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Abstract

Mutational load is known to be of importance for the evolution of RNA viruses, the combination of a high mutation rate and
large population size leading to an accumulation of deleterious mutations. However, while the effects of mutational load on
global viral populations have been considered, its quantitative effects at the within-host scale of infection are less well un-
derstood. We here show that even on the rapid timescale of acute disease, mutational load has an effect on within-host vi-
ral adaptation, reducing the effective selection acting upon beneficial variants by �10 per cent. Furthermore, mutational
load induces considerable stochasticity in the pattern of evolution, causing a more than five-fold uncertainty in the effective
fitness of a transmitted beneficial variant. Our work aims to bridge the gap between classic models from population genetic
theory and the biology of viral infection. In an advance on some previous models of mutational load, we replace the as-
sumption of a constant variant fitness cost with an experimentally-derived distribution of fitness effects. Expanding previ-
ous frameworks for evolutionary simulation, we introduce the Wright-Fisher model with continuous mutation, which
describes a continuum of possible modes of replication within a cell. Our results advance our understanding of adaptation
in the context of strong selection and a high mutation rate. Despite viral populations having large absolute sizes, critical
events in viral adaptation, including antigenic drift and the onset of drug resistance, arise through stochastic evolutionary
processes.

Key words: mutational load; within-host evolution; stochastic evolutionary processes; effective selection; acute viral
infection.

1. Introduction

RNA viruses cause a broad range of acute infectious diseases.
Seasonal influenza circulates as a global population, causing an
estimated 3–5 million cases of severe illness each year (Bedford
et al. 2015; WHO Influenza Factsheet 2018). Ebola virus generally
causes small outbreaks, but from 2014 caused a severe epidemic
in West Africa (WHO Ebola Response Team 2014). Rhinovirus,
norovirus, measles, RSV, and parainfluenza all cause large num-
bers of infections each year. RNA viruses evolve on observable

timescales (Biek et al. 2015); the potential to study evolution in
this manner creates opportunities to combat viral disease.

Viral evolution acts across multiple scales, from the individ-
ual infection to the global evolution of viral populations
(Murillo, Murillo, and Perelson 2013; Gog et al. 2015), with differ-
ent factors driving evolution at different scales. Population bot-
tlenecks occurring at transmission can cause the fixation of
variants in a population by genetic drift (McCrone and Lauring
2018); larger population sizes during within-host infection can
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make selection the dominant evolutionary force (Pennings,
Kryazhimskiy, and Wakeley 2014).

Here we consider viral evolution as it occurs within a single
host. At the within-host level, a variety of studies have applied
models to data, describing how selection shapes the genetic
composition of a viral population over time (Ganusov et al.
2011; Kessinger, Perelson, and Neher 2013; Foll et al. 2014;
Illingworth, Fischer, and Mustonen 2014; Illingworth 2015).
Models used in this context typically assume either that alleles
evolve in an independent manner, or that a few alleles, influ-
enced by mutual linkage disequilibrium, evolve on an otherwise
uniform genetic background. In either case the vast majority of
loci in the viral genome are neglected. Such approaches allow
for the rapid estimation of a fitness landscape, but neglect
effects such as mutational load, which act in a truly genome-
wide manner (Agrawal and Whitlock 2012).

The importance of mutational load for viral evolution is
well-established (Pybus et al., 2007). RNA viruses exist at large
within-host population sizes. Under high mutation rates viruses
accumulate mutations, most of which are deleterious (Holland
et al. 1982; Sanjuan et al. 2010). Experimental research has
shown that tighter population bottlenecks accentuate the accu-
mulation of deleterious mutations in viral populations (Elena
et al. 2001; Miller, Joyce, and Wichman 2011); viruses may have
evolved robustness in order to counter this effect (van
Nimwegen, Crutchfield, and Huynen 1999; Manrubia et al. 2005).

The effects of mutational load have been considered in stud-
ies of infectious disease at the level of global populations. One
study of the circulating influenza A/H3N2 population inferred
that deleterious variants can, via linkage disequilibrium, fix in
the viral population (Illingworth and Mustonen 2012). A further
study of this population showed that presence of deleterious
mutations slows the antigenic evolution of this virus (Koelle
and Rasmussen 2015), the genetic background upon which a
mutation arises delaying the onset of beneficial mutations.

The potential importance of mutational load for within-host
viral evolution has been highlighted by a study showing the
mutation rate for influenza to be higher than previously
thought (Pauly, Procario, and Lauring 2017); more mutation
clearly implies more mutational load. Mutational load is
exploited by antiviral approaches which seek to increase viral
mutation rates, the induction of deleterious mutations reducing
the fitness of the population as a whole. Both experimental
(Loeb et al. 1999; Crotty, Cameron, and Andino 2001; Arias,
Thorne, and Goodfellow 2014) and theoretical approaches (Bull,
Sanjuán, and Wilke 2007; Martin and Gandon 2010;
Matuszewski et al. 2017) have been used to explore this
strategy.

