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Rheumatoid arthritis (RA) is a long-term disease that leads to inflammation of the joints and surrounding tissues. Natural killer
(NK) cells are an important part of the innate immune system and are responsible for the first line of defense against pathogens
during the initial immune challenge before the adaptive immune system eventually eliminates the infectious burden. NK cells have
the capacity to damage normal cells or through interaction with other cells such as dendritic cells, macrophages, and T cells cause
autoimmune diseases, such as RA. NK cells isolated from the joints of patients with RA suggest that they may play a role in this
disease. However, the involvement of NK cells in RA pathology is not fully elucidated. Both protective and detrimental roles of
NK cells in RA have recently been reported. A better understanding of NK cells’ role in RA might help to develop new therapeutic
strategies for treatment of the RA or other autoimmune diseases. We have decided in this paper to focus on the NK cell biology,
and attempt to bring the interested readership of this Journal up to date on the NK cell, specifically its possible relation to RA.

1. Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease
determined by an inflammation of the synovial membrane
leading to destruction of cartilage and bone [1]. The
interaction between genetic and environmental factors can
contribute to RA occurrence [2]. RA is more prevalent
among women than men [3]. It has been demonstrated that
osteoclasts are crucial mediators of all forms of bone loss in
RA [4]. TNF-α induces synovial fibroblasts and macrophages
(MØs) to release IL-1. TNF-α, IL-1 and, RANKL promote
osteoclast activation and osteolysis in RA [4]. Recent studies
have indicated that HLA-DRB1 SE alleles are associated with
a severe course of RA, and a parameter that can be measured
is bone destruction [5]. It has been indicated that RA patients
expressing a combination of two SE-associated HLA-DRB1
alleles exhibit the most severe small joint damage in the
initial stages of the disease and suffer a high proportion
of long-term large joint destruction [6]. Plasma soluble
HLA-G levels are lower in RA patients than in controls,

and low soluble HLA-G indicates that T and natural killer
(NK) cell activities are not inhibited by soluble HLA-G
molecules in RA [7]. The accumulation of NK cells has been
demonstrated in the synovial fluid in patients with RA [8].
Hence, knowledge of NK cells and NK cell receptors may
be of great interest for their role to RA. In this review, we
focus on current knowledge regarding NK cells and NK cell
receptors in human autoimmune diseases such as RA.

2. Natural Killer Cells

Natural killer (NK) cells were defined by their ability to spon-
taneously kill tumor cells and virally infected cells [9, 10].
To date, we know that these cells are capable of recognizing
and destroying a wide variety of target cells, including trans-
planted, virally infected, antibody-coated, stressed, and
transformed cells [11]. NK cells constitute the third major
population of lymphocytes together with T and B cells. The
majority of NK cells are believed to be relatively short lived,
although more long-lived subpopulations of NK cells have
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Figure 1: NK cells can be activated by inflammatory cytokines
and/or NK-receptor ligand engagement. In turn, they can produce
an array of cytokines or directly kill target cell.

been identified in lymph nodes (LNs) and thymus [12].
There are about 2 billion NK cells in adults and they are
mostly found in the blood, bone marrow (BM), spleen, liver,
LNs, thymus, lung, peritoneum, and in the uterus during
gestation.

The two major functions of NK cells are cytotoxicity and
cytokine production (Figure 1). NK cells display heightened
cytotoxicity when activated by cytokines, such as IL-2 or IL-
15. NK cells are capable of performing antibody-dependent
cellular cytotoxicity (ADCC) through CD16 (low-affinity
Fcγ receptor IIIA). CD16 binds to the Fc tail of antibodies.
When target cells are coated with antibodies, they may
induce ADCC. NK cells may kill tumors and virally infected
cells through the induction of apoptosis. Perforin is stored in
cytoplasmic granules that are released upon NK cell acti-
vation. Perforin monomers are inserted into the plasma
membrane of target cells and polymerize into a pore through
which granzyme A and B enter and induce apoptosis. Per-
forin is constitutively expressed in NK cells but its expression
is enhanced by IL-2 stimulation [12, 13]. NK cells also
express TNF-related apoptosis-inducing ligand (TRAIL) and
FasL, which are important mediators of apoptosis. TRAIL is
only expressed by subpopulations of resting NK cells, but is
generally expressed after stimulation by IL-2, IFN-α/β, or IL-
15. Fas is a transmembrane protein expressed by abnormal
cells and may induce apoptotic signals after binding to FasL
on NK cells [13].

