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Abstract: Bacteriophage virion proteins and non-virion proteins have distinct functions
in biological processes, such as specificity determination for host bacteria, bacteriophage
replication and transcription. Accurate identification of bacteriophage virion proteins
from bacteriophage protein sequences is significant to understand the complex virulence
mechanism in host bacteria and the influence of bacteriophages on the development of
antibacterial drugs. In this study, an ensemble method for bacteriophage virion protein
prediction from bacteriophage protein sequences is put forward with hybrid feature spaces
incorporating CTD (composition, transition and distribution), bi-profile Bayes, Pse AAC
(pseudo-amino acid composition) and PSSM (position-specific scoring matrix). When
performing on the training dataset 10-fold cross-validation, the presented method achieves a
satisfactory prediction result with a sensitivity of 0.870, a specificity of 0.830, an accuracy
of 0.850 and Matthew’s correlation coefficient (MCC) of 0.701, respectively. To evaluate
the prediction performance objectively, an independent testing dataset is used to evaluate
the proposed method. Encouragingly, our proposed method performs better than previous
studies with a sensitivity of 0.853, a specificity of 0.815, an accuracy of 0.831 and MCC of
0.662 on the independent testing dataset. These results suggest that the proposed method
can be a potential candidate for bacteriophage virion protein prediction, which may provide
a useful tool to find novel antibacterial drugs and to understand the relationship between

bacteriophage and host bacteria. For the convenience of the vast majority of experimental
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scientists, a user-friendly and publicly-accessible web-server for the proposed ensemble
method is established.

Keywords: bacteriophage virion proteins; ensemble method; hybrid features; relief

1. Introduction

A bacteriophage, living within a host bacterium, is a virus that consists of DNA or RNA,
structural proteins and a few other packaged proteins [1]. It replicates itself by making use of the host
biosynthetic machinery, infects host bacterium and eventually destroys or hijacks the bacterial cell [2].
Bacteriophages play some positive, as well as negative roles in biology, ecology and health. In the
positive field, bacteriophages are extensively applied to bacterial identification, bacterial pathogenesis,
organismal ecology and evolutionary biology [3]. In particular, clinical phage therapy aiming at different
bacterial diseases may provide a novel perspective to deal with the growing threat of antibiotic resistance
in pathogenic bacteria [4]. On the other hand, the pollution of bacteriophages could cause a great loss to
the fermentation industry.

Bacteriophage proteins are of vital importance to determine the functions and mechanisms
of bacteriophages. Bacteriophage proteins include structural (virion) proteins and non-structural
(non-virion) proteins.  Bacteriophage virion proteins, coded by the bacteriophage genome, are
components of the mature assembled bacteriophage particles. They may include capsid proteins,
envelope proteins and virus particle enzymes [5]. These virion proteins determine the specificity for
recognizing host bacteria and perform great functions in bacteriophage virus recombination, receptor
recognition, bacteria attachment and penetration [6]. Bacteriophage non-virion proteins, also encoded by
the bacteriophage genome and produced in infected cells, are not packaged in the mature bacteriophage
particles [5]. These non-virion proteins, mostly enzymes and regulatory proteins, play important roles
in bacteriophage replication, transcription and polyprotein processing [7].

Due to the major contributions of virion proteins in deciding the functions and applications of
bacteriophages, identifying bacteriophage virion proteins is crucial to gain insight into the relationship
between bacteriophage and host bacteria, as well as the influence of bacteriophages on the development
of new pathogens and antibacterial drugs. The prediction of virion components of the bacteriophages
based on the homology of genomic data leads to bad results [8]. With the avalanche of genome sequences
generated in the post-genomic age, more than 70% of bacteriophage sequences in the viral reference
sequence database that encode proteins do not have annotated functions [1]. Therefore, it would be
urgent to develop computational methods for rapidly and effectively identifying bacteriophage virion
proteins from bacteriophage sequences.