Mutational load has been well studied in population genetics
research (Haldane 1937; Muller, 1964; Kimura and Maruyama
1966; Matuszewski et al. 2017), albeit that models of mutational
load generally make the assumption that mutations have a con-
stant deleterious fitness effect (Haigh 1978; Lynch et al. 1993;
Koelle and Rasmussen 2015). An approach of this type has con-
sidered the effect of mutational robustness of a viral population,
defined in terms of the proportion of mutations which are dele-
terious, and the effect which deleterious mutations have upon
viral fitness, upon the consequent diversity of that population
(Lauring, Frydman, and Andino 2013; Stern et al. 2014).
However, recent studies measuring fitness effects in in vitro vi-
ral populations (Acevedo, Brodsky, and Andino 2014; Visher
et al. 2016), have shown a distribution of fitness effects far from
this assumption: A substantial proportion of mutations are le-
thal, with other mutations having a broad range of fitness

effects. A gap therefore exists between traditional population
genetic models of mutational load and biological reality.

We here adopt a new modelling approach to evaluate the ef-
fect of mutational load in a realistic model of acute within-host
RNA infection. We introduce an extension to the standard
Wright-Fisher population genetic model (Tataru et al. 2017) so
as to explore the role of the intra- and inter-cellular lifecycle of
an RNA virus upon its evolution, as part of a simulation of com-
plex fitness effects.

Our model shows that under the influence of mutational
load beneficial mutations have smaller and more stochastic
effects in viral populations than has previously been appreci-
ated. In a viral population, beneficial mutations can include var-
iants conferring increased protein stability, immune escape
(Grenfell et al. 2004; Leslie et al. 2004), drug resistance (Clavel
and Hance 2004; Foll et al. 2014), and the adaptation of a zoo-
notic virus to a human host (Brander and Walker 2003;
Taubenberger and Kash 2010; Moncla et al. 2016). We here eval-
uate the consequences of mutational load for the onset of a
beneficial variant in a viral population in cases where the bene-
ficial variant arises via de novo mutation and where the variant
is transmitted on one virus in a population founding infection.
Although parameterised for influenza, the generality of our
model leads to an improved understanding of multiple ques-
tions in viral evolution.

2. Methods

In order to evaluate the effect of mutational load we derived an
evolutionary model describing within-host growth, based upon
the known characteristics of influenza viral infection.
Simulations conducted using this model gave an insight into
the behaviour of the system under a variety of evolutionary
parameters.

2.1 Modelling framework

Previous models of within-host viral growth have considered
the viral population either explicitly, accounting for each indi-
vidual virus in the host (Russell et al. 2012) or implicitly, consid-
ering changes in the relative number of viruses over time
(Beauchemin and Handel 2011). We here took the former ap-
proach, wishing to account for the fitness of each of the viruses
in the system.

The Wright-Fisher framework provides a computationally
efficient description of an evolving population, being built upon
the assumption that each generation of individuals arises from
the reproduction of individuals in the previous generation.
However, the reality of viral replication can be complex (Heldt,
Frensing, and Reichl 2012). In order to think more deeply about
how to model viral evolution we constructed a toy replication
model (Fig. 1). Within a cell, viral RNA is replicated. New viruses
are formed of proteins which have been translated from viral
RNA; we assumed this to occur at a constant rate (Heldt,
Frensing, and Reichl 2012). During replication the initial strand,
once copied, is rapidly returned to the viral population. Copying
is error-prone, with the copied strand being an imperfect replica
of the original. The copied strand, which may take time to be-
come fully formed, may or may not then feedback, in order to
initiate further replication events. We note that the evolution-
ary dynamics of the system depend upon whether or not, and
at what rate, replicated viral RNA feeds back into the viral repli-
cation process. If this feedback does not occur at all, the viruses
produced by the cell are translated from viral RNA that, with
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the exception of the RNA which caused infection, has under-
gone a single round of error-prone replication. This process is
well approximated by a Wright-Fisher model, in which the viral
population undergoes a single round of instantaneous mutation
before being subject to selection.

In contrast to this situation, a Wright-Fisher model is not
fully accurate if replicated viral RNA is fed back in to the replica-
tion process. Considering the extreme case, in which feedback
occurs instantaneously, we derived an alternative model. Under
these circumstances, viral RNA is copied repeatedly over time,
gradually acquiring mutations. Proteins translated from RNA
early in this process thus have fewer mutations than proteins
translated later in time. In Supplementary Material, we show
that under an assumption of continuous protein production the
acquisition of mutations per strand is roughly linear in time.
The evolution of the system can in this case be represented by
what we term a Wright-Fisher model with Continuous Mutation
(WF-CM model), and specifically by a version of that model in
which the timing of mutations follows a uniform distribution.

We investigate both models, making the assumption that the
biological reality is likely intermediate to the two cases we
describe.

2.1.1 Wright-Fisher model
In the Wright-Fisher model the population is evaluated at a set
of discrete generations. We denote the fitness of the virus i as
wi. In each generation each virus receives a Poisson-distributed
number of mutations, with rate lL, where l is the mutation rate
of the virus and L is the length of the genome. The next genera-
tion of the population is then sampled from the current one; the
probability that an individual in the next generation is
descended from virus i is given by

wiP
aWa

(1)

where the sum is taken over all viruses a.