NK cells also produce cytokines, of which IFN-γ is
critically important both in the innate and adaptive im-
mune responses. It has both immunostimulatory and immu-
nomodulatory effects. It induces TH1 responses and upreg-
ulates MHC-I expression on a variety of cells, such as
antigen presenting cells (APCs). Subpopulations of NK cells
may also produce TNF-α, GM-CSF, IL-5, IL-13, IL-10, and
TGF-β. It has been reported that some cytokines, including
IL-2, IL-12, IL-15, and IL-18 may stimulate cytokine produc-
tion by NK cells [11, 13–15].

3. NK Cell Definition

NK cells are derived from haematopoietic stem cells in the
BM. This is also the place for primary NK cell development.
These cells may also develop at peripheral sites such as liver
[16]. Peripheral activation of mature NK cells may result in
phenotype modification and modulation of NK cell effector
functions [14, 16]. In humans, NK cells have been pheno-
typically defined as CD3−CD56+ lymphocytes that may be
further subdivided into CD56dim CD16bright (90% of all NK)
and CD56bright CD16− cells. These subpopulations differ
in regard to cytotoxic capacity and cytokine profiles [17].
In mice, the best model for studying NK cells, NK cells are
defined as CD3−NK1.1+CD122+ [12].

4. NK Gene Complex (NKC) and Leukocyte
Receptor Cluster (LRC)

The human and mouse NKCs are located on chromosomes
12 and 6, respectively. These regions encode most of the
NK cell receptors in these species. The murine NKC encodes
lectin-like molecules that can be classified into families of
highly homologous members. These receptors are encoded
by clusters of closely linked genes that usually are separated
from the other gene families. Among families, the receptors
share some general structural features but display limited
homology [18]. In humans, LRC located on chromosome 19
encodes killer cell Ig-like receptors (KIR).

5. NK Cell Receptors

Several NK cell receptor families have been identified
(Table 1). NK cell functions are controlled by a repertoire of
activating and inhibitory receptors. Usually more than one
antigen receptor is expressed on a single NK cell. This is in
contrast to B and T cells, which are mainly controlled by
single antigen receptors (BCR and TCR, resp.). The genes
that encode NK receptors do not undergo recombination.
The killer immunoglobulin-like receptor (KIR), Ly49 and
CD94/NKG2 receptors monitor MHC-I molecules while
other families such as the activating NKG2D receptor, the
only member of this family, recognize MHC-like molecules;
for example, MICA in humans and RAE ligands in mice [13].

NK cell receptors can be structurally divided in two
groups: the killer cell lectin-like receptors (KLR) and
immunoglobulin (Ig) superfamily receptors. The former
include the NKR-P1 (KLRB), CD94/NKG2 (KLRC/D), and
NKG2D (KLRK) receptor families. The latter includes the
killer cell Ig-like receptors (KIR), natural cytotoxicity recep-
tors (NCR), and FcγRIII (CD16). It should be noted that
many NK cell receptors are not restricted to NK cells but can
also be found on other cells.

6. Killer Immunoglobulin-Like
Receptor (KIR) Family

Killer cell Ig-like receptors (KIR) which apparently function
as MHC-I recognizing receptors akin to Ly49 receptors in
rodents encoded by the LRC located on chromosome 19.
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Table 1: NK cell receptors can be divided in two groups based on binding to MHC class I- or non MHC class I molecules as their ligands.
NK cell receptors can also be structurally divided in two groups as immunoglobulin superfamily or killer cell lectin-like receptors.

