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Abstract

Reactive oxygen species (ROS) are produced by plants. Hydrogen peroxide (H2O2) is one

important component of ROS and able to modulate plant growth and development at low

level and damage plant cells at high concentrations. Ascorbate peroxidase (APX) shows

high affinity towards H2O2 and plays vital roles in H2O2-scavenging. In order to explore the

differences of APXs from selected plant species, bioinformatics methods and public data-

bases were used to evaluate the physicochemical properties, conserved motifs, potential

modifications and cis-elements in all the APXs, and protein-protein network and expression

profiles of rice APXs. The results suggested that APXs in the selected plant species showed

high evolutionary conservation and were able to divide into seven groups, group I to VII.

Members in the groups contained abundant phosphorylation sites. Interestingly, group I and

VII had only PKC site. Additionally, promoters of the APXs contained abundant stress-

related cis-elements. APXs in rice plant were able to interact with dehydroascorbate reduc-

tase 2. The eight APXs expressed differently in root, leaf, panicle, anther, pistil and seed.

Drought, Pi-free, Cd and Xanthomonas oryzae pv. oryzicola B8-12 treatments were able to

significantly alter the expression profiles of rice APXs. This study increases our knowledge

to further explore functions and mechanisms of APXs and also guides their applications.

Introduction

Plants are able to produce reactive oxygen species (ROS) during growth and development, abi-

otic and biotic stresses. ROS mainly contains singlet oxygen (1O2), superoxide radical (O2
.−),

hydrogen peroxide (H2O2) and hydroxyl radical (OH.) [1]. Among the major ROS, H2O2 is

the only molecule able to cross membrane via plasma membrane aquaporins and, therefore, to

move from production sites to the distant with water [2, 3]. In plant cells, the rate of H2O2 pro-

duction is the highest in peroxisomes (10,000 nmol/m2s), followed by chloroplast (4030 nmol/

PLOS ONE | https://doi.org/10.1371/journal.pone.0226543 December 19, 2019 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wu B, Wang B (2019) Comparative

analysis of ascorbate peroxidases (APXs) from

selected plants with a special focus on Oryza sativa

employing public databases. PLoS ONE 14(12):

e0226543. https://doi.org/10.1371/journal.

pone.0226543

Editor: Thomas Roach, University of Innsbruck,

AUSTRIA

Received: August 1, 2019

Accepted: November 29, 2019

Published: December 19, 2019

Copyright: © 2019 Wu, Wang. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

this study are third party data available from the

JGI Genome Portal (https://genome.jgi.doe.gov/

portal/). The authors do not have any special

access privileges to these data.

Funding: This work was financially supported by

Research award fund for outstanding doctor of

Department of Finance of Shanxi Province

(02010189) and Doctoral initial fund of Shanxi

Normal University (02070485).

http://orcid.org/0000-0003-0032-6222
https://doi.org/10.1371/journal.pone.0226543
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226543&domain=pdf&date_stamp=2019-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226543&domain=pdf&date_stamp=2019-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226543&domain=pdf&date_stamp=2019-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226543&domain=pdf&date_stamp=2019-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226543&domain=pdf&date_stamp=2019-12-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226543&domain=pdf&date_stamp=2019-12-19
https://doi.org/10.1371/journal.pone.0226543
https://doi.org/10.1371/journal.pone.0226543
http://creativecommons.org/licenses/by/4.0/
https://genome.jgi.doe.gov/portal/
https://genome.jgi.doe.gov/portal/


m2s) and mitochondria (< 398 nmol/m2s) [4]. Meanwhile H2O2 is more stable with a half-life

of 1 ms, compared with other major ROS [5]. Previous reports have shown that this molecule

plays dual roles in plant metabolism [6]. H2O2 acts as signaling molecule to regulate plant

growth and response to stimulus at low concentrations. On the other hand, high levels of

H2O2 result in plant oxidative stress and damage biological macromolecules [7–9]. In order to

maintain H2O2 homeostasis to protect cells from oxidative damage, plants have developed

antioxidant enzymes including ascorbate peroxidase (APX), glutathione peroxidase (GPX),

catalase (CAT), peroxiredoxins (PRXs) and 2-Cys PRXs to degrade this molecule, several

reports also suggested that ascorbic acid (ASC), glutathione (GSH), carotenoids, flavonoids,

anthocyanins, α-tocopherol were able to assist the above-mentioned enzymes or directly scav-

enge H2O2 [10–12]. Among the enzymes or proteins, APX may play a specific role in H2O2-

scavenging due to its high affinity towards hydrogen peroxide [13].

APX is comprised of different isoenzymes, which are encoded by a multi-gene family and

found in many compartments of cell. This enzyme catalyzes the conversion of H2O2 into H2O

with ASC as electron donor in ascorbate-glutathione (ASH-GSH) and water-water cycles [14].

Different isoenzymes exhibit different kinetic properties like catalytic rate, optimal pH, stabil-

ity and molecular weight. APX is assigned to class I of plant superfamily in heme peroxidases

[15]. APX genes knock-down or -out in plants result in alteration in growth, physiology and

antioxidant metabolism, indicating these enzymes involvement in the plant growth and devel-

opment [16]. Previous studies showed that functional deficiency of rice APX1 or APX2

resulted in alteration of plant architecture [17], even worse APX2 knock-out mutant reduced

fertility [18]. While the rice mutants with double silenced the two APXs exhibited normal phe-

notype [17]. Studies also suggested that cytosolic APX1 in Arabidopsis played vital roles in

protection of chloroplast functions [19], although several APXs were found in the organelle

[20]. Consequently, the detailed ROS-scavenging mechanisms and relationships with growth

and development of APXs are still unknown.