A

B

Figure 1. (A) Toy model of viral RNA replication. Following infection, strands of viral RNA enter the replication process at some rate r1. In replication a (mutated) copy

of the original RNA strand is produced, the original immediately returning to the pool. Completion of the new RNA strand occurs at some rate r2, following which it is

returned at some rate r3 to a state in which it can itself be replicated. RNA is translated to produce viral proteins; we assume that the amount of replicated RNA far

exceeds the amount which enters the cell. (B) Consequences of specific model assumptions. If replicated RNA can never be re-replicated, all of the replicated RNA is

copied from the genetic material of the viruses that founded infection; the vast majority of viral protein is therefore translated from RNA that has undergone a single

round of mutation-prone replication. This can be represented by a model in which all of the mutation affecting the RNA forming the next generation of viruses occurs

at a single time-point; in this case, mutation is described by a delta function at time t ¼ 0. In contrast, if replicated RNA is completed and feeds back instantaneously,

viruses translated from the RNA become progressively more mutated over time. This can be approximated by a model in which viral RNA acquires mutations at a con-

stant rate.
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2.1.2 Wright-Fisher model with continuous mutation
The WF-CM model is identical to the Wright-Fisher model, ex-
cept that mutation is modelled as happening continuously
throughout the process. Mutation occurs concurrent with the
production of the next generation, with viruses that are pro-
duced earlier in the process carrying fewer mutations. Similar
to the Wright-Fisher model, in each generation each virus
receives a Poisson-distributed number of mutations, with rate
lL. However, each mutation is in addition assigned a random
time t 2 ½0; 1�.

Times assigned to mutations affect the manner in which the
next generation is chosen. In the sampling step, suppose that in
a given generation the virus i acquires k distinct mutations at
the times t1; t2; . . . ; tk. We denote t0 ¼ 0 and tkþ1 ¼ 1. The virus is
then considered as k þ 1 discrete objects vi;0; vi;1; . . . ; vi;k, where
vi;j represents viruses descended from i during the time in
which it has accumulated precisely j mutations. The virus exists
in this state and produces offspring for a length of time tjþ1 � tj.
Thus where wi;j is the fitness of i after it has accumulated pre-
cisely j mutations, the probability that an individual in the next
generation is descended from vi;j is given by

wi;jðtjþ1 � tjÞP
a

P
bwa;bðtbþ1 � tbÞ

(2)

where the sum is taken over all a, b. In our model the times of
mutation are chosen from the uniform distribution U½0; 1�. This
is not a rigid property of the model, but is derived from our toy
model; other distributions of time could potentially be explored.
A simple overview of the two models is shown in Fig. 2.

2.2 Mutation rate

The default mutation rate for our model was taken from recent
experimental measurements conducted for the influenza A vi-
ral strain (Pauly, Procario, and Lauring 2017), which estimated a
value of l ¼ 1:8� 10�4 per base per cycle of cell infection, some-
what higher than previous estimates (Nobusawa and Sato 2006;
Sanjuan et al. 2010). We used this value as the default rate per
base per generation in our model.

2.3 Distribution of fitness effects

We considered the fate of a single beneficial allele in the pres-
ence or absence of mutational load. The magnitude of selection
for the single allele was set within a range making the variant
advantageous enough to have some chance of being observed
during the course of a single infection, yet not so advantageous
that the fixation of the variant was inevitable. The fitness bene-
fit conferred by the single allele was denoted as s, such that the
allele granted a (1þs)-fold increase in the viral replication rate.

The distribution of fitness effects for other variants was set
using data from in vitro experiments conducted with an influ-
enza virus (Visher et al. 2016). This study measured the fitness
effects of a set of synonymous and non-synonymous variants;
�35 per cent of non-synonymous mutations were reported to be
lethal, with no lethal synonymous mutations being found.
Retaining these proportions of lethal mutations we fitted distri-
butions to the data describing non-lethal mutations. A Weibull
distribution was found to produce the best fit to the synony-
mous and non-synonymous mutation data if the fitted distribu-
tion was required to include both beneficial and deleterious
effects (Table 1). Beneficial mutations were included in our fit-
ness model to satisfy the property that influenza virus

populations, which contain fixed deleterious variants
(Illingworth and Mustonen 2012; Koelle and Rasmussen 2015),
are unlikely to exist at a global fitness maximum. The fitted dis-
tributions are shown in Fig. 3A and B.

The fractions of synonymous and non-synonymous variants
were calculated using the influenza A/Brisbane/59/2007 (H1N1)
genome sequence. Variant types were calculated with reference
to the proteins PB2, PB1, PB1-F2, PA, PA-X, HA, NP, NA, M1, M2,
NS1, and NS2 reported in the NCBI influenza virus database
(Bao et al. 2008). Where a variant caused different effect var-
iants expressed in overlapping reading frames, the variant type
was recorded as non-synonymous. The same reference se-
quence gave us a length for the genome of L ¼ 13109 bases. We
assumed a zero rate of within-host viral reassortment, match-
ing the low rate observed in human infection (Sobel Leonard
et al. 2017).

By default our simulations assumed a multiplicative model
of fitness effects (e.g. two mutations which each reduce fitness
to 90 per cent of its original value would together reduce viral
fitness to 81 per cent of its original value). In some additional
simulations negative epistasis was modelled as a constant neg-
ative effect applying in a pairwise manner between mutations.
That is, if a virus with k variants had fitness w under the stan-
dard multiplicative model, its fitness given the influence of
epistasis was equal to wvkðk�1Þ=2, where v is the effect of epistasis
and the exponent term represents the number of pairs of var-
iants in the viral sequence. The heuristic value v ¼ 0:96 was
used in our simulations, granting a weak epistatic effect be-
tween individual pairs, but contributing a stronger negative in-
fluence upon the accumulation of large numbers of mutations.