NK cell receptors

MHC-I binding receptors Non MHC-I binding receptors

Species Species

Ly49 family Mouse Ly49 family Mouse

KIR family Human NKR-P1 family Human and mouse

CD94/NKG2 family Human and mouse NCR family Human and mouse

NKG2D family Human and mouse

Immunoglobulin superfamily receptors Killer cell lectin-like receptors

KIR family Ly49 family

NCR family NKR-P1 family

FcγRIII, 2B4, DNAM-1 NKG2D family, CD94/NKG2 family

The KIR family is a highly polymorphic multigene family of
receptors. The KIR receptors are classified by the number of
extracellular Ig domains (2D or 3D). They have long (KIR-L)
or short (KIR-S) cytoplasmic tails. KIR-L contains two ITIMs
responsible for their inhibitory function. KIR-S lacks ITIMs,
but instead has a charged amino acid in their transmembrane
domains necessary for their activating function. KIRs may be
expressed as monomers or disulphide-linked homodimers.
Like Ly49s, KIRs are expressed by overlapping subsets of
human NK cells and some T-cell subsets [11, 19].

Like Ly49 receptors in rodents, human KIRs recognize
allelic variants of HLA class I, HLA-A, HLA-B, and HLA-C,
molecules. KIR can discriminate between different peptides
presented by HLA molecules; however, these receptors do not
distinguish self from nonself peptides [11, 20]. The specific
ligands for some inhibitory KIR have been characterized and
it has been shown that some of the KIR2D subfamily rec-
ognizes a polymorphism in HLA-C proteins while KIR3DL1
reacts with HLA-B and certain HLA-A proteins that possess
the Bw4 serological epitope. KIR3DL2 has been shown to
recognize certain HLA-A ligands. The specificity of the
activating KIRs has been less characterized and, seemingly,
they do not bind to HLA class I and if they bind, the affinity
is much weaker than that of the paired inhibitory KIR. For
instance, the extracellular domain of the activating KIR2DS2
differs from KIR2DL2 and KIR2DL3 by only 3 or 4 amino
acids, respectively, and fail to bind to HLA-C∗0304 [21].

KIR2DL4 is the most distinct gene in the KIR family and
encodes the activating receptor KIR2DL4 while it contains
ITIM in its cytoplasmic domain. In contrast to other
activating KIR, it associates with the FcεRIγ adapter protein
rather than with DAP12. It has been suggested that the HLA-
G is the cognate ligand of KIR2DL4 [11]. As mentioned,
HLA-G has been shown to be involved in RA [7].

7. NKG2 (KLRC)/CD94 (KLRD) Families

CD94 is expressed together with NKG2A, NKG2C, or
NKG2E. NKG2A has two ITIMs in its cytoplasmic tail infer-
ring an inhibitory function to the CD94/NKG2A receptor.
The activating CD94/NKG2C/E receptor is associated with
the adapter protein DAP12. DAP12 binding is necessary for

stable surface expression and receptor signalling. Human
CD94/NKG2A and CD94/NKG2C receptors bind to the non-
classical HLA-E molecules while mouse receptors recognize
H2-Qa1b [11]. These molecules present peptides from the
leader segments of other MHC-I molecules. NK cells in this
manner may indirectly monitor the general level of host
MHC-I expression [11]. The CD94/NKG2 receptors and
their corresponding ligands are relatively conserved. These
receptors are expressed by subsets of NK and T cells.
Unlike the stably expressed KIR and Ly49 receptors, receptor
expression of CD94/NKG2 is modulated by cytokines. As for
the KIRs and Ly49s, the inhibitory CD94/NKG2A receptor
appears to have higher ligand affinity than its activated
counterpart.

8. NKG2D Family

The NKG2D receptor is expressed as a homodimer on NK
cells, activated CD8+ T cells, subsets of γδT cells, NKT
cells and in certain conditions, human CD4+ T cells [17,
22]. NKG2D has received considerable attention because of
its role in immune responses related to cancer, infection,
and autoimmunity. NKG2D has little homology with other
NKG2 receptors. Expression of NKG2D requires an associ-
ation with the adaptor proteins DAP10 or DAP12 [11]. In
the mouse, two isoforms of NKG2D have been identified.
The longer protein (NKG2D-L) exclusively is associated with
the DAP10 whereas the short isoform (NKG2D-S) can pair
with either DAP12 or DAP10. NKG2D receptors mediate
“induced self-recognition” that is, it recognizes ligands that
are upregulated on stressed or diseased cells [23]. Human
NKG2D ligands include the MHC-I-like molecules MICA
and MICB and UL16-binding proteins: ULBP1, -2, -3, and
-4. In mice the ligands include retinoic acid early transcript 1
(RAET1) ligands: RAE-1α, -β, -γ, -δ, and ε, H60, and MULT1
[11, 13]. NKG2D was first cloned in humans [24], and later
in mice [25].