In recent years, several computational methods have been reported for bacteriophage gene function
prediction and virion protein prediction. Li et al. [9] developed the novel support vector machine-based
system called SynFPS to perform gene function prediction, which utilized gene-to-gene distances based
on the K-means clustering technique to identify closely-related genomes. Feng er al. [10] developed
a naive Bayes-based predictor to identify bacteriophage virion proteins, using primary amino acid
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and dipeptide composition as the encoding scheme. Later, Ding ef al. [11] utilized support vector
machine to establish the prediction model for bacteriophage virion protein prediction. In this model,
ANOVA (analysis of variance) was applied to select the high discriminative features derived from g-gap
dipeptide compositions. The aforementioned methods have their own merits and achieve acceptable
results, but the following shortcomings still need to be taken into consideration. (1) Previous studies
relied on composition-based features, which were extracted merely based on the alphabetic sequence
of the amino acids, but failed to capture some useful features based on physicochemical properties,
evolutionary information, efc. In general, a single feature cannot preserve enough discriminative
information for protein attribute predictions, and multiple features can complement each other to
enhance the performance and robustness of a predictor [12,13]. In view of the above-mentioned fact,
hybrid features have been increasingly used in recent studies instead of single features for constructing
classifiers [14,15]; (2) The existing methods were all based on individual classifiers, which could have
their own inherent defects, leading to unsatisfactory predictions [16]. It is generally accepted that the
ensemble predictor, which integrates multiple basic classifiers of diverse learning policies (or diversely
trained), can achieve better prediction performance than its component classifiers for protein attribute
predictions [17]. Thus, the ensemble predictor has been considered as the future direction for protein
classification problems [18].

In order to address the above-mentioned limitations and to improve the performance for bacteriophage
virion protein prediction, this study puts forward a stacking-based ensemble method with hybrid features
incorporating CTD (composition, transition and distribution), bi-profile Bayes, Pse AAC (pseudo-amino
acid composition) and PSSM (position-specific scoring matrix). The proposed method is implemented in
the following steps. (1) The benchmark dataset is obtained from Universal Protein Resource (UniProt)
and divided into a training dataset and an independent testing dataset; (2) The protein sequences are
converted into four different numerical feature vectors based on CTD, bi-profile Bayes, Pse AAC and
PSSM, respectively; (3) The relief algorithm combined with incremental feature selection (IFS) method
is adopted to obtain optimal feature subsets for individual feature spaces; (4) The ensemble method
is then developed by stacking the predictions of individual classifiers trained by the above-mentioned
distinct feature spaces. A summary of the computational framework of our method is illustrated in
Figure 1. To evaluate the performance of our ensemble predictor objectively, the predictive capability of
the present model is tested on the independent testing dataset and compared with that of [10,11].
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Figure 1. The computational framework of the proposed method. CTD:
composition, transition and distribution; PseAAC: pseudo-amino acid composition; PSSM:
position-specific scoring matrix; IFS: incremental feature selection; RF: random forest.

2. Results and Discussions

2.1. Performance Analysis of RF Models Using Individual Feature Spaces

RF models are constructed based on the training dataset by 10-fold cross-validation to obtain
the corresponding optimal parameters of individual feature spaces, including CTD, bi-profile Bayes,
PseAAC and PSSM.

Using CTD features, the accuracies of the RF model using CTD features with different cluster profiles
are demonstrated in Figure 2a. The best accuracy of 0.795 is achieved when the predictions are based
on C'P(10), illustrating the good capability for predicting bacteriophage virion proteins. With C'P(10),
the M C'C value of 0.590 shows a reasonable balance between the sensitivity of 0.78 and the specificity
of 0.81.

Figure 2b presents the accuracies of the RF model using bi-profile Bayes with different lengths of
the N-terminus and C-terminus variably from 15 to 25. The highest accuracy of 0.795 is achieved with
25 amino acids on the N-terminus and C-terminus, as shown in Figure 2b. Meanwhile, the M C'C' of
0.595 and the AUC of 0.835 indicate reasonably good performance of the RF model using these features.

The prediction performance of the RF model using Pse AAC with different y varying from 1 to 10 is
illustrated in Figure 2c. As can be seen from Figure 2c, the RF model obtains the best accuracy of 0.765
aty = 5. The sensitivity of 0.79 and the specificity of 0.74 represent that true positives and true negatives
predicted by the feature space are promising and basically balanced. Other performance measures also
reveal the discrimination power of Pse AAC for the training dataset.

Figure 2d demonstrates the performance of the RF model using PSSM features based on different
cluster profiles. The highest accuracy of 0.78 is achieved with C'P(11) displayed in Figure 2d.
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Meanwhile, the MCC of 0.564 and the AUC of 0.805 manifest the satisfactory results based on
these features.
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Figure 2. Prediction accuracy of individual feature spaces with different parameters.
(a) Prediction accuracy of CTD with different cluster profiles; (b) prediction accuracy of
bi-profile Bayes with different lengths of the N-terminus and C-terminus; (c¢) prediction
accuracy of PseAAC with different tier correlation factors y; (d) prediction accuracy of
PSSM with different cluster profiles.