2.4 Demographic model

We conducted simulations under the assumption of a fixed de-
mographic model; that is, where changes in the relative fitness
of viruses do not affect the overall demography of infection. By
default simulated infections were initiated with a founding pop-
ulation of five viruses, consistent with estimates obtained for
RNA viral transmission (Zwart and Elena 2015). The population
then followed a pattern of growth and decline matching that
described by differential equation models of viral titre
(Beauchemin and Handel 2011). In line with studies of single-
cellular replication, the population increased twenty-two-fold
in size each generation (Baccam et al., 2006) for five generations,
before decreasing at a rate

ffiffiffiffiffiffi
22
p

per generation for a further
seven generations (Fig. 3C). Informally a generation within our
model corresponds to a period of just over 11 h (Baccam et al.
2006). Where a different founder population size was used,
these relative changes in the size of the population were pre-
served, matching the experimental observation that an in-
creased founder population causes a more severe infection
(Graham and Braciale 1997).

2.5 Model implementation

Our evolutionary model requires the storage and evaluation of
the fitness values of all individuals in the population, which
becomes costly at large population sizes. To achieve this we dis-
cretised the space of possible fitness values into classes of size
0.01, with the fitness effects of new mutations being modelled
as the transition of viruses between discrete fitness classes.
Steps to speed up the computation of our simulations were
taken, noting that as the population becomes large its
behaviour becomes increasingly deterministic. Numerical
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approximations made in the model are detailed in
Supplementary Material.

2.6 Equilibration of the model

Supposing the viral population to have been initiated by trans-
mission, viruses in the founding population would likely differ
with respect to the mutations they carry. To approximate the
distribution of viral fitnesses of this population, simulations
were run, representing the serial passaging of the virus through
multiple hosts. Beginning from a homogeneous population,
simulations of the growth of the virus under the influence of
mutational load were conducted, taking an unbiased random

sample from the population at a uniformly distributed time
within the period of peak viral load. Repeated bottlenecks were
calculated, allowing at least 100 generations of transmission for
the equilibration of the distribution of viral fitnesses, following
which sets of viral fitnesses in successive founder populations
were collected; these fitnesses were used as starting points for
further simulations. During this process the distribution of fit-
ness effects was kept constant, fixations not inducing changes
to this distribution. Distributions of relative viral fitnesses at
the onset of infection, calculated for populations with a founder
population of five viruses under different mutation rates, are
shown in Supplementary Fig. S1.

2.7 Measuring effective selection

The effective selection acting upon a variant has been defined
as the mean fitness advantage of individuals possessing the
variant, accounting for linkage disequilibrium with other se-
lected variants located elsewhere in the genome. It may differ
from the inherent fitness acting for the variant in question
(Illingworth and Mustonen 2011). We used successive frequen-
cies of the selected variant from consecutive time points to
measure the effective selection acting upon it. Denoting the

Figure 2. Illustration of the Wright-Fisher and WF-CM. In the example shown here, we assume that in the Wright-Fisher model a virus v, with original fitness w0,

acquires three mutations in the mutation step, such that its offspring have the fitness w3; in the selection step these potential offspring compete with those of other vi-

ruses in the population. With continuous mutation these mutations arise at some times t1, t2, and t3 leading to the expression, during a generation, of potential off-

spring with fitnesses w0, w1, w2, and w3, indicated by the thickness of the different grey lines. In the selection step these potential viruses have fitnesses scaled by the

length of time for which they are actively being produced.

Table 1. Likelihoods for fitting a distribution of fitness effects to the
experimental data.

Distribution Exponential Gamma Weibull Log-normal

BIC value 152.324 14.246 �24.208 32.386

A Weibull distribution is favoured under a comparison of models using the

Bayesian information criterion (BIC). A lower value indicates a better model.
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frequency of the variant in generation k by qðtkÞ, we obtain for
the Wright-Fisher model that

seff ¼
qðtkþ1Þ � qðtkÞð1� lÞ � l

3 1� qðtkð ÞÞ
ð1� qðtkþ1ÞÞ qðtk½ Þð1� lÞ þ l

3 1� qðtkð ÞÞ� : (3)

and for the WF-CM that

seff ¼
q tkþ1ð Þ � q tkð Þ 1� l

2

� �
� l

6 1� q tkð Þð Þ
1� q tkþ1ð Þð Þ q tkð Þ 1� l

2

� �
þ l

6 1� q tkð Þð Þ
� � : (4)

We note that the effective selection across a period of multi-
ple generations can be easily calculated as the mean of seff

across the generations considered; when calculating this statis-
tic from simulated data the calculation was performed over all
generations for which the viral population size was equal to at
least 104 and for which qðtkþ1Þ was neither 1 nor 0. Derivations
of Equations (3) and (4) are given in the Supplementary
Mathematical Appendix.

Simulations were conducted using both the Wright-Fisher
and WF-CM models. We considered both the case in which a
beneficial mutation arose de novo within a viral population, and
the case in which the beneficial mutation was carried by an in-
dividual in founder population, existing from the outset as
standing variation.

