.

A variety of known drugs and biologicals were identified to

modulate Treg physiology and act as Treg growth factor, e.g. low

dose IL-2, Treg-stabilizing factors, e.g. rapamycin and retinoic

acid (127) or might enhance the activation of Treg, e.g. anti-CD3

and CD28 mAb which are also a basic trigger for Treg expansion.

The mechanism of action of these mediators can be direct or

indirect. Rapamycin, which induces Treg and phenotype stability

directly, also inhibits non-Treg proliferation thereby backing

indirectly the Treg population in vivo and in vitro (130). The

JAK1/2 kinase inhibitor ruxolitinib favors the ratio of Treg vs.

conventional T cells and seems also to enhance the suppressive

capacity of Treg (131). Low-dose IL-2 and rapamycin are

important factors for the in vitro manufacturing of Treg as well

as in Treg cell therapies to complement and support adoptively

transferred Treg. Interestingly, low-dose IL-2, given as a

monotherapy in a clinical study to assess the Treg expanding

and activating potential in a variety of autoimmune diseases gave

hints for a potential clinical efficacy (132). Moreover, modified

IL-2 biologicals exerting a longer half-life and improved specificity

for Treg are being developed (133). The anti-CD20 mAb

rituximab was shown in a combination therapy with Treg to be

superior to a Treg monotherapy in a T1D clinical study (134).

However, most of these modulators are not Treg specific as

they also hit conventional T cells and other cellular contaminates

thereby generating unwanted activities and phenotypes in Treg

expansion cultures. Furthermore, it was shown that Treg may

lose their functional phenotype and lineage upon prolonged

expansion making re-isolation of stable Treg from these

heterogenous cultures difficult (135). These cellular impurities

and unstable Treg represent a serious safety risk and a quality

problem for the adoptive transfer of in vitro expanded

polyclonal Treg.
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Polyclonal vs. antigen specific
Treg cell therapy

For historical and pragmatic reasons most clinical studies

applying Treg to suppress autoimmunity or to treat GvHD

currently use polyclonal Treg. Polyclonal Treg manufactured

in expansion cultures can be provided in sufficient numbers and

exert suppression through both antigen-specific and unspecific

bystander mechanisms. However, in follow-up studies with T1D

it was shown that the efficacy of first applied polyclonal Treg cell

therapies is limited and inferior to approaches applying antigen

specific Treg. These cells can be generated by expansion with

APC and the respective autoantigen or provided by genetically

modified recombinant TCR Treg. It could be shown that a lower

number of antigen specific Treg display a superior efficacy than

polyclonal Treg in a transgenic NOD mice model (136).

Apparently, antigen specific Treg have a higher capability and

better homing ability. Polyclonal Treg preparations harbor

multiple TCR specificities whereof only a minor number of

Treg will be activated in an antigen-specific manner and exert

suppression largely by antigen-independent bystander

suppression. However, application of antigen specific Treg is

limited to autoimmune settings with known and limited number

of autoantigens whereas polyclonal Treg may be appropriate for

systemic diseases with unknown autoantigens.

An interesting opportunity for polyclonal Treg cell therapy

is the use of third-party allogeneic Treg instead autologous

patient derived Treg. As Treg will not induce allogenic

responses in the recipient, this approach allows HLA-

independent ‘off-the-shelf’’ Treg supply for clinical application.

This holds not true for recombinant TCR-expressing Treg,

which are strictly MHC dependent and do not work in MHC-

mismatched settings which limits their clinical application. This

drawback has been overcome by the technology for the

generation of chimeric antigen receptor Treg.
CAR-Treg cell therapy

Chimeric antigen receptor Treg (CAR-Treg) represent a

further development of CAR T cell technology generated for

cancer therapies and represent engineered redirected Treg with

artificial TCR, designated CAR. These artificial T cell receptors are

composed of an extracellular domain for antigen recognition and

binding and intracellular CD3 and CD28 domains for Treg

activation upon antigen binding without MHC restriction. The

MHC independent specific antigen recognition and subsequent

functional activationenables awidespreadapplication inpatients as

allogeneic Treg. Additional advantages over conventional Treg

from expansion cultures seems to be a stable Treg phenotype and

a more potent and specific immunosuppression. However,

appropriate CAR specificities must be identified and engineered.