Under abiotic conditions such as salt, cold, heat and high light, APXs expression profiles

and activity could be differentially regulated [14, 21]. When APX genes are overexpressed, the

transgenic plants show significant salinity or oxidative tolerance [22–26]. Intriguingly, double

silenced for cytosolic APXs in the rice mutant resulted in up-regulation of peroxidases, which

made the mutants able to cope with salt, heat, high light and methyl viologen stresses like the

non-transformed plants [17]. Meanwhile the same mutant exhibited higher tolerance to alumi-

num toxic than the wild type rice plants [27]. These studies suggested that APX also involved

in several stresses. Studies have shown that APX in the Arabidopsis and Citrus aurantium is

identified as a potential target of tyrosine nitration [28, 29], and NO is able to modulate its

activity in different ways [30–32]. Proteomic analysis has been certificated that tyrosine nitra-

tion and S-nitrosylation could definitely modulate APX activity [33, 34].

In this study, Chlamydomonas reinhardtii, Physcomitrella patens, Arabidopsis thaliana,

Oryza sativa and Populus trichocarpa were selected from Charophyta and Embryophyta. Pro-

tein sequences of APXs in the five plant species were downloaded from JGI database. The

sequences characterization, evolutionary relationships and potential modification sites in the

five species with special focus on Oryza sativa and its protein and protein networks and

expression profiles of APXs were explored.

Materials and methods

Retrieval of APX proteins

APX protein sequences (S1 Text) of Chlamydomonas reinhardtii, Physcomitrella patens, Arabi-
dopsis thaliana, Oryza sativa and Populus trichocarpa were retrieved from JGI database
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(https://genome.jgi.doe.gov/portal/) according to annotation and homologs analysis. Subse-

quently, the obtained sequences were conducted to Hidden Markov Model (HMM) search to

confirm the domain families [35]. Species selection in this study obeyed the regularity that

they could represent the protists, lower plants, monocots and dicots.

Sequence analysis of APXs

Molecular weight (Mw), isoelectric point (pI) and GRAVY (grand average of hydropathy) of

the obtained APXs were investigated by ProtParam tool of Expasy [36]. Subcellular localization

(Sub-localization) was predicted by CELLO [37] and WoLF PSORT [38] softwares. Conserved

motif structure of the APXs was exploited using the MEME (Multiple Em for Motif Elicitation)

software (http://meme-suite.org/) with the following parameters: number of motifs (1–15),

motif width of (5–50) [39]. TBtools [40] was used to rebuild the motif maps with the MEME

results. While NetPhos 3.1 software [41] was employed to predict the potential phosphoryla-

tion sites with scores higher than 0.75 at serine, threonine and tyrosine residues. S-Nitrosyla-

tion and S-Palmitoylation sites were analyzed using GPS-SNO 1.0 [42] and CSS-Palm 4.0 [43]

softwares with medium threshold, respectively. Additionally, N-Myristoylation, S-Farnesyla-

tion and S-Geranylgeranylation sites were detected by GPS-Lipid 1.0 software [44] with

medium threshold. Prediction of three-dimensional models was implemented by Swiss-Model

software with similar protein models [45]. The models of OsAPX1 and 2, OsAPX3 and 4,

OsAPX5, 6, 7 and 8 were produced from PDB 5jqr, 1apx and 1iyn, respectively.

Phylogenetic analysis of APXs

APX sequences were aligned by ClustalW [46] and the phylogenetic tree was constructed by

MEGA 6 [47] with the Neighbor-Joining method for 1500 bootstraps.

Prediction of potential cis-regulatory elements

Genomic sequences of length 1500 bp upstream to the start codon from Chlamydomonas rein-
hardtii, Physcomitrella patens, Arabidopsis thaliana, Oryza sativa and Populus trichocarpa were

downloaded from JGI database to predict the putative cis-regulatory elements using PLACE

software [48]. The figures were drawn by Microsoft Excel 2010.

Analysis of interaction network

APXs from Oryza sativa were selected and predicted the putative interaction partners with the

STRING software [49] and the interaction network was rebuilt and generated by the cytoscape

software 3.7.1 [50].

Expression pattern analysis

The expression data of eight rice APXs were retrieved from rice expression database [51] of

IC4R (Information Commons for Rice, http://ic4r.org). Raw data of root, leaf and panicle were

from SRP039045, raw data of anther, pistil and seed were from SRP047482, these expression

data were calculated by log10 (expression value+1). Raw data of 10-day rice seedlings under Cd

treatment, 35-day rice plant under Pi-free condition, 45-day rice leaf under drought stress and

16-day old leaf with Xanthomonas oryzae pv. oryzicola B8-12 infection were from DRP001141,

SRP028766, SRP052306 and SRP056884, respectively. During the data analysis, two-tailed stu-

dent t test was used to compare the significance of differences between control and treatment

groups.
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Results and discussion

Retrieval of APX proteins

A total of 36 APX protein sequences, four from Chlamydomonas reinhardtii, five from Physco-
mitrella patens, eight from Arabidopsis thaliana, eight from Oryza sativa and eleven from

Populus trichocarpa, were retrieved from Phytozome of Joint Genome Institute (JGI). The

smallest protein was PtAPX2 from Populus trichocarpa with 96 amino acids (aa) among the 36

enzymes, while the largest one was 478 aa from Oryza sativa in length (Table 1). The theoreti-

cal pI ranged from 5.18 to 9.23 and Mw from 10,226.73 to 51,187.63 Da. Additionally, most of

the proteins were hydrophilic except for CreAPX2 and CreAPX4 from Chlamydomonas rein-
hardtii and PtAPX2 from Populus trichocarpa.