3. Results
3.1 Variants arising through de novo mutation

3.1.1 Mutational load reduces the effective selection acting for a
beneficial variant
Our simulations showed that mutational load reduced the
mean effective selection acting for the beneficial variant, but
greatly increased its variance. Where mutational load was not
modelled in the simulation process, our estimates of the effec-
tive selection of this variant were almost exactly identical to the
true selective advantage of the variant (Fig. 4A). Under these cir-
cumstances, the beneficial allele arises as an isolated variant on
a uniform genetic background; minor deviations from its
expected behaviour arise due to the effect of genetic drift on the

variant while it exists at a low frequency. In contrast, where
mutational load was incorporated into our simulation, the
mean of the effective selection acting upon the variant was sub-
stantially lower than the simulated value, with a deficit of
around 10 per cent on the inherent magnitude of selection being
observed under default model parameters (Fig. 4B). This reduc-
tion in the effective fitness was close to being independent of
the inherent benefit of the variant; a linear regression con-
strained to pass through the origin gave a value of r2 in excess
of 0.999.

The reduction in the effective fitness can be understood in
simple terms. Viruses possessing the beneficial variant can tol-
erate a greater number of deleterious mutations without be-
coming uncompetitive. As such, among viruses which are not
eliminated by selection, mutational load has a greater deleteri-
ous effect upon viruses with the beneficial variant than upon
those without it; the effective advantage of the beneficial vari-
ant is reduced.

The extent of the mean drop in effective selection varied
according to the model used and its parameterisation. In our
observations, mutational load had a lesser effect under the WF-
CM model than under the standard Wright-Fisher population
model (Fig. 4C). In the WF-CM model, mutations do not appear
until some time into a generation. As such, the virus exists in
its unmutated form for at least a short period before the arrival
of the first mutation. Where mutations generally decrease viral
fitness, this allows for the preservation of less-mutated viruses;
fewer mutations are carried in the population in the WF-CM
model than in the standard Wright-Fisher. This effect can be
best appreciated in the case of lethal mutations; a virus which
receives a lethal mutation may still produce offspring in the
next generation; those offspring being produced in the fraction
of a generation preceding the arrival of the lethal mutation. The
WF-CM model with a uniform distribution of mutation times
therefore provides a conservative estimate of the extent to
which mutational load affects within-host evolution.

Example trajectories for the beneficial variant generated by
the WF-CM model with and without mutational load are shown
in Fig. 4D; an equivalent figure for the Wright-Fisher model is
shown in Supplementary Fig. S2. Under our default parameters,
the reduction in the mean effective selection was close to 9.2

Figure 3. Inferred distributions of fitness effects for (A) non-synonymous and (B) synonymous variants. The non-lethal component of the non-synonymous distribution

is Weibull-distributed with shape parameter 5.088 and scale parameter 0.8705. The synonymous distribution is Weibull-distributed with shape parameter 6.723 and

scale parameter 0.9932. (C) Demographic model used in simulations, with an initial transmission bottleneck of 5 being simulated. The peak population size is close to

2.5 � 107. Where the transmission of viruses was considered, it was modelled as occurring at a uniform time within the window of peak viral load, shaded in red.

Alternative demographic models were defined as linear scalings of this model, defined by the population bottleneck incurred at transmission.
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per cent for the WF-CM model, and close to 13.5 per cent under
the standard Wright-Fisher model.

Changes in the mutation rate of the model produced sub-
stantial changes in the mean influence of mutational load.
Reducing the mutation rate of our model from 1.8 � 10�4 per
base per generation to 6 � 10�5 per base per generation pro-
duced a reduction in effective selection of 3.5 per cent in the
WF-CM model (6.1 per cent for the Wright-Fisher model), while
a further reduction to 2 � 10�5 per base per generation produced
a mean reduction of just 1.5% (2.4%); as would be expected a
lowered mutation rate reduces the impact of mutational load.

Changes in our demographic model had smaller, but still
measurable impacts on the effect of mutational load. Given a

larger population bottleneck, a greater diversity of viral fit-
nesses exists in the population from the moment infection is
initiated. In our approach a larger number of viruses founding
infection corresponds to a larger viral population throughout
the course of infection, such that the beneficial variant is likely
to arise earlier in the course of infection. In our simulations a
larger population led to a greater reduction in effective selection
with a smaller bottleneck reducing the impact of mutational
load. Given a bottleneck size of NT ¼ 1, we observed a reduction
of 7.4 per cent in effective selection acting on the variant under
the WF-CM model (equivalently 10.8% in the Wright-Fisher
model), while a bottleneck size of NT ¼ 100 gave a reduction in
the effective selection of 11.3 per cent (15.6%).

Figure 4. (A) Effective selection coefficients for beneficial mutations in simulations which excluded mutational load and were conducted using default model parame-

ters. Red dots show the mean effective selection for mutations with a range of inherent selection coefficients. Vertical red bars show 90 per cent confidence intervals

for the effective selection. Grey shading represents the distribution of inferred effective selection values. The blue dotted line shows equivalence between the true and

effective selection coefficients. (B) Effective selection coefficients in simulations which included mutational load and were conducted using default model parameters.

(C) Reduction in the mean effective selection coefficient relative to the inherent value of selection under different model parameters. Values are shown for simulations

conducted with the Wright-Fisher (blue) and WF-CM (red) models. (D) Example trajectories for the beneficial variant under the WF-CM model with (red) and without

(blue) mutational load. Selection here is equal to 3. Bold lines indicate mean trajectories. Trajectories shown here are those in which the beneficial variant is first ob-

served in the third generation of the simulation.
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The addition of negative epistasis to the model led to a slight
additional decrease in the effective selection of a variant.
Although few empirical studies of patterns of epistasis in viral
populations have been conducted (Lyons and Lauring 2018), the
need for proteins to fold has been proposed to contribute a gen-
eral pattern of negative epistasis between variant alleles
(Sarkisyan et al. 2016; Wylie and Shakhnovich 2011). The addi-
tion of a small pairwise negative epistatic fitness cost to our
model led to a further reduction in the absolute fitness of a ben-
eficial allele, by a consistent amount close to 10.7 per cent of the
original fitness of the variant (Supplementary Fig. S3).