9. Natural Cytotoxicity Receptor (NCR) Family

The stimulatory receptors NKp30, NKp44, NKp46, and
NKp80 belong to the natural cytotoxicity receptor (NCR)
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family [20]. They are involved in tumour surveillance
possibly by mediating “induced self-recognition.” NKp46 and
NKp30 are expressed by all NK cells whereas only activated
NK cells express NKp44. NKp44 and NKp80 have not been
found in rodents. Ligands for the NCRs may include viral
haemagglutinins (NKp46 and NKp44), heparan sulphate
proteoglycans (NKp30 and NKp46), the nuclear factor HLA-
B-associated transcript 3 (NKp30), and activation-induced
C-type lectin (NKp80) [20]. The NCRs are encoded by genes
within the LRC which also encodes KIRs in humans. The
stress-induced B7-H6 molecules expressed by human tumor
cells may trigger NKp30-mediated activation of NK cells
[26]. The NKp46 which plays an important role in killing
cancer cells [27] and virally infected cells [28] has been
characterized in humans, rodents, monkeys, and cattle [29].
NKp46 is exclusively expressed by NK cells, and is probably
the best NK cell marker available. The ITAM present in
NKp46 associated with CD3ζ and FcεRIγ suggests activating
the NK cell cytotoxicity in a similar manner to CD16 [30].

10. NKR-P1 (KLRB) Family

The NKR-P1 receptors were initially characterized in the rat
[31] but later in mice and humans [32]. They recognize the
Clr molecules. NKR-P1A, -B, -F, and -G receptors have been
characterized in the rat while NKR-P1A, -B/-D, -C, -F, and
-G receptors have been studied in the mouse. NKR-P1A is the
only receptor present in humans. It is an inhibitory receptor
and shares 45% amino acid identity with the mouse NKR-P1
molecules. It is expressed by subsets of NK and T cells [33].

11. KLRG Family

KLRG1 or mast cell function-associated Ag (MAFA) belongs
to the C-type lectin-like superfamily and is an ITIM-
containing receptor. In mice and humans, this well-
conserved receptor is found on subsets of T and NK cells.
Ligands for KLRG1 are E-, N-, and R-cadherin. Expression of
these ligands may be lower in metastatic tumours rendering
these cells more sensitive to NK-mediated killing [34].
Expression of KLRG1 increases substantially in T and NK
cells during viral, bacterial, and parasitic infections in mice.
KLRG1 is also expressed on FoxP3+ regulatory T cells [35].

12. Other NK Cell Receptors

FcγRIII (CD16) is expressed by NK cells, MØ, neutrophils,
and mast cells. It binds to the Fc (fragment, crystallisable)
portion of the human IgG1 and IgG3 antibodies. Antibody
binding induces ADCC, an effector mechanism that NK cells
employ to kill antibody-coated target cells. However, some
viruses, such as flaviviruses exploit Fc receptors to infect cells,
a mechanism known as antibody-dependent enhancement
of infection [11]. Signalling via CD16 may cause not only
degranulation and cytokine production, but also apoptosis of
NK cells [36]. 2B4 is a member of the signalling lymphocyte
activation molecule-(SLAM-) related family of receptors and
is expressed by all NK cells, γσT cells, subsets of CD8+ T

cells and human monocytes [33]. CD48 is the ligand for
2B4. Mouse 2B4 may function as an activating or inhibitory
receptor depending on its splice forms while human 2B4 is
an activating receptor [33]. The DNAX accessory molecule
1/CD226 (DNAM-1) receptor is expressed by most NK cells,
some B and T cells, DC, monocytes, and thrombocytes. It
binds to CD155 and CD112 (nectin-2) present on cancer
cells surface and endothelial cells and may be important for
extravasation of NK cells [11].