Phylogenetic analysis of APXs

In order to analysis the evolutionary relationship of the 36 proteins, phylogenetic tree was con-

structed by MEGA 6 software based on neighbor-joining (NJ) method with 1500 bootstraps.

Fig 1A showed that the 36 APX proteins were mainly divided into seven groups. Among the

seven groups, group III and VI had only one member, respectively. Interestingly, both the two

proteins were from Chlamydomonas reinhardtii. Group VII had two members, AtAPX4 and

PtAPX-TL29, and was, respectively, from Arabidopsis thaliana and Populus trichocarpa. Other

groups were constituted by more than two members.

To find the possible explanation of the classification, MEME analysis was implemented to

identify the conserved motifs in the protein sequences with default parameters and 1 to 15

motifs ranged from 5 to 50 amino acids. The mast of XML file was downloaded and TBtools

was used to rebuild the motif maps. According to Fig 1B and S1 Fig, the 36 proteins were

assigned to seven groups according to the conserved motifs and consistent with phylogenetic

results. Ten proteins in the group I had nine conserved motifs except PtAPX2. Sub-localization

analysis via different programs suggested that group I proteins were mainly located in cytosol

(Fig 1C and S1 Table), this result resembled the previous experimental studies which reported

that AtAPX2 and OsAPX2 were located in cytosol [18, 25, 52], respectively. The group II con-

tained eight proteins which had ten conserved motifs with one exception of AtAPX5. Interest-

ingly, all of these proteins had motif ten in this group, which was different from other groups.

Among the eight proteins, AtAPX3 and OsAPX3 have been experimentally proved to locate in

peroxisome [53, 54], respectively. Sub-localization analysis according to different programs,

especially PANTHE, indicated that proteins in this group could be assigned to peroxisome

(Fig 1C and S1 Table). The group III had eight motifs and contained only one protein,

CreAPX-heme, which was located in mitochondria. The group IV had one unique motif nine

compared with other groups in addition to several conserved motifs. Previous studies also

investigated the sub-localization of OsAPX5, 6, 7 and 8 with different methods, the results

showed that the former two proteins were located in mitochondria [54–56], and the latter two

were distributed in chloroplast in rice plant [56]. Consequently, this group of proteins might

be mainly located in mitochondria and chloroplast (Fig 1C and S1 Table). The rest three

groups were V, VI and VII, sub-localization analysis indicated that all the proteins in the four

groups mainly located in the chloroplast (Fig 1C and S1 Table). Studies on APXs localized in

the chloroplast of Chlamydomonas reinhardtii, Physcomitrella patens, Selaginella moellendorffii
and Arabidopsis thaliana suggested that there was a strong evolutionary pressure on maintain-

ing the activity of the enzymes during plant evolution [57], this result resembled to the distri-

bution of different conserved motifs in the groups III, VI, V and VII. Among the four groups,

group V and VII contained four and two proteins, respectively. Both the proteins in the two
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Table 1. The basic properties of the 36 proteins.

Species name Phytozome gene ID Common name NO. of amino

acid

PI/MW (Da) GRAVY Instability

index

Chlamydomonas
reinhardtii

Cre02.g087700 CreAPX1 327 8.67/

35663.07

-0.54 41.01

Cre05.g233900 CreAPX4 347 9.23/

36491.76

0.061 41.66

Cre06.g285150 CreAPX2 337 8.95/

35111.29

0.019 44.11

Cre09.g401886 L-ascorbate peroxidase, heme-containing (CreAPX-

heme)

372 8.63/

39449.77

-0.169 33.86

Physcomitrella patens Pp3c1_26270 PpAPX3 300 7.01/

32672.06

-0.294 35.64

Pp3c1_40650 PpAPX-S 440 8.11/

48253.56

-0.453 45.94

Pp3c17_7560 PpAPX6-related 357 6.15/

38474.81

-0.183 50.38

Pp3c20_2050 PpAPX2 (PpAPX2.1) 250 5.66/

27651.48

-0.364 36.7

Pp3c20_2100 PpAPX2 (PpAPX2.2) 250 5.53/

27759.61

-0.354 36.32

Arabidopsis thaliana AT1G07890 AtAPX1 250 5.72/

27561.22

-0.385 33.87

AT1G77490 AtTAPX 426 6.81/

46092.30

-0.284 42.93

AT3G09640 AtAPX2 251 5.87/

28006.04

-0.371 36

AT4G08390 AtSAPX 372 8.31/

40407.32

-0.481 51.66

AT4G09010 AtAPX4 349 8.59/

37933.97

-0.294 35.72

AT4G32320 AtAPX6 329 8.99/

36239.74

-0.184 39.45

AT4G35000 AtAPX3 287 6.47/

31571.86

-0.365 39.4

AT4G35970 AtAPX5 279 8.80/

30895.31

-0.404 33.84

Oryza sativa LOC_Os02g34810 OsAPX8 478 5.36/

51187.63

-0.472 53.76

LOC_Os03g17690 OsAPX1 250 5.42/

27155.74

-0.344 42.94

LOC_Os04g14680 OsAPX3 291 8.25/

32047.56

-0.369 45.56

LOC_Os04g35520 OsAPX7 359 8.76/

38325.30

-0.401 42.11

LOC_Os07g49400 OsAPX2 251 5.18/

27117.56

-0.326 39.73

LOC_Os08g43560 OsAPX4 291 7.74/

31738.04

-0.297 34.55

LOC_Os12g07820 OsAPX6 309 6.72/

33501.91

-0.423 52.49

LOC_Os12g07830 OsAPX5 320 5.83/

34759.32

-0.362 52.2

(Continued)
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Table 1. (Continued)