Although mutational load decreased the mean effective fit-
ness of a variant, the variance in that effective fitness of a de
novo variant greatly increased under the influence of mutational
load. Under our default parameters, the size of a confidence in-
terval including 90 per cent of the effective selection coefficients
tended to a range spanning values �25 per cent higher or lower
than the mean effective value as the inherent fitness of a vari-
ant became large (Supplementary Fig. S4). At these high fitness
values, viruses which gain the beneficial mutation become al-
most certain to produce offspring which survive until the end of
the infection; the stochasticity in the effective selection arises
from a combination of the set of genetic backgrounds upon
which the variant can arise, plus the varied potential effect of
subsequent mutations upon the system.

3.1.2 Mutational load decreases the probability that a variant allele
will emerge during the course of an infection
The reduction in the mean effective fitness of a beneficial vari-
ant caused by mutational load in general reduces the probabil-
ity of the variant emerging during the course of an infection.
Here emergence was defined as the frequency of the beneficial
mutation rising to 50 per cent or higher in the viral population
by the end of infection. As shown in Fig. 5, this probability was
almost universally reduced by the effects of mutational load. An
exception to this occurs at the lowest selection coefficients con-
sidered. Although the mean effective selection is reduced by

mutational load, the increased variance means that in some
cases the effective fitness can lie above the inherent fitness of
the beneficial allele. Where the inherent benefit is low enough
that a mutation does not emerge in the absence of stochastic
effects, mutational load led to a few cases in which emergence
did occur. With this exception our result is straightforward; mu-
tational load makes new alleles less likely to emerge during the
course of an infection. Data shown here were generated using
the WF-CM model; the Wright-Fisher model produced a slightly
greater reduction in the probability of establishment
(Supplementary Fig. S5).

3.2 Transmitted variants

We further considered the fate of beneficial variants that are
transmitted from a previously infected host. Simulations were
initiated describing populations in which one of the founder vi-
ruses in the population carried the beneficial mutation. In addi-
tion to measuring the effective selection acting upon the
variant we measured the likelihood of its fixation (existing at a
frequency �99 per cent by the end of an infection) or loss from
the population (existing at a frequency �1 per cent by the end of
the period of infection). We note that, due to the continual pro-
cess of mutation, the absolute fixation or loss of variants is rare.

3.2.1 Mutational load makes the fate of transmitted variants highly
stochastic
In comparison to the case of de novo mutation, a much greater
variation in the effective fitness of the beneficial variant was
seen in these simulations (Fig. 6A). At the largest inherent selec-
tion coefficients, the measured effective selection was between
30 and 165 per cent of the inherent value, a more than five-fold
uncertainty in the effect of the variant; this range was larger at
weaker magnitudes of selection. The increased variance arises
to a small extent from genetic drift in the early phases of infec-
tion; while the viral population grows rapidly, the size of the
population by the second generation is not large, at close to 100.
Measurements of effective selection showed a variance of
roughly 620 per cent in the effective selection even where no
mutational load was present (Supplementary Fig. S6).

The bulk of the increased variance in effective selection is
therefore explained by effects arising from mutational load,
specifically by variation in the fitness of the initial virus in
which the beneficial variant appears. During early infection, the
growth of the beneficial variant in the population arises from
the clonal growth of the descendants of this single virus.
Although new viruses carrying the variant arise de novo in later
generations, this initial clade has a substantial impact upon the
evolution of the population as a whole. The range in the poten-
tial fitness of a single transmitted virus is substantially larger
than that in the multiple viruses upon which the beneficial vari-
ant arises in the de novo case, leading to a broader range of ob-
served effective selection values. In our model, transmission
was assumed to be a neutral process, such that even lower fit-
ness viruses could potentially contribute to the founding popu-
lation; further restrictions on the modelled transmission
process could potentially reduce the variance towards that of
the de novo case. To give one example, if founding infection was
difficult, and the small number of viruses that achieve this were
the survivors of a competition between a much larger number
of viruses, the range of fitnesses of viruses in the founder popu-
lation could be reduced.

In our simulations of transmitted standing variation, muta-
tional load had a large effect on the fate of the beneficial

Figure 5. Probability that the beneficial variant will rise to a frequency of 50 per

cent or greater during the course of an infection. Data are shown from simula-

tions that exclude the effects of mutational load (blue) or include it, either under

a multiplicative model of selection (yellow) or under a model incorporating neg-

ative epistasis (red). Simulations were conducted with an initial population bot-

tleneck of 5 and a mutation rate of 1.8 � 10�4 per base per generation. Data are

shown here for the WF-CM model.
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mutation. Where mutational load was neglected, a variant
reached fixation in all of our simulations for which the strength
of selection s � 1, but fixation was never achieved for cases with
s � 0:5 (Fig. 6B). Mutational load affected this in both directions.
On the one hand, under mutational load, a variant with s ¼ 0.25
was sometimes sufficient to achieve fixation, the initial back-
ground of a variant aiding its evolutionary progress. On the
other, even very strong positive selection (s ¼ 5) was insufficient
to guarantee the fixation of a variant.