13. NK Cell Signal Transduction

NK cell functions are controlled by inhibitory and activating
receptors. The inhibitory receptors often have ITIMs in
their cytoplasmic tails while most activating receptors non-
covalently are associated with ITAM containing adaptors.
Binding to these adaptors may elicit downstream signalling
events leading to cytoskeleton rearrangements, proliferation,
secretion of lytic granules and cytokines by activating-
bearing NK cells and T cells. ITAMs have the consensus
sequence (D/E)xxYxx(L/I)x6-8Yxx(L/I) where x denotes any
amino acid and slashes separate alternative amino acids.
The adapters have a negatively charged amino acid in their
transmembrane segment that associates with a correspond-
ing positively charged amino acid (arginine or lysine) in
the receptor. Receptor ligation leads to phosphorylation
of the ITAMs. This recruits and activates Syk or ZAP-
70 tyrosine kinases that activate signalling cascades and
ultimately lead to cellular activation. NK cells express three
ITAM-bearing adaptor proteins: CD3ζ (having three ITAMs
per chain), FcεRIγ and DAP12 (both having single ITAMs).
FcεRIγ, and CD3ζ are expressed as either disulphide-linked
homodimers or heterodimers whereas DAP12 is exclusively
found as a disulfide-linked homodimer [36]. DAP10 shares
little homology (20%) with DAP12 and is expressed as a
disulfide-linked homodimer and has a cytoplasmic tail with
an YxxM motif. This is a potential Src homology 2 (SH2)
domain-binding site for the p85 regulatory subunit of the
phosphatidyl-inositol (PI) 3-kinase [11, 13].

Inhibitory receptors often override signals that are gen-
erated by activating receptors, and binding these receptors to
their ligands on target cells results in suppression of cytotox-
icity and cytokine secretion by NK cells. Inhibitory receptors
usually contain one or more ITIMs (I/L/V/S)x/Yxx(L/V) (x
represents any amino acid) [36]. After engagement of the
inhibitory receptor, the tyrosine residue of the ITIM is phos-
phorylated probably by Src family kinases. The ITIM may
then recruit SH2-containing protein tyrosine phosphatises,
such as SHP-1, SHP-2, or SHIP [36]. These phosphatases
may then shut down cell activation. Many inhibitory NK
receptors recognize MHC-I molecules. Cells expressing
normal levels of MHC-I may in this manner be protected
against NK cell killing [36, 37].

14. NK Cell Migration or Trafficking

NK cells secrete several chemokines, including CCL3,
CCL4, and CCL5 (RANTES) [38] and express an array of
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chemokine receptors [39, 40]. Consistent with their role in
immune surveillance, NK cells are widely distributed. Mouse
NK cells are found most frequently in the lung and liver (lung
> liver > blood > spleen > BM > LNs > thymus) [40]. NK
cells also appear to be frequent in nonlymphoid organs, such
as the epithelium of the gut [15, 41] and in the uterus during
pregnancy [42]. NK cell functions and receptor profiles
differ widely depending on their tissue localisation. Whether
these alterations in NK cells properties are a consequence of
having different homing capacities or an underlying cause
of their tissue-dependent maturation is unclear. NK cells
may be recruited to various tissues upon inflammation. The
mechanisms governing NK cell trafficking remain poorly
understood [40].

15. Regulation of NK Cell Effector Functions
and Tolerance

NK cells have the capacity to damage normal cells. It
is important to keep NK cells in check in the normal
situation. NK cells may lyse cells lacking one or more self-
MHC-I molecules. Engagement of self-MHC-I molecules by
inhibitory NK receptors may be the principal mechanism
by which killing of normal cells is prevented. There are still
many unresolved questions regarding NK cell tolerance. Such
knowledge needed to understand the role of NK cells in
autoimmunity, tumour surveillance, stem-cell transplanta-
tions, and antiviral responses [23, 43–45].

The “missing self ” hypothesis proposed by Kärre and
colleagues in 1986 suggested that NK cells monitor cells
for normal MHC-I expression by inhibitory NK receptors
[46]. Virally infected cells and tumor cells often down-
regulate MHC-I expression in order to evade CD8+ T-
cell recognition, but this may render them sensitive to NK
mediated killing. In the absence of inhibitory ligands, NK-
cells may become activated through stimulatory receptors
and thus kill MHC-I-deficient cells. Alternative “missing self ”
mechanisms may also exist. Inhibitory NKR-P1 receptors
may prevent killing of cells expressing Clr ligands. The 2B4
receptor may prevent killing of CD48 expressing target cells
[33]. Conversely, high-level expression of activating ligands
may lead to NK cell activation even in the presence of
inhibitory ligands. This has been shown for the NKG2D
receptor [47].