In order to compare the predictive power of each feature model, the 10-fold cross-validation results
obtained by the RF models using individual feature spaces on the training dataset are listed in Table 1.
The ROC curves of the four feature encoding models are shown in Figure 3. As shown in Table 1
and Figure 3, all four feature spaces possess reasonable discrimination power for bacteriophage virion
proteins. Bi-profile Bayes achieves the best performance among the four feature spaces with an accuracy
of 0.795, an MCC of 0.595 and an AUC of 0.835, due to it taking into account the statistical
characterizations of peptide sequences on both the N-terminus and C-terminus. CTD contains the
composition, transition and distribution information based on physicochemical properties along the
protein sequence, which results in satisfactory prediction results. PSSM, considering not only the
physicochemical properties, but also preserving the evolution information of the protein sequence, yields
acceptable prediction performance. What is more, the discrimination power of Pse AAC is less compared
to that of the other three feature spaces, due to the fact that the sequence order information based
on physicochemical properties along the sequence may not have enough information for identifying

bacteriophage virion proteins.
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Table 1. Performance of RF models trained with the best-performing individual
feature spaces on the training dataset by 10-fold cross-validation. MCC, Matthew’s
correlation coefficient.

Feature Space Sensitivity Specificity Accuracy MCC AUC

CTD 0.78 0.81 0.795 0.590 0.832
Bi-profile Bayes 0.86 0.73 0.795 0.595 0.835
PseAAC 0.79 0.74 0.765 0.531 0.801
PSSM 0.84 0.72 0.78 0.564  0.805
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Figure 3. ROC curves of the best-performing individual feature spaces.

2.2. Performance Analysis of RF Models Using Individual Feature Spaces with Feature Selection

The ranked feature lists of four feature spaces are obtained according to their relevance to the classes
based on the Relief method. Within the lists, a feature with a smaller index represents a more important
one for bacteriophage virion protein prediction. The four feature lists are utilized to select the optimal
feature subsets in the following IFS procedure, respectively. Based on the four ranked feature lists,
adding the ranked features one by one, individual predictors for different feature subsets are constructed
using the RF model and evaluated by 10-fold cross-validation, respectively. Then, four IFS curves for
CTD, bi-profile Bayes, Pse AAC and PSSM are plotted in Figure 4, which shows the relationships of
feature indices against the accuracy obtained from the corresponding predictors. Figure 4a represents
the IFS curve of accuracy against CTD. The curve reaches its peak at 0.815 when the top 79 features are
used. Thus, these 79 features are regarded as the optimal feature subset for CTD. Similar results can also
be found in Figure 4b—d. For bi-profile Bayes, PseAAC and PSSM, the maximum accuracy values are
0.83, 0.775 and 0.81 with the top 55, 32 and 50 features, respectively. These features are chosen as the

corresponding optimal feature subsets.
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Figure 4. IFS curves for CTD, bi-profile Bayes, Pse AAC and PSSM. (a) The IFS curve: the

values of accuracy against the CTD feature subsets; (b) the IFS curve: the values of accuracy
against the bi-profile Bayes feature subsets; (¢) the IFS curve: the values of accuracy against
the PseAAC feature subsets; (d) the IFS curve: the values of accuracy against the PSSM

feature subsets.

Table 2 summarizes the prediction performance of four individual feature encoding models with
feature selection. From Table 2, the four RF models with feature selection all perform with promising
prediction results, and it can be observed that the bi-profile Bayes model with optimal features yields the
highest performance with a sensitivity of 0.83, a specificity of 0.83, an accuracy of 0.83 and an M CC
of 0.66.

Table 2. Performance of the RF models using the individual feature spaces with feature

selection on the training dataset by 10-fold cross-validation.

Feature Space No. of Features Sensitivity Specificity Accuracy MCC AUC

CTD 79 0.81 0.82 0.815 0.63  0.845
Bi-profile Bayes 55 0.83 0.83 0.83 0.66  0.888
PseAAC 32 0.77 0.78 0.775 0.55 0.823

PSSM 50 0.84 0.78 0.81 0.62 0.822
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In Tables 1 and 2, the prediction results of the CTD model using the optimal features are all better
than those of the model using all features. As for the bi-profile Bayes model, although the sensitivity
with the optimal 55 features is slightly lower than that with all 100 features, other prediction results are
all better than those without feature selection. The Pse AAC model has similar comparison results as the
bi-profile Bayes model. With the optimal features, the PSSM model achieves the same sensitivity as that
of the model without feature selection, but higher specificity, accuracy and M CC'.