Under our simulation conditions, the loss of the beneficial
variant was exceptionally unlikely to occur via genetic drift; a
beneficial mutation in a rapidly expanding population is
expected to grow rapidly in frequency. As such, in the absence
of mutational load, loss of the beneficial variant was never ob-
served. In contrast, under mutational load beneficial mutations
were frequently lost from the population. Despite its inherent
advantage, loss of the beneficial variant was observed in multi-
ple simulations, occurring in 23 per cent of cases for which s ¼
0.25 and a little over 1 per cent of simulations for which s ¼ 1
(Fig. 6C). Data shown were generated using the WF-CM model;
the Wright-Fisher model led to mutational load having a greater
impact on the probability of the fixation or loss of a variant
(Supplementary Fig. S7).

4. Discussion

Using a novel evolutionary model of within-host viral infection,
we have here considered the evolutionary implications of muta-
tional load upon the evolution of beneficial variants in a within-
host population based upon biologically realistic evolutionary
parameters. Previous studies have considered the effect of mu-
tational load in global viral populations (Pybus et al. 2007;
Illingworth and Mustonen 2012; Koelle and Rasmussen 2015);
here we have shown that it has a considerable impact upon the
within-host evolution of a virus. Using parameters which reflect
an influenza infection, mutational load was found to decrease
the effective advantage conferred on a virus by a de novo benefi-
cial variant by �10 per cent. Under mutational load, the effec-
tive selection is highly stochastic, with a transmitted variant
potentially having a more than five-fold uncertainty in its

effective selective effect. Even where strongly beneficial var-
iants act for phenotypes such as immune escape or drug resis-
tance, stochastic effects have a considerable influence on
evolution.

Our result has implications for studies which have sought to
estimate the magnitude of selection acting upon variants in vi-
ral populations. Given data from a single replicate, the inferred
fitness effect of a beneficial variant is intrinsically uncertain,
with a bias towards a lower selective effect. In so far as muta-
tional load consists of a large number of mutations spread
across a genome at low allele frequencies, the direct assess-
ment of its effect via genome sequencing is likely to be very
challenging using current sequencing technology. Studies
which have used sequence data from within-host infections to
evaluate the fitness of beneficial mutations are therefore likely
to have underestimated the benefit of such mutations (Fonville
et al. 2013; Foll et al. 2014; Illingworth, Fischer, and Mustonen
2014; Illingworth 2015). We note that this effect is not con-
strained to population genetic approaches to selection. Viral
competition experiments (Marée et al. 2000) and deep muta-
tional scanning (Thyagarajan and Bloom 2014) each involve a
comparison of the prevalence or growth rate of viruses, which
either have or do not have a specific variant. Where such
experiments involve a process of error-prone viral replication,
mutational load will have an effect on the results; inferred fit-
nesses obtained in this way will in the mean underestimate
true fitness differences between variants.

Our result also has implications for studies which have esti-
mated the probability of the emergence or fixation of variants
during the course of a single infection. For example, in evaluat-
ing the potential for a zoonotic infection to become increasingly
adapted to a human host, the likelihood that new adaptive var-
iants become established is key (Russell et al. 2012; Reperant
et al. 2014). In so far as studies of this phenomenon have not
accounted for mutational load, they have likely overestimated
the extent to which the gain of beneficial mutations might be
expected to occur. A recent study has noted an absence of
strongly adaptive mutations in natural within-host influenza
infection (McCrone et al. 2018); here we have shown that, as the
effects of mutational load work against the onset of new

Figure 6. Effect of mutational load upon a transmitted variant. Simulations were initiated with one out of five viruses carrying the beneficial allele. (A) Effective selec-

tion coefficients for a beneficial mutation in simulations which included the effects of mutational load. Red dots show the mean effective selection for mutations of se-

lection coefficients tested. Vertical red bars show 90 per cent confidence intervals for this statistic. Grey shading represents the distribution of inferred effective

selection values. Simulations were conducted with an initial population bottleneck of 5 and a mutation rate of 1.8 � 10�4 per base per generation. (B) Probability that

the beneficial variant will reach fixation during the course of an infection. Results are shown for simulations in the absence (blue) or presence (yellow) of mutational

load. (C) Probability that a variant will die out during the course of infection. Error bars show the extent of variation across 10,000 simulations for each point. Data are

shown here for the WF-CM model.
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mutations, adaptation to a new host requires stronger selection
than has previously been appreciated.

4.1 Application to other viruses

Although our simulation model was parameterised using data
from studies of influenza virus, the results we obtain are likely
to be easily translatable to other RNA viruses causing acute in-
fectious illness, according to the mutation rate, distribution of
fitness effects, and demography of a given viral infection. A key
determinant of the effect of mutational load is the basic rate of
viral mutation. Estimates of mutation rates for RNA viruses
span a range of slightly greater than an order of magnitude
(Sanjuan et al. 2010); new experimental techniques may identify
such rates with greater precision. Distributions of fitness effects
have been characterised for only a small number of RNA vi-
ruses, but show a qualitatively common pattern, combining a
largely deleterious unimodal distribution with a proportion of
lethal mutations (Acevedo, Brodsky, and Andino 2014; Visher
et al. 2016). Changes in the overall size of the viral population in
our model caused relatively smaller changes in the influence of
mutational load, albeit with a greater effect of mutational load
at larger population sizes. A longer period of infection would af-
fect the results obtained in a relatively straightforward manner;
weaker magnitudes of selection can produce equivalent effects
upon a population given longer periods of time in which to act.