Species name Phytozome gene ID Common name NO. of amino

acid

PI/MW (Da) GRAVY Instability

index

Populus trichocarpa Potri.002G081900 PtAPX-S.1 377 8.68/

41003.36

-0.491 50.95

Potri.004G174500 PtAPX3 286 6.67/

31551.92

-0.344 40.95

Potri.005G112200 PtAPX5 287 7.06/

31509.84

-0.336 40.57

Potri.005G161900 PtAPX-TL29 347 7.59/

37842.99

-0.27 46.58

Potri.005G179200 PtAPX-S.2 467 9.06/

51109.32

-0.408 47.74

Potri.006G089000 PtAPX2 96 5.40/

10226.73

0.255 27.56

Potri.006G132200 PtAPX1.2 249 5.27/

27452.91

-0.45 34.13

Potri.006G254500 PtAPX6 related 337 8.44/

36786.03

-0.267 39.94

Potri.009G015400 PtAPX.3 249 5.53/

27318.89

-0.395 34.63

Potri.009G134100 PtAPX5-like 286 7.06/

31444.81

-0.322 34.78

Potri.016G084800 PtAPX1.1 250 5.48/

27577.22

-0.44 32.31

https://doi.org/10.1371/journal.pone.0226543.t001

Fig 1. Phylogenetic analysis of APXs from Chlamydomonas reinhardtii, Physcomitrella patens, Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. A:

phylogenetic tree. B: conserved motifs in the 36 APXs. C: Sub-localization of the 36 APXs.

https://doi.org/10.1371/journal.pone.0226543.g001
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groups had four to five conserved motifs. While there was only one protein containing eight

motifs in group III and four motifs in group VI, respectively. Additionally, phylogenetic tree

suggested that group VI and VII differed from group I to V, although both the two groups con-

tained several conserved motifs, such as motif three, four and six. The reasonable explanation

might be attributed to the motif fifteen which was only detected in the three proteins from

group VI and VII. In general, the 36 APXs from the selected species showed high evolutionary

conservation, indicating these enzymes played vital roles in plant growth and development.

Modification analysis of APXs

To analyze the possible modification sites, we submitted the APXs to several bioinformatics

software to implement the prediction. Protein phosphorylation is a key regulatory post-trans-

lational modification involved in different cellular processes in plant cells [58]. The NetPhos

software 3.1 was firstly used to predict the phosphorylation sites at serine, threonine and tyro-

sine where protein phosphorylation occurred mostly in eukaryotic. According to Fig 2A and

S2 Table, all the 36 APXs contained higher number of PKC sites. Interestingly, APXs in group

I and group VII contained only PKC site compared with other groups. Members in group II

(except AtAPX3 and PtAPX5, which contained only PKC site), III and VI had PKA and PKC

sites. There were three kind of phosphorylation sites in APXs of group IV, but only one

enzyme contained cdk5 site, other enzymes had PKA and/or PKC site(s). In group V,

PpAPX6-related and AtAPX6 contained PKA, PKB and PKC sites, PtAPX6 related had PKA

and PKC sites, CreAPX2 contained only PKC sites. Among all the enzymes, AtSAPX con-

tained fifteen phosphorylation sites at the given threshold, which might attribute to its localiza-

tion and functional specificity. Previous studies have certified that OsAPX6 was able to be

phosphorylated at GL13sAA and PP172sPA sites [59]. In this study, the prediction showed that

GL13sAA was the PKA site, while PP172sPA was other unknown kinase site and not included

in the Fig 2A. Therefore, these predictions were, to some extent, credible.

Studies on the pea leaves indicated that S-Nitrosylation was able to enhance cytosolic APX

activity [34], which contrasted with the result that S-Nitrosylation inhibited the cytosolic APX

activity during the PCD process in tobacco bright yellow-2 cells [60]. Despite the contradic-

tion, the two studies revealed that S-Nitrosylation could indeed regulate the APXs activity.

Therefore the S-Nitrosylation was predicted by GPS-SNO 1.0 software. According to the Fig

2B and S2 Table, 18 enzymes in group I, IV, V and VII contained the possible sites under the

setting parameters, indicating S-Nitrosylation indeed played vital roles in modulating the

activity of APXs in the selected species. Previous reports have shown that AtAPX1 activity

could be enhanced by S-Nitrosylation and partially inhibited by denitrosylation to modulate

root growth pattern with auxin regulation [61], indicating APXs not only functioned redox

regulation, but also regulated plant growth and development. Surprisingly, no S-Nitrosylation

site was observed in members of group II, III and VI. These results indicated that different

groups of APXs might have slight unknown functions.

S-Palmitoylation, which is uniquely reversible among different protein modifications, has

potential and rapid spatiotemporal regulation of protein functions [62]. This modification

might involve in modulation of phosphorylation signaling cascades in plant species [63, 64].