In order to compare the performance of RF models for individual feature spaces with or without
feature selection more intuitively, the ROC curves for each of the four feature encoding models with
or without feature selection are depicted in Figure 5. From Figure 5, the four feature models for CTD,
bi-profile Bayes, PseAAC and PSSM with feature selection all perform better than those without features
selection. Therefore, the Relief combined with IFS is effective to eliminate irrelevant and redundant

features to improve the predictive performance.
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Figure 5. ROC curves for CTD, bi-profile Bayes, Pse AAC and PSSM with and without
feature selection. (a) ROC curves of the CTD model with and without feature selection;
(b) ROC curves of the bi-profile Bayes model with and without feature selection; (¢) ROC
curves of the PseAAC model with and without feature selection; (d) ROC curves of the

PSSM model with and without feature selection.
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2.3. Performance Analysis of the Ensemble Learning Methods
2.3.1. Comparison of Stacking-Based Ensemble Learning and Majority Voting-Based Strategy

As mentioned above, four RF models are trained using the individual feature spaces with feature
selection presented in Table 2. Based on the results of individual RF modules, majority voting and
stacking are utilized to incorporate them into a consensus classifier to give the final predictions.

The prediction performance of the ensemble learning methods with stacking and majority voting
scheme is given in Table 3. As shown in Table 3, though the sensitivity obtained by stacking is 0.01
lower than that yielded by majority voting, other measures are much better than those achieved by the
majority voting scheme. It is worth mentioning that the specificity and accuracy obtained by stacking
are 0.13 and 0.06 higher than those yielded using the majority voting scheme, which may be attributed to
the discrimination power of stacking and the idea of divide and conquer. Compared to the performance
in Table 2, the performance achieved by stacking outperforms that obtained by individual feature spaces,
while the prediction results yielded by the majority voting-based ensemble method are not better or
even worse than those achieved by individual feature spaces. These comparison results reveal that the
stacking-based ensemble method is more effective than the majority voting scheme in bacteriophage
virion protein prediction. Therefore, this study employs the stacking-based ensemble method to construct
the final prediction model.

Table 3. Performance of the stacking-based ensemble learning and majority voting-based strategy.

Ensemble Method Sensitivity Specificity Accuracy MCC

Majority voting 0.88 0.7 0.79 0.590
Stacking 0.87 0.83 0.85 0.701

2.3.2. Comparison of Stacking-Based Ensemble Learning Method and the Individual RF Classifier

In order to verify the strength of the proposed ensemble method, the stacking-based ensemble method
and the individual classifier for bacteriophage virion protein prediction are investigated. The prediction
results are presented in Table 4. The stacking-based ensemble method returns a satisfactory performance
with a little lower sensitivity, but higher specificity, accuracy and M CC, than those of the individual
RF classifier.

Table 4. Performance of stacking-based ensemble learning method and the individual RF classifier.

Method Sensitivity Specificity Accuracy MCC

Individual RF 0.88 0.71 0.795 0.599
Stacking 0.87 0.83 0.85 0.701

Additionally, the ROC curves for the two models are depicted in Figure 6. From the figure, the curve
for the stacking-based ensemble model is closer to the left side of the vertical axis, with a better AUC'
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value of 0.894. Thus, the ensemble learning model gives a much better performance compared to the
individual classifier.
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Figure 6. ROC curves with and without the stacking-based ensemble learning method.

2.4. Contribution of Feature Selection to the Stacking-Based Ensemble Method

To investigate the influence of feature selection on the performance of the stacking-based ensemble
method, the prediction performance of the ensemble method with or without feature selection is shown
in Table 5. Figure 7 depicts the ROC curves obtained with or without feature selection. As can be seen
from Table 5 and Figure 7, the prediction results with feature selection outperform those without feature
selection. There is a little improvement of the specificity and AU C obtained with feature selection, while
the sensitivity, accuracy and M CC with feature selection are significantly better than those without
feature selection. It appears that many redundant or uninformative features are present in the original
feature sets, and Relief combined with IFS can significantly remove these useless features to greatly
improve the performance of the ensemble model. The stacking-based ensemble learning method with
feature selection is determined as the final predictor for bacteriophage virion protein prediction.