NK cells from MHC-I-deficient mice have been shown
to be “hyporesponsive” [43, 48]. However, these cells can
become fully functional when transferred to an MHC
sufficient environment [49, 50]. Furthermore, the expression
of NK receptor surface is often downmodulated in the
presence of ligands. This has been clearly demonstrated
for Ly49 receptors; a phenomenon referred to as “receptor
calibration” [51, 52]. Different models explaining NK cell
self-tolerance and “education” has been proposed [47, 53]. In
the “at least one receptor model” proposed by Peter Parham,
every NK cell with killing capacity must express at least one
inhibitory receptor for self MHC-I molecules. Once engaged
these mediate inhibitory signals that prevent NK-mediated
killing of autologous cells. These interactions may also play

a critical role in NK-cell maturation [16, 48]. According to
the “arming” [44] or “licensing” hypothesis these inhibitory
receptors allow NK cells to be fully functional [43, 45].
NK cells that are unable to come up with the appropriate
inhibitory receptors are left in an “off” or “uneducated” state
incapable of effectively recognizing and killing target cells.
Furthermore, it has been argued that NK-cell “education”
is a quantitative and dynamic process depending on which
MHC-I and inhibitory receptors involved [47]. However,
NK cell tolerance may be more complex since a subset of
mouse NK cells lacking inhibitory MHC-I receptors have
been shown to be functional [54, 55]. Therefore, alternative
mechanisms for NK tolerance may exist [33, 48, 53].

16. NK Cells and Memory Cells

Immunological memory has been thought to be present
only in the adaptive immune system. Recently “adaptive”
memory-like NK cells have been described; first in a
model for hapten-induced contact hypersensitivity (CHS)
[56]. Later it was shown that Ly49H+ NK cells selectively
proliferate and persist in mice for several months after CMV
infection [57]. Upon reinfection, these mice created faster
and stronger NK cell responses than naı̈ve mice. Interestingly,
transfer of low numbers of these adaptive NK cells into naı̈ve
neonatal mice resulted in greater protective immunity than
that of naı̈ve mature NK cells [57, 58].

17. NK Cells and Diseases

NK cells through their functions, cytotoxicity, and cytokine
production, can act as an immune regulator. To date, the
extremely rare cases of selective NK cell deficiencies in
humans have been reported. This makes it difficult to
elucidate in vivo the role of NK cells in the onset and/or
progression of autoimmune diseases. However, several NK
cell deficits have been described. Most of these can be
attributed to broader immunological defects like caspase 8
deficiency, TAP-2 deficiency, and the DAP12-deficient form
of Nasu-Hakola disease. A few examples of isolated NK
cell deficiencies have been described. NK cell deficiencies
in humans result in overwhelming fatal infection during
childhood, in particular herpes virus infections [59, 60].
NK cells may also participate in immunity to HIV [61] and
cancer [17].

18. NK Cells and Autoimmune Disease, RA

It has been suggested that NK cells have a disease-promoting
or a disease-controlling role in autoimmune diseases. Here,
we review some reports related to rheumatoid arthritis and
our question is that: are NK cells involved in Rheumatoid
arthritis disease?

The role of NK cells in RA is not clear. Several reports
have indicated that NK cells may have direct or indirect role
in RA [62]. Some of these reports have characterized NK
cells in RA tissue with disease-promoting functions. Dalbeth
and Callan reported that a subset of NK cells (CD56bright) is
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greatly expanded within inflamed (synovium) joints [63], in
which they produce more IFN-γ compared with the blood
NK cells from the same patients [64]. Moreover, these NK
cells could induce the differentiation of monocytes into DCs.
The communication between NK cells and other cell types
through cytokines and chemokine actually is a potential risk
for autoimmune diseases. Other example of this phenomena
is the crosstalk between NK cells and myeloid DCs, referred
to as “DC editing,” which may lead to NK cell activation and
DC maturation. In this way, activated NK cells may in turn
kill immature DCs that fail to undergo proper maturation
[65]. Furthermore, it has been reported that NK cells can
function as APCs in some instances, which complicate the
involvement of these cells in the immune responses [66].