So far, no clinical data are available with CAR-Treg. The first
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preclinical datawithCAR-Tregwere generated inmousemodels of

colitis and in a humanized mouse transplantation model. CAR-

Treg exerted bystander suppression and could improve colitis and

alloantigen-specific suppression (137). Important to mention are

safety concerns in CAR-Treg therapies regarding potential

cytotoxicities and a Treg-mediated target killing. Manufacturing

of CAR-Treg is muchmore complex and challenging compared to

other Treg cell therapies. Ongoing studies will give more

information on the therapeutic potential of CAR-Treg

cell therapies.
Treg-specific activators

Besides the in vitro enabling technologies providing

antigen-specific TCR and artificial CAR constructs or

generating expanded polyclonal or antigen-specific Treg,

there is another viable option to generate suppression-

competent Treg. It was shown that the application of Treg-

specific activators like GARP (glycoprotein A repetitions

predominant or LRRC32) or gp120 represents a promising

therapeutic approach.
GARP

GARP is expressed on the surface of Treg and is the receptor

for Latent-TGFb1. Stimulation of Treg leads to an upregulation

of GARP expression and subsequent release of soluble GARP

(sGARP)/Latent-TGFb1 complexes (138). By applying a

recombinant sGARP (without Latent-TGFb1) in vitro it could

be shown that sGARP induces Foxp3 and shifts the

differentiation of naive CD4+ T cells into induced Treg. In a

preclinical humanized mouse model of xenogeneic GvHD,

sGARP significantly enhanced Treg activity resulting in a

suppression of lethal GvHD (139). But so far, no functional

data were generated in autoimmune settings or in adoptive Treg

cell therapies. As sGARP has immunoregulatory activities it may

have a role in Treg manufacturing and Treg cell-based

intervention in autoimmunity. Interestingly, a recently

identified unique subset of tissue-resident gREG+ Treg is

characterized by an increased expression of GARP and

suggested to contribute to the long-term persistence of

Treg (124).
HIV gp120

In early preclinical studies anti-CD4 mAb have been

successfully analyzed to induce immune tolerance in a variety

of animal models. The goal was to eliminate or block CD4+ Teff

rather than induction and activation of Treg. Although the

translation of the anti-CD4 concept into the clinic was not
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successful, e.g. in RA patients (140) the concept of anti-CD4

tolerance induction was further developed and finally could be

linked to human Treg induction and activation (141, 142).

Intriguingly, the human immunodeficiency virus-1 (HIV-1)

envelope glycoprotein gp120, which is the primary HIV receptor

for human CD4 was shown to activate human Treg (143). Gp120-

activated Treg prevent the development of lethal GvHD induced

by adoptive transfer of human PBMC into immunodeficient mice

and abrogated airway hyperresponsiveness in a humanized mouse

model of allergic airway disease induced by PBMC from donors

allergic to birch pollen (144). There are no data available from

models for autoimmune diseases. Together, these findings

demonstrate that stimulation via the human CD4 receptor

represents an alternative Treg activating pathway with the

potential to induce immunologic tolerance in vivo not restricted

to GvHD (145). The discussed approaches to boost the Treg

function are depicted in Figure 2.
Preclinical testing of Treg-activating
substances

Modulating the suppressive function of Treg represents an

attractive therapeutic option for treating diseases associated with

impaired Treg function. In autoimmune diseases such as MS or

RA, which are characterized by a significantly reduced Treg

function (3, 4, 146, 147), current strategies aim to restore Treg

function by the use of adoptive Treg transfer or Treg-activating/-

enhancing substances (127). But how can such substances be

tested preclinically?
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In general, a simple method to determine whether a

substance activates Treg or not is the flow cytometric

detection of proteins whose expression is altered by the

activation stimulus. Up to now, a number of activation-

induced surface markers have been described to specifically

identify activated Treg after polyclonal or antigen-mediated

stimulation and expansion ex vivo. Studies by Tran et al.