4.2 Evolutionary modelling

We have here generated results from a standard Wright-Fisher
population model, and from a new WF-CM, in which the timing
of mutations was modelled to follow a uniform distribution. As
we have shown, the two models may be derived from two limit-
ing assumptions about the rate to which viral RNA within a cell
is repeatedly copied during the process of viral replication.
Regarding influenza virus, we note that the potential theoreti-
cally exists for more than one round of RNA replication to occur
within a cell. During infection, positive-strand cRNA is produced
by the infecting ribonucleoprotein (vRNP), which is copied to
negative strand vRNA; this RNA is encapsidated into new vRNPs
(Heldt, Frensing, and Reichl 2012). The vRNPs produced via rep-
lication outnumber those in the infecting viruses, and have the
capacity to produce further cRNA. However, measurements of
cRNA in cells infected at high MOI show the production of viral
RNA to spike early in infection (Smith and Hay 1982), while di-
rect measurements of cRNA levels in the cell show that their
initially rapid increase is followed by a levelling off or slowed in-
crease in concentration (Kawakami et al. 2011). These results do
not support the idea that cRNA is substantially produced by
vRNPs other than those which initiated infection; if this is the
case, the effect of mutational load during infection may be
closer to the results derived from the standard Wright-Fisher
model, rather than the more conservative WF-CM model. We
note that the WF-CM model has broader potential application
than the specific usage made here; non-uniform distributions of
the timings of mutation, arising from other replication scenar-
ios, could be considered.

With regard to parameters of our model, our approach has
been to incorporate as much information as possible from ex-
perimental virological studies; this is most straightforward in
the consideration of viral mutation rate and the fitness effects
of mutations. An aim to replicate real infections has also moti-
vated our consideration of viral demographics. A broad tradition
of studies has modelled within-host populations in terms of

changes in viral titre (Beauchemin and Handel, 2011). Such an
approach allows a direct fitting to viral titre data (Handel,
Longini, and Antia 2007; Saenz et al. 2010; Canini and Carrat
2011; Pawelek et al. 2012), albeit it does not allow an accounting
for individual viruses. Our demographic model is based upon
insights into the relative changes in population size described
by these models, albeit that we consider an absolute number of
viruses. An explicit population size can account for differences
in the outcome of infection given different initial viral titres
(Graham and Braciale 1997), a property which is not captured by
models of cell-limited infection (Supplementary Fig. S8).

Previous models of explicit influenza demographics have
taken different approaches to considering viral reproduction.
For example, a previous modelling study (Russell et al. 2012)
noted that, while a cell infected with the influenza virus gener-
ates �104 new viral particles (Sidorenko and Reichl 2004), these
viruses infect an average of twenty-two new cells (Baccam
et al., 2006). Using the former figure to simulate a 10,000-fold in-
crease in the viral population per generation led in this case to a
peak viral population of 1014, although the inclusion of immune
effects into this framework produces a lower peak titre
(Reperant et al. 2014). Our approach differs from this in using
the latter figure for the rate of viral replication, resulting in a
peak population of between 5 � 106 and 5 � 108 viruses. In this
respect our model assumes a picture of cellular equivalence; if
in one generation a total of v viruses infect c cells, in the next
generation, where 22c cells are infected, we assume that 22v vi-
ruses comprise the viral population. Our demographic model
shows some correspondence with direct observations of infec-
tion, which describe peaks densities of between 105 and 108

RNA copies per ml (Pawelek et al. 2012). Combining this with
the assumption that between 102 and 103 ml of sample exist
within a host gives an estimated 107 to 1011 particles within a
host, or between 105 and 109 functional viruses if 1 per cent of
viruses are assumed to be active (Wei et al. 2007). We note that
further insights into the within-host biology of infection could
refine the properties of our model.

5. Conclusions

We have here described a model evaluating how mutational
load contributes to the within-host evolution of beneficial var-
iants during within-host viral infection. Beneficial mutations
are in the mean less likely to fix or establish in a population, al-
beit that their effective fitness may be strongly influenced by
stochastic effects. In so far as possible, our model uses experi-
mental data describing the parameters of viral evolution to pro-
duce a realistic model of within-host infection. The increasing
ability to characterise fitness landscapes on a high-throughput
basis, combined with new approaches in population genetic
theory, make it possible to achieve far more realistic assess-
ments of how a viral population might be expected to behave
during the course of an infection, with multiple potential appli-
cations in the quest to better understand viral evolution.

Our work grants an increased understanding of stochastic
and deterministic effects in acute RNA viral infection. A recent
study of within-host influenza infection observed few large
changes in allele frequency during the course of untreated
within-host influenza infection, concluding that within-host
evolution is dominated by stochastic effects, such as genetic
drift, rather than by the influence of selection (McCrone et al.
2018). Our results show that the strength of selection required
to produce adaptive change is greater than previously appreci-
ated; even where selection is strong, adaptation occurs against
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a generally hostile background of mutational load. Furthermore,
we have shown that stochastic behaviour in a population does
not always arise from the dominance of genetic drift over selec-
tion. In a large population, in which strong selection drives ad-
aptation, and where genetic drift has little effect, stochastic
effects induced by mutational load have a significant effect
upon the outcome of within-host viral evolution.

Supplementary data

Supplementary data are available at Virus Evolution online.
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