19. Genetic Background

Studies of possible genetic risk factors that link NK cell
receptor genes to RA are preliminary. However, there is
clear evidence that KIR is implicated in human autoimmune
disorders. Yen et al. have found that patients with RA
complications have an expansion of unique population
of CD4+CD28− T cells which is uncommon in healthy
individuals [67]. This cell population is potentially involved
in endothelial damage. Interestingly, CD4+CD28− T cells are
functionally distinct from classical CD4+ TH cells and share
some features with NK cells. For instance, they do not express
CD40 ligand, but express CD57 (an NK cell marker), and
produce large amounts of IFN-γ, and produce granzyme
B and perforin [67]. The authors further focus on T cell
subsets which express the activating KIR molecule, KIR2DS2,
in the absence of DAP12. Therefore, signalling in these T cells
could be deviated and mediates autoimmune disease [68].
Furthermore, they have shown that individuals possessing a
KIR2DS2 gene and certain HLA-C alleles are more exposed
to RA with vascular complications than healthy individuals
or arthritis patients without vascular complications.

These studies also indicate that expression of activating
KIR, in the absence of an inhibitory receptor for self MHC-I,
may contribute to autoimmune disorders. In this case, the
activating KIR expressed in effector T cells may synergize
with the signals transduced by TcR, otherwise insufficient for
an autoantigen alone, to elicit an autoimmune response [11].

20. The Role of NK Cells in
Immunopathogenesis of RA

It has been suggested that NK cells can play both a
protective and a pathogenic role in rheumatoid arthritis
[69]. The interplay between NK cells and other cells of
natural and specific immunity will occur through release of
cytokines. One of the most potent osteoclastogenic cytokines
which is pivotal in the pathogenesis of RA is TNF-α [12].
TNF-α induces receptor acquisition by NK cells and the
combination of TNF-α and IL-15 can enhance this effect
[70]. TNF-α has a role in NK-dependent DC maturation
[71]. Although MØs and monocytes are the major producers
of TNF-α in RA, T cells are abundant in RA synovium, and
both CD4+ and CD8+ T cells can produce large amounts of

TNF-α and TNF-β [72]. As mentioned above, CD28−CD4+

T cells can express the NK cell receptors KIRs and CD57 [73].
It has been demonstrated that NF-κB is an important

factor in regulation of NK cell growth and differentiation.
NF-κB is activated in the presence of TNF-α plus IL-15
[70]. NF-κB signalling pathways can mediate crucial events
in the inflammatory response by chondrocytes, leading to
extracellular matrix damage and cartilage destruction [74].
NK cells can cause DC maturation during the innate phase
of the immune response and membrane-bound IL-15 on
DC surface seems to be essential for NK cell proliferation
and survival [71]. NK cells produce IFN-γ which is induced
by DC-derived IL-12 and IFN-γ can act as a synergistic or
regulatory factor for DC maturation. Soluble factors as well
as cell-to-cell contact have a roll in NK cell activation by
DCs. Type 1 IFNs, IL-12, and IL-15 have been shown to be
crucial in mature DC-dependent NK cell activation [71]. It
is demonstrated that coculture of NK cell and DCs leads to
DC maturation, production of TNF-α and IL-12 and also
upregulation of ligands, such as CD86. In addition, IFN-γ
can upregulate the NKG2D ligands MIC A/B on monocyte-
derived DCs and these molecules activate NK cells in a
cell contact-dependent fashion [71]. IL-15 is thought as
one of the major instigators of RA pathogenesis, together
with other cytokines, such as TNF-α, IL-6, and IL-18 [75].
IL-6 has an important role in rheumatoid inflammation
[76]. It can act synergistically with IL-15 to enhance the
cytotoxic activity of NK cells [77]. IL-15 is produced by
infected MØ and it can induce IFN-γ production, NK
activation, and enhanced TNF-α production by T cells
[78]. It can activate CD57+CD4+ cells to induce TNF-α
production from monocytes [73]. IL-15 may have a role in
initial stage of osteoclastogenesis. It has been demonstrated
that osteoclastogenesis may occur through the expression of
PLD1-induced RANKL in rheumatoid synovial fibroblasts
stimulated by IL-15 [79]. Both IL-15 and IL-2 can have
same functions such as activation of T cells and stimulation
of NK cell proliferation. Levels of IL-15 will increase with
RA disease duration in the serum and synovial membrane
[80]. IL-18 released by DCs and MØs induces NK cells
to synthesize IFN-γ which acts with IL-12 and IL-15 to
shift T cells toward the TH1 profile. Moreover, IL-18 can
cooperate with IL-2 to induce the TH2 profile [78]. Thus,
selective manipulation of TH cell differentiation to induce
TH2 effectors can be an effective approach for interrupting
ongoing and established TH1-driven chronic inflammatory
diseases, such as RA [81].