revealed latency-associated peptide (LAP) and IL-1 receptor

type I and II (CD121a/CD121b) as two specific surface

markers that distinguish activated Foxp3+ Treg from activated

Foxp3+ non-Treg after ex vivo expansion (148). GARP

represents another cell-surface molecule, which is selectively

expressed in Treg and up-regulated after TCR-mediated

activation with anti-CD3/CD28 and IL-2 (149). In addition,

studies by Schoenbrunn et al. showed that activated Treg differ

from activated conventional T cells in their expression of 4-1BB

(CD137) and CD40L (CD154). After polyclonal stimulation

with PMA/ionomycin or allogeneic APC, activated Treg are

defined by expression of CD137 and lack of CD154 (150). This

CD137 and CD154 expression signature can be further used to

specifically identify Treg even after prolonged in vitro expansion

culture. Nowak et al. demonstrated that expanded Treg can be

clearly distinguished from activated conventional T cells by the

presence of CD137 and the absence of CD154 (135). However,

the expression of these markers identified so far mainly relates to

Treg that were expanded in a time-consuming in vitro culture

using polyclonal activation. To what extent these markers can be

transferred to activated, non-expanded Treg, e.g. gp120-

activated Treg, needs to be further analysed. All in all, finding

a universal signature for activated Treg is of great interest, as it
FIGURE 2

Targeting Treg resistance and Treg dysfunction in the treatment of autoimmune diseases. The imbalance of the immune system in patients with
autoimmune diseases can be attributed to a disturbed function of Treg (Treg dysfunction) and to a reduced sensitivity of Teff to Treg-mediated
suppression (Treg resistance). To rebalance the misguided immune system, a combination therapy targeting both sides – Treg dysfunction and
Treg resistance – could be beneficial. Adoptive Treg transfer or Treg-specific activators such as gp120 can provide an additional boosting of the
suppressive properties of Treg.
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would significantly speed up the functional testing of Treg

potency in vitro for clinical application.

In addition to the flow cytometric analysis of activation-

induced surface molecules, the efficiency of Treg-activating

substances can be tested in an in vitro suppression assay.

Although this analysis method is significantly more complex and

time-consuming than flow cytometric analysis, the result provides

direct information about the suppressive capacity of activatedTreg.

In the context of gp120-mediated activation of Treg, Becker et al.

describe a useful in vitro coculture assay for testing the potency of

stimulated Treg (143). Here, resting CD3+CD4+CD25+ Treg are

cocultured in the presence or absence of increasing amounts of

gp120 with syngeneic T-cell-depleted PBMC (as costimulus) and

allogeneic CD8+ effector T cells. Cultures that are polyclonally

stimulated with anti-CD3 mAb serve as a positive control.

Proliferation of alloreactive CD8+ Teff is determined after three

days of culture by the incorporation of radioactive thymidine. The

results show that in this allogeneic setting, resting Treg are not able

to efficiently suppress the proliferation of effector T cells. However,

in the presence of gp120, stimulated Treg significantly prevent

activation and proliferation of allogeneic CD8+ Teff in a dose-

dependent manner. With the help of this assay, the efficiency of

Treg-activating substances canbeclearly examined.Adisadvantage

of this method, however, is that the setting and results are highly

dependent on the alloreactivity of the immune cells. If the

alloreactivity of both donors is less pronounced, the result cannot

be clearly interpreted.

In order to overcome the limitations of in vitro assays, a broad

range of humanizedmousemodels for the preclinical investigation

of various therapeutic approaches have been established over the

past decades. The engraftment of immunodeficient mice with

functional human immune cells and tissues have become

increasingly important to study human diseases, such as GvHD

or autoimmunity, in a preclinical setting. Moreover, humanized

mouse models offer the advantage of testing the effectiveness of a

drug directly in a pathological context (151).

The xenogeneic GvHD model is one well-established

mouse model to investigate the potency of Treg-stimulating

substances. This model is based on the transfer of human

peripheral immune cells into immunodeficient mice, such as

NOD/Scidgc-/- or Rag2-/-gc-/-. The transferred human T cells

are activated by APC and differentiate into IFN-g- and IL-17-

producing Teff that migrate to certain organs such as the liver,

skin, and intestines, where they initiate a strong inflammatory

response. This causes serious damage to the liver (hepatitis),

intestines (colitis), and skin (dermatitis) of mice. Furthermore,

these mice are characterized by a pronounced weight loss

(143). Just one week after the transfer of human immune

cells, a strong infiltration of T cells into the liver and

intestines of mice is observed (152). The limited number of

intrinsic Treg within the transferred human immune cells

cannot prevent GvHD development. Interestingly, the

formation of GvHD can be completely suppressed by
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targeted activation of intrinsic Treg. In studies by Becker

et al., a single application of gp120 induced a powerful

activation of intrinsic Treg, which prevented the activation

and proliferation of pathologic Teff (143).