Few reports focused on S-Palmitoylation of APXs to date. Therefore, S-Palmitoylation was

analyzed according to the CSS-Palm 4.0. The result showed that 13 APXs in group I, II, IV and

V containing S-Palmitoylation sites were observed, indicating the function of these enzymes

might be modulated by the S-Palmitoylation.

N-Myristoylation is an irreversible protein modification and controls function of several

proteins involved in plant development and redox balance [65]. However, few studies reported
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the relationship between N-Myristoylation and function of APXs. According to our result, 8

APXs in group I, II, V and VII contained N-Myristoylation sites. Subsequently, S-Farnesyla-

tion and S-Geranylgeranylation were also analyzed. S-Farnesylation, which plays important

biological roles, is a covalent isoprenoid modification and able to increase the hydrophobicity

of proteins to enhance their affinity for membranes [66]. S-Geranylgeranylation is another

lipid modification in proteins. However, both the two modifications were seldom reported in

the plant species. The result showed that 3 APXs in group II and V and 1 APX in group V con-

tained the S-Farnesylation and S-Geranylgeranylation sites, respectively (Fig 2B). Interestingly,

PpAPX6-related had up to four S-Palmitoylation sites (Fig 2B). The abovementioned enzyme

modifications were only the results predicted by the software and should be confirmed by the

future experiments, although several modifications have been stated in previous studies [61,

63, 64].

Fig 2. Modification analysis of the 36 APXs. A: Number of Phosphorylation sites. B: Number of S-Nitrosylation, S-Palmitoylation, N-Myristoylation, S-Farnesylation

and S-Geranylgeranylation sites.

https://doi.org/10.1371/journal.pone.0226543.g002
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Identification of cis-regulatory elements of APX promoters

Cis-regulatory elements are key switches for the transcriptional modulation of a dynamic net-

work of genes expression. During abiotic and biotic responses, hormone responses and plant

development, different transcription factors interacted with cis-regulatory elements to deter-

mine transcription initiation events [67]. APX functions degradation of H2O2 which is

involved in abiotic and biotic stresses. In order to explore the possible conserved elements

related to stresses response and developmental regulation in the promoters of 36 APXs,

PLACE software was used to predict the cis-regulatory elements. The results were shown in

Fig 3 and S2 Table.

All the promoters of 36 APXs possessed the elements responding to ABA (Fig 3A). The pro-

moter of CreAPX1 assigned to group IV from Chlamydomonas reinhardtii was detected 21

ABA related elements and the most one among the investigated genes. In the same group, pro-

moters of PpAPX-S in Physcomitrella patens, AtTAPX in Arabidopsis thaliana and OsAPX8 in

Oryza sativa individually contained 10, 14 and 13 ABA related elements. While promoters of

PpAPX2.1 and PpAPX2.2 from Physcomitrella patens and OsAPX1 and OsAPX2 from Oryza
sativa were detected 12, 13, 14 and 10 ABA related elements, respectively. All of the four APXs

were members of group I. Promoter of AtAPX3 from Arabidopsis thaliana in group II and

CreAPX-heme from Chlamydomonas reinhardtii in group III contained 13 and 12 ABA related

elements separately. Another gene, CreAPX2, from Chlamydomonas reinhardtii in Group V

was found 12 ABA related elements in the promoter. According to Fig 4A and S2 Table, the

average number of ABA related elements in genes of group III (12), I (8.3) and IV (8.2) were

more than other groups. Interestingly, no gene contained more than ten ABA related elements

were detected in Populus trichocarpa. According to these results, ABA might induce expression

of APXs significantly.

Subsequently, stresses related elements involved in dehydration, salt and low temperature

were analyzed in the genes of seven groups from the five species (Fig 3B, 3C and 3D). Promot-

ers of OsAPX8 from Oryza sativa and PpAPX-S from Physcomitrella patens in group IV con-

tained 13 and 12 dehydration related elements, respectively (Fig 3B). While promoters of

PtAPX1.2 in group I from Populus trichocarpa had up to 14 salt related elements (Fig 3C).

Other genes in each group involved in dehydration and salt stress had no more than ten ele-

ments, no genes in the seven groups contained more than ten low temperature related ele-

ments were observed in the five species (Fig 3D). The average number of dehydration related

elements in group I to VII were 1.8, 1.75, 8, 4.7, 2, 6 and 3.5, that of salt related elements in

group I to VII were 5.3, 4.5, 0, 4.1, 1.75, 1 and 3, that of low temperature related elements were

1, 1, 3, 2.1, 1.75 and 4,2 (Fig 4A).

Additionally, several other elements were also analyzed in the promoters of the 36 APXs.

The results showed that nineteen and twenty-six genes contained more than ten MYB and

MYC elements in the seven groups, respectively (Fig 3E and 3F). Group VII and V individually

contained more MYB and MYC elements, compared with other groups (Fig 4A). Cis-element

(POLLEN) involved in pollen and anther development was analyzed. According to Fig 3G,

promoters of PtAPX1.1 and PtAPX1.2 in group I, AtAPX5, PpAPX3, PtAPX3 and PtAPX5 in

group II, OsAPX8 and AtTAPX in group IV and PtAPX-TL29 in group VII contained more

than ten elements (Fig 3G). Among the seven groups, group II and VII contained more POL-

LEN elements than other groups (Fig 4A). Interestingly, seven genes assigned to group I, II, IV

and V from four species contained one to two elements related to axillary bud outgrowth (Fig

3H). The average number of this element was less than other elements (Fig 4A).