Table 5. Performance of stacking-based ensemble learning method with and without
feature selection.

Method Sensitivity Specificity Accuracy MCC

Without feature selection 0.68 0.81 0.745 0.494
With feature selection 0.87 0.83 0.85 0.701
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Figure 7. ROC curves of the stacking-based ensemble learning methods with and without
feature selection.

2.5. Comparisons with Existing Methods on the Independent Testing Dataset

To further assess the prediction performance of the proposed method, it is essential to compare the
performance of the present model with the previous predictors on the independent testing dataset as given
in Table S1. The performance comparison based on the same dataset is much more reliable, which can
reflect the performance of a predictor more objectively. The performance comparison results are shown
in Table 6. These results in Table 6 demonstrate that the sensitivity, accuracy and M C'C' obtained by
the proposed method outperform those of [10,11]. In particular, the sensitivity, specificity, accuracy and
MCC are 0.103, 0.195, 0.156 and 0.296 higher than those achieved by [10], respectively. Meanwhile,
the outcomes of specificity yielded by our method and [11] are the same, but the sensitivity, accuracy
and M C'C' of our method are significantly higher than those achieved by [11], which indicates that an
unreasonable balance between sensitivity and specificity exists in [11]. In addition, it is important to
highlight that the proposed method not only provides reasonable balance performance for positive and
negative samples reflected by M CC, but also gives a satisfactory discrimination power expressed by
accuracy. Overall, the proposed ensemble method is effective at predicting bacteriophage virion proteins,
superior to previous methods.

Table 6. Comparison of prediction performance with existing methods on the independent
testing dataset.

Reference Sensitivity Specificity Accuracy MCC

[10] 0.75 0.62 0.675 0.366
[11] 0.603 0.815 0.725 0.430
This study 0.853 0.815 0.831 0.662

The proposed method misclassifies 10 bacteriophage virion proteins on the independent testing
dataset. Among the 10 bacteriophage virion proteins, six virion proteins are classified correctly by the
previous method of [10] or the previous method of [11]. Four virion proteins are also misclassified by the
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previous methods [10,11], of which three virion proteins belong to part of the virion tail of prokaryotic
viruses.

The proposed method misclassifies 17 bacteriophage non-virion proteins on the independent testing
dataset. Among the 17 bacteriophage non-virion proteins, 12 non-virion proteins are classified correctly
by the previous method [10] or previous method [11]. Five non-virion proteins are also misclassified by
the previous methods [10,11], of which three non-virion proteins belong to host membrane proteins.

The above results indicate that it is difficult to predict bacteriophage protein sequences that are part
of the virion tail or the host membrane. To further enhance the prediction performance, we will make
an attempt to focus on the properties of theses proteins in future work. In addition, there are some
bacteriophage virion proteins and non-virion proteins that are classified correctly by our method, but
misclassified by the previous method of [10] or the previous method of [11]. Therefore, the proposed
method can play a complementary role for distinguishing bacteriophage virion from non-virion proteins.
Specific details about the prediction results of our method and previous methods on the independent
testing dataset are available in Supplementary Table S2.

The promising performance of our predictor is mainly attributed to two aspects. One aspect is the rich
informativeness of the feature vector, which includes discriminative sequence composition information,
sequence order information, sequence statistical information and evolutionary information after the
implemented feature selection procedure. The other aspect is the powerful stacking-based ensemble
learning method.

2.6. Online Web Server

Since user-friendly and publicly-accessible web-servers represent the future direction for developing
more useful predictors, a free web-server has been established at [19] to discriminate bacteriophage
virion proteins from non-virion proteins. Users can enter query protein sequences in FASTA format or
input the UniProtKB ID of the query protein sequences in the text box area for prediction. When protein
sequences are submitted to the server, a job ID is presented to users. The predicted result page will return
the input information and predicted result. The source code of our proposed method can be found in a
supplementary file (Zip S1).