Since the development of GvHD strictly depends on T-cell-

mediated inflammatory responses, this mouse model is a suitable

tool to study the regulation of Teff as well as the potency of Treg-

specific substances to boost Treg function.
Conclusions

In this review, we highlight two critical issues that should be

taken into consideration when developing new therapies to treat

autoimmune diseases. In general, several autoimmune diseases are

characterized by an imbalance between immune suppression and

immune activation. This imbalance can be attributed to two

disorders, which are present in critical immune cell populations.

In addition to a significantly reduced number and function of Treg,

many autoimmune diseases also show reduced responsiveness of

effector cells to Treg-mediated suppression (153). To efficiently treat

patients with autoimmune disease and to avoid relapses, both sides

–Treg resistance in Teff as well as Treg dysfunction – probably need

to be targeted. Furthermore, in order to induce long-lasting

tolerance in these patients, we consider a combination therapy to

be extremely beneficial (Figure 2).

Efficient abolition of Treg resistance and restoration of Treg

function has already been demonstrated for several DMD.

However, to which extent these effects persist in patients has

not been sufficiently investigated to date. Although many DMD

lead to a significant improvement in the symptoms of the

disease, relapses cannot be completely ruled out. In order to

reduce the occurrence of relapses and thereby improve the

patient’s quality of life, an additional “boosting” of Treg

function, by adoptive Treg transfer or administration of Treg-

specific activators such as gp120, could be beneficial.

In recent years, there have been impressive advances in the

development of new therapeutic strategies for the treatment of

autoimmune diseases. These novel strategies are based, for

example, on the inhibition of signal transduction pathways,

such as the JAK/STAT pathway, or blockade of overexpressed

ion channels, such as Kv1.3. Since cytokines are a key driver in

autoimmune diseases, targeting their associated signaling pathway

by inhibiting Janus kinases (JAK) is an attractive approach (154).

Baricitinib is one JAK inhibitor, which has been approved for the

treatment of RA patients (155). Besides JAK inhibition, efficient

blockade of Kv.1.3 ion channels is another promising approach.

Effector memory T cells in patients suffering from autoimmune

diseases, are characterized by an upregulated Kv1.3 channel (156).

Dalazatide is the first Kv1.3 channel inhibitor used in human for

the treatment of psoriasis (157). Both strategies, JAK inhibition as

well as blockade of Kv1.3, significantly dampen inflammation thus

improving the patient’s quality of life. However, even if these
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strategies achieve a significant improvement in disease symptoms,

it remains unclear how long this effect will last and whether Treg

resistance is affected and long-lasting self-tolerance is restored in

these patients. It is important to note that the induction of self-

tolerance appears to play a key role in curing autoimmunity. For

this reason, we think that - in addition to addressing inflammation

- addressing the suppressive side through the use of Treg-specific

activators or adoptive Treg transfer, for example, is also

very important.

All in all, the idea of targeting Treg resistance and Treg

dysfunction in a combined approach is still relatively new and in

its infancy. Initial investigations in preclinical, humanized mouse

models arenecessary inorder toobtaindataabout the efficiency and

tolerability of this therapy method in autoimmune diseases.
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93. Balandina A, Lécart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional
defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with
autoimmune myasthenia gravis. Blood (2005) 105(2):735–41. doi: 10.1182/blood-
2003-11-3900

94. Rappl G, Pabst S, Riemann D, Schmidt A, Wickenhauser C, Schütte W, et al.
Regulatory T cells with reduced repressor capacities are extensively amplified in
pulmonary sarcoid lesions and sustain granuloma formation. Clin Immunol (2011)
140(1):71–83. doi: 10.1016/j.clim.2011.03.015

95. Alvarado-Sánchez B, Hernández-Castro B, Portales-Pérez D, Baranda L,
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