To observe the average distribution of above-mentioned elements in each plant species, the

eight types of element were summarized in Fig 4B and S2 Table. The results showed that APXs
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in Chlamydomonas reinhardtii and Physcomitrella patens contained more ABA related ele-

ments, compared to Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. Among the

three higher plants, APXs in Oryza sativa owned more ABA related elements. The similar

trend was observed in dehydration related elements. Intriguingly, salt, POLLEN and axillary

bud outgrowth related elements were abundant in higher plants, compared to Chlamydomonas
reinhardtii and Physcomitrella patens. In addition, low temperature related elements in Chla-
mydomonas reinhardtii were less than other species. Meanwhile, similar trend was also

observed in the MYB elements of Chlamydomonas reinhardtii and Populus trichocarpa.

Fig 3. Conserved cis-regulatory elements in the promoters of 36 APXs. A: Response to ABA related elements including ACACNNG, ACGTG, ACGTGKC,

ACGTSSSC, CAAACACC, CACGTGGC, CATGCCGCC, CCTACGTGGC, GCCGCGTGGC, MACGYGB, RYACGTGGYR, TACGTGTC and YACGTGGC. B:

Response to dehydration related elements including ACCGAC, ACCGAGA, GTCGAC, RCCGAC and RYCGAC. C: Response to salt element (GAAAAA). D: Response to

low temperature related elements including ACCGACA, CCGAAA and CCGAC. E: MYB elements including AGATCCAA, CNGTTR, CTAACCA, GTTAGGTT,

GTTAGTT, TAACTG, WAACCA and YAACKG. F: MYC elements including CAACGTG, CACATG, CANNTG and CATGTG. G: POLLEN element involved in pollen

and anther development (AGAAA). H: Axillary bud outgrowth related elements including AAACCCTA, CCACGTCA and GGCCCAWWW.

https://doi.org/10.1371/journal.pone.0226543.g003
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According to the aforementioned results, APXs in different groups and species contained

different numbers of cis-regulatory elements. These might be related with differences of APXs

localizations and functions, and evolutionary status of species. Studies in the rice plants

showed that ABA enhanced the expression of OsAPX1 significantly [68].Mutation of cis-regu-

latory elements resulted in pleiotropic effects [69], such as changes in cis-regulatory element of

GRAINWIDTH 7 (GW7) gene promoter produced slender grains [70]. Further studies illus-

trated that the cis-regulatory elements functioned via a combination rather than a single way

to regulate the genes expression patterns to withstand different stresses [71]. Consequently,

cis-regulatory elements were crucial for the plant development and resistance to stresses, espe-

cially elements in promoters of APXs, which played vital roles in ASH-GSH pathway.

Three-dimensional models of eight rice APXs

Since the protein sequences of APXs from different species are highly conserved and Oryza
sativa is one of important food crop and model plant, subsequent analysis of the enzymes were

carried out with rice APXs. Due to the importance of protein or enzyme structures to their

functions, we firstly used the Swiss-Model software to construct the three-dimensional models

of eight rice APXs. Fig 5 showed that the models of rice APXs were divided into two major

groups according to the three-dimensional structures. One group contained OsAPX1,

OsAPX2, OsAPX3 and OsAPX4, while the other group was OsAPX5, OsAPX6, OsAPX7 and

OsAPX8. In order to explore the differences among members of the same group, we over-

lapped their three-dimensional models. Interestingly, when the same group members were

overlapped, we found that the former group could be further divided into two sub-groups, one

contained OsAPX1 and OsAPX2, the other contained OsAPX3 and OsAPX4. However, the

members of later group could be overlapped conveniently. This result was similar with the

eight enzymes localizations. Fig 5 also suggested that OsAPX1 and 2 contained 13 helices and

the rest of APXs had 12 helices, all the APXs except OsAPX2 contained two strands. These

results indicated that the eight enzymes contained similar helices and strands, which were con-

sistent with their function that the enzymes mainly catalyzed H2O2 into H2O. Additionally,

predicted model of OsAPX2 contained metal ligand (K) and OsAPX7 and 8 had HEM ligands

(protoporphyrin ix containing Fe). APX belongs to the class I heme-peroxidases and should

contain HEM ligands. However, only two predicted models contained HEM ligands, these

might attributed to the PDB of the basis. Therefore, further analysis of APXs three-dimen-

sional models in the rice should be conducted via experimental technologies. According to the

Fig 4. Number of elements in the seven groups and species. A: Average number of elements in the group I to VII. B: Average distribution of elements in the five species.

https://doi.org/10.1371/journal.pone.0226543.g004
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abovementioned results, the rice APXs might function differently due to their three-dimen-

sional structures and ligands, although this kind enzyme mainly maintained the H2O2-elimi-

nating ability in the cells.

Interaction network of rice APXs

To analyze the potential interaction partners of rice APXs, networks were constructed using

cytoscape software with STRING data (S2 Table). According to Fig 6, DHAR2 (Dehydroascor-

bate reductase 2) and DHAR1 were the mutual interaction partner of the eight and seven

APXs from rice plant, respectively. The enzymes function as GSH-dependent dehydroascor-

bate reductase and play a vital role in plant cell growth by regulating content of ascorbate [72].

Fig 5. The three-dimensional models of eight rice APXs.

https://doi.org/10.1371/journal.pone.0226543.g005

Comparative analysis of ascorbate peroxidases (APXs)

PLOS ONE | https://doi.org/10.1371/journal.pone.0226543 December 19, 2019 12 / 22

https://doi.org/10.1371/journal.pone.0226543.g005
https://doi.org/10.1371/journal.pone.0226543


MDAR2 (Monodehydroascorbate reductase), MDAR3, MDAR4 and MDAR5 catalyze the

conversion of monodehydroascorbate to ascorbate using NAD(P)H in this process [73, 74].