The combination of IL-18 and IL-12 can increase NK
activity in both knockout and wild-type controls. NK cells
can be an immediate source of both latent and active TGF-β
[82]. IL-2 can up-regulate the production of active TGF-β,
and TNF-α has a positive effect on TGF-β. The combination
of IL-2 and TNF-α has additive effects on TGF-β [82]. It has
been shown that IL-2 prevents the TGF-β-induced NKG2D
downregulation in NK cells via the JNK pathway [83]. IL-10
can decrease the production of active TGF-β. Recent studies
indicate that IL-17 is overexpressed in RA patients and IL-10
suppresses IL-17 expression. Thus, IL-10 may be useful in the
treatment of autoimmune diseases [84].
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IL-22 is an immune mediator, which is produced by acti-
vated T and NK cells. IL-22 can amplify the effects of TNF-
α, IFN-γ, and IL-17 [85]. It has been proved that human
TH1 cells are the most important IL-22 producers. TH17 and
TH22 are demonstrated to be important IL-22 producers,
but in humans TH22 and TH1 cells play a more prominent
role for IL-22 production. TGF-β can downregulate the IL-
22 production capacity of TH17 in both the human and
mouse. TGF-β inhibits the development of TH22 cells [85].
IL-22 production by TH17 cells has been indicated to be
dependent upon IL-23. Expression of IL-22 can be upreg-
ulated in synovium in RA and IL-22 can induce synovial
fibroblast proliferation and chemokine production [86]. The
level of IL-22 has been increased in the serum of half of the
patients with RA. Thus, it indicates a possible involvement of
IL-22 in the pathophysiology of RA [87].

For many years, it has been discussed that TH17 is
responsible for collagen-induced arthritis (CIA) as experi-
mental model of RA in animals. Moreover, in CIA mice it has
been shown that NK cells suppress TH17 cell development by
the production of IFN-γ [88]. The involvement of TH1 cells
in pathogenesis of RA cannot be ruled out, especially since
studies in an animal model of arthritis different from CIA
have indicated that IFN-γ is essential for disease development
[88]. On the other hand, IL-1 can also activate monocytes,
MØs, and NK cells, and it is produced by various cell types,
such as MØ, monocytes, and synovial lining cells. These
cell types can produce inflammatory mediators, such as IL-
1, TNF-α, IL-6, and IL-8. These mediators are responsible
for infiltration of inflammatory cells into inflammatory sites,
increase in blood vessels permeability and induction of fever.
IL-1 can activate synovial cells and osteoclasts to produce
metalloproteases and collagenases that cause destruction of
cartilage and bone [89].

Both the NK cell activity and the activity on a per-cell
basis are reported to decrease in RA cases. The expression of
NKG2D, CD16, and CD244 receptors also decreases in RA
patients indicating that a low NK activity on a per-cell basis
can contribute to an impaired NK activity in RA patients
[64]. All these observations suggest that NK cells directly or
indirectly are involved in the complex processes of RA.

21. Conclusions

Rheumatoid arthritis is a chronic autoimmune disease
characterized by joint inflammation and bone destruction.
Excessive cytokine production driven by cell-cell interactions
within the joint contributes to the disease progression. NK
cells are prominent components of the innate immune
response and because of their ability to secrete a variety of
cytokines they could have a disease-promoting or a disease-
controlling role in autoimmune diseases including RA.
Our understanding of NK cell is recently much improved;
however, many aspects of NK cell biology still are unex-
plained and unexplored. Nevertheless, further careful anal-
ysis and studies of how NK cells communicate with dendritic
cells, macrophages, and T cells will contribute to a better
understanding of their role in autoimmune diseases includ-
ing RA. This knowledge might allow the development of new

therapeutic strategies based on NK cells for the treatment of
RA.
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