Among the four MDARs, MDAR3-5 were able to interact with OsAPX1, OsAPX2, OsAPX3,

OsAPX4, OsAPX5, OsAPX6 and OsAPX7, while MDAR2 were the interaction partner of

OsAPX2, OsAPX4, OsAPX5, OsAPX6 and OsAPX7. These results agreed with the fact that

DHAR and MDAR are important components in the ascorbate-glutathione cycle to regenera-

tion of ascorbate [75]. Previous studies showed that activity of APX and content of ascorbate

were significantly decreased in the rice plants during salt stress condition [76], indicating the

important relationship between APX and ascorbate. Additionally, OS04T0693050-01,

OsJ_04324 and CC-1 were cytochrome c, functioning as electron carrier protein [77], and the

mutual interaction partners of OsAPX1, OsAPX2, OsAPX3 and OsAPX4, which showed simi-

lar three-dimensional structures predicted by Swiss-Model analysis. GLDH (L-Galactono-1,

4-lactone dehydrogenase) which catalyzes the last step in the main pathway of L-ascorbic acid

biosynthesis in higher plants plays vital roles in the cell developmental processes [78], this

enzyme uses cytochrome c as electron acceptor to convert L-galactono-1, 4-lactone to L-ascor-

bic acid on the inner mitochondrial membrane [79]. Fig 6 suggested that GLDH1 and GLDH2

could interact with OsAPX5 and OsAPX6 located in the mitochondria. Interestingly, OsAPX7

located in the chloroplast was also the interaction partner of the two enzymes, OsAPX1 located

in the cytosol could interact with GLDH1. These results indicated that GLDH played impor-

tant roles in APXs function via regulating L-ascorbic acid balance. CATA and CATB were the

catalase isozyme A and B, respectively. Both the two enzymes function to scavenge H2O2

together with APXs to regulate redox balance. CATA was located in the cytosol and CATB in

Fig 6. Predicted interaction partners of rice ascorbate peroxidase. DHAR1 and 2 (Dehydroascorbate reductase 1 and 2); MDAR2, 3, 4 and 5 (Monodehydroascorbate

reductase 2, 3, 4 and 5); OS04T0693050-01, OsJ_04324 and CC-1 (Cytochrome c); GDLH1 and 2 (L-Galactono-1, 4-lactone dehydrogenase 1 and 2); CATA (Catalase

isozyme A); CATB (Catalase isozyme B); Os06T0185900-01 (Glutathione peroxidase); OsJ_21207 (Putative bundle sheath defective protein); TROL (Thylakoid

rhodanese-like protein); OS02T0834700-01 (Cell division inhibitor); OsJ_22566 (Thylakoid lumenal 16.5 kDa protein); OsJ_019618 (Peroxiredoxin Q); OS05T0496200-01

(Phosphoglycerate kinase); OsJ_10264 (Fructose-1,6-bisphosphatase); B1090H08.5 (Peptidyl-prolyl cis-trans isomerase); OsJ_23541 (Putative mRNA binding protein).

https://doi.org/10.1371/journal.pone.0226543.g006
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the peroxisome [80]. CATA was interacted with OsAPX2, OsAPX4, OsAPX5 and OsAPX7

located in the cytosol, peroxisome, mitochondria and chloroplast, respectively, while CTAB

was interacted with OsAPX5 and OsAPX6 located in the mitochondria (Fig 6). The detail

mechanism of different localized protein interaction was still unknown. We also found that

Os06T0185900-01 could interact with OsAPX6 and OsAPX7 (Fig 6). It was a glutathione per-

oxidase and essential for in vitro rice regeneration and redox homeostasis [81]. Surprisingly,

the interaction partners (except DHAR2) of OsAPX8 differed to other APXs, indicating this

enzyme might have different or special functions (Fig 6).

Transcriptional profiles of APXs in rice

According to the phylogenetic analysis, we found that the APXs showed high evolutionary

conservation, indicating these enzymes were important during plant growth and adaption to

the environment. Since expression of genes is one crucial step in achieving their functions, we

investigated the transcriptional profiles of eight rice APXs in different organs or tissues.

According to Fig 7A and S2 Table, two cytoplasmic-located enzymes, OsAPX1 and OsAPX2,

exhibited high expression trend in the investigated tissues or organs compared with other

APXs in rice, especially in panicle. These result indicated that cytosolic APXs might play key

roles in rice plant growth, development and reproduction. The single gene silence of the two

enzymes have been certified their importance, although double genes mutants showed normal

phenotypes [17, 18, 27]. However, the mechanisms were still unclear. Further analysis should

be conducted via genetic, molecular and morphological methods to explore the functions of

APXs. Fig 7A also indicated that the expression patterns of the eight APXs altered significantly

in different rice organs or tissues.

Subsequently, the transcriptional profiles of rice APXs in different stresses were analyzed.

Water is an important factor in agricultural production, drought stress severely impairs rice

yield [82]. When 45-day rice plants were treated with drought stress, OsAPX1 and OsAPX4
were significant up-regulated and down-regulated in the leaf of rice plant, respectively (Fig 7B

and S2 Table). No significant changes were observed in other APXs. Maruyama et al (2014)

reported that more than 5000 and 6000 genes were up-regulated and down-regulated in the

two-week old rice seedlings with three-day dehydration treatment [83], respectively. Among

the differential expression genes, OsAPX2, OsAPX4 and OsAPX8 showed significantly down-

regulated, while no changes were observed in other APXs genes under the treatment condi-

tion. Our result of OsAPX4 expression changes was similar with previous study [83].

Phosphorus (P) is a critical element for plant growth and productivity. Phosphate (Pi) is

one inorganic bioavailable form of phosphorus and only less than 20% is available for plants

[84]. For 67% of the world’s cultivable soils, Pi is a limiting factor [85]. When the 35-day old

rice plants were cultivated in the Pi-free nutrient for 1 h or 24 h, OsAPX1, OsAPX3, OsAPX4
and OsAPX6 were up-regulated in the shoot (Fig 8A and S2 Table), while OsAPX1 and

OsAPX3 were also exhibited up-regulation in the root (Fig 8B and S2 Table). These results

were certified by previous reports that OsAPX1 was able to up-regulated in the shoot and root

of two-week old seedlings with twenty-two-day treatment without Pi [86]. In addition,

OsAPX2 in both shoot and root, OsAPX8 in shoot and OsAPX7 in root were significantly

down-regulated after 1 h or/and 24 h treatment without Pi (Fig 8). The abovementioned

results suggested that the expression profiles could be altered by short term Pi starvation, com-

pared with long term treatment [86]. Further analysis indicated that rice APXs with same sub-

localizations exhibited no changes or similar expression trends (in shoot or/and root). How-

ever, cytoplasmic-located APXs did not follow this trend, the two enzymes presented opposite
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expression patterns especially in the root tissue (Fig 8). It suggested that the two APXs might

possess potential functional differences in response to Pi-free stress.

Cadmium (Cd) is toxic heavy metal and able to cause phytotoxicity and human disease

[87]. Rice is the most important source of Cd due to its stable food supply for people consum-

ing. Cytosolic APXs could protect chloroplast from oxidative stress [19]. Therefore, exploring

Cd stress on rice plants is of great importance for controlling Cd content. When 10-day old

rice seedlings were treated with Cd stress, the expressions of OsAPX2 and OsAPX6 were signif-

icantly decreased in rice shoot, while other APXs showed no differences, compared with con-

trols (Fig 9A and S2 Table). However, five APXs showed obvious down-regulated in the

10-day old rice root (Fig 9B and S2 Table). These results illustrated that Cd stress had a great

influence on expressions of rice APXs in 10-day old root. Totally, Cd stress significant altered

expression profiles of rice APXs.

Finally, we analyzed the expression profiles of the eight rice APXs in the 16-day old leaf

with Xanthomonas oryzae pv. oryzicola B8-12 infection for 10 days. The Xanthomonas oryzae
pv. oryzicola could cause rice plants to infect bacterial leaf streak [88]. According to Fig 10 and

S2 Table, only OsAPX4 and OsAPX8 exhibited different expression patterns compared with

control group, indicating other APXs were insensitive to Xanthomonas oryzae pv. oryzicola
B8-12 bacteria.

Conclusion

In the present study, APXs from different plant species were analyzed and showed high evolu-

tionary conservation. The 36 APXs from Chlamydomonas reinhardtii, Physcomitrella patens,
Arabidopsis thaliana, Oryza sativa and Populus trichocarpa could be divided into seven groups.

The classifications were consistent with sub-localization of APXs. Further analysis suggested

that the APXs contained abundant phosphorylation sites. APXs in group I and VII contained

only PKC site. Promoters of the selected APXs genes contained abundant ABA, MYB and

Fig 7. The expression profiles of rice APXs in different organs or tissues (A) and under drought condition (B). Two-tailed student t test, a: p< 0.05.

https://doi.org/10.1371/journal.pone.0226543.g007
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Fig 8. The expression profiles of rice APXs under Pi-free treatments. A: Expression profiles of APXs in 35-day

shoot. B: Expression profiles of APXs in 35-day root. Two-tailed student t test, a: p< 0.05, A: p< 0.01.

https://doi.org/10.1371/journal.pone.0226543.g008

Fig 9. The expression profiles of rice APXs under Cd stress. A: Expression profiles of APXs in 10-day shoot. B: Expression profiles of APXs in 10-day

root. Two-tailed student t test, a: p< 0.05, A: p< 0.01.

https://doi.org/10.1371/journal.pone.0226543.g009
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MYC elements. The average number of elements in different groups altered significantly. All

the rice APXs were able to interact with dehydroascorbate reductase 2, and expressed differ-

ently in different rice tissues or organs, especially cytosol-located OsAPX1 and OsAPX2.

When the rice plants were treated with the abiotic and biotic stresses, the rice APXs showed

different expression profiles to maintain normal physiological activities. Under drought condi-

tion, OsAPX2 and OsAPX4 were significantly up- and down-regulated, respectively. Under Pi-

free condition, OsAPX3 in shoot and OsAPX1 in root showed significant up-regulation, while

OsAPX2 and OsAPX7 were significantly down-regulated in the root. Interestingly, OsAPX2
and OsAPX6 showed significant down-regulation in the shoot and root under Cd condition,

meanwhile OsAPX1 and OsAPX6 in the root were also down-regulated. When the rice plant

was subjected to biotic stress such as Xanthomonas oryzae pv. oryzicola B8-12 infection,

OsAPX4 and OsAPX8 exhibited significant down-regulation. The present investigation laid a

foundation for further functional exploration and application of APXs.
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