3. Materials and Methods

3.1. Data Collection

Bacteriophage virion protein sequences applied in this study are collected from the UniProt
database [20] by searching “organism: phage AND subcellular location: virion AND reviewed: yes”.
Due to the number of bacteriophage non-virion protein sequences being extremely large, protein
sequences that were created after 2000 in the database and that match the search criterion “organism:
phage NOT subcellular location: virion AND reviewed: yes” are selected as the bacteriophage
non-virion proteins. Following the above procedures, 253 bacteriophage virion protein sequences and
248 bacteriophage non-virion protein sequences are obtained.
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In order to obtain a reliable and high quality dataset, the following criteria are further performed.
(1) The sequences that are fragments of other proteins are excluded because their information is
redundant and lack integrity; (2) The sequences containing nonstandard letters, such as “B”, “X” or
“Z”, are excluded, because their meanings are ambiguous.

It is well known that the benchmark dataset containing highly similar sequences can overestimate the
performance and reduce the robustness of a predictor. Thus, a cutoff threshold is introduced to avoid
homology bias and redundancy. The smaller the cutoff threshold is, the more stringent the benchmark
dataset will be [21]. In order to avoid the smaller cutoff threshold value causing the benchmark
dataset to be too small to have statistical significance, the sequence identity cutoff threshold is set as
80% to dislodge the redundant sequences using the CD-HIT program [22]. After the above screening
procedures, the final benchmark dataset consists of 168 bacteriophage virion protein sequences and
192 bacteriophage non-virion protein sequences.

In order to validate the proposed ensemble model objectively, 100 bacteriophage virion proteins and
100 bacteriophage non-virion proteins are respectively selected from the final benchmark dataset as
the training dataset for constructing the proposed model, while the rest of the 68 bacteriophage virion
proteins and 92 bacteriophage non-virion proteins are the independent testing dataset. The training
dataset and independent testing dataset are available in Supplementary Table S1.

3.2. Feature Extraction

To develop a powerful predictor for pattern recognition problems in bioinformatics, one of the key
steps is to represent the protein sequences with appropriate descriptors that can truly reflect their intrinsic
correlation with the target sequences to be predicted [21]. A single-feature descriptor cannot preserve
enough discriminative information for protein attribute predictions, which may lead to unsatisfactory
predictive performance. In such circumstances, the idea of hybrid features is adopted as a common way
for enhancing the discrimination power of a predictor. In this study, hybrid features extracted from CTD,
bi-profile Bayes, PseAAC and PSSM are utilized for encoding protein sequences.

3.2.1. Composition, Transition and Distribution

Amino acid composition is one of the most basic characteristics of proteins. To avoid the notorious
dimensional disaster, the 20 native amino acids can be clustered into a smaller number of representative
residues, called the reduced amino acid alphabet (RAAA) [23], as shown in Table 7.

Compared to the traditional amino acid composition, RAAA not only simplifies the complexity of
the protein system, but also improves the ability to find structurally-conserved regions and the structural
similarity of entire proteins [24].

The CTD method, introduced by Dubchak ef al. [25], can effectively extract the global information
of protein sequences. Recently, the CTD method has been widely applied to protein function predictions
and structure studies [26,27]. Based on the cluster profiles (CP) in Table 7, three global descriptors,
composition, transition and distribution, are employed in this study to describe the properties of
protein sequences.
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Table 7. Scheme for the reduced amino acid alphabets.

Reference Cluster Profiles Reduced Amino Acid Alphabets

[23] CP(5) G-IVFYW-ALMEQRK-P-NDHSTC
[28] CP(6) RDENQKH-LIVAMF-STYW-P-G-C
[29] CP(7) AILVGP-DE-HKR-FWY-NQ-ST-CM
[23] CP(8) G-IV-FYW-ALM-EQRK-P-ND-HSTC
[23] CP(9) G-IV-FYW-ALM-EQRK-P-ND-HS-TC
[30] CP(10) FWY-DE-H-K-R-C-M-QN-ST-AGILVP
[23] CP(11) G-IV-FYW-A-LM-EQRK-P-ND-HS-T-C

For a given CP (n),n € {5,6,---,11}, the composition is defined as:
L L7 L

where N;,i € {1,2,--- ,n} denotes the number of each group in C'P(n) and L is the length of the

whole sequence.

(1

For a given CP (n),n € {5,6,---, 11}, the transition descriptor is defined as:
Nesoo + Nua,
Taso; = % )
where 7, j € {1,2,--- ,n}and i # j. o; is one of the amino acid groups in C'P(n). Ny,q; is the number

of the dipeptide encoded as “o¢; ;™.
Distribution measures the respective locations of the first, 25%, 50%, 75% and 100% of each amino
acid group in C'P(n), which can be calculated by:

<N1,1 Nis Naj Ny s Nya Nn,5)
R AR AR R A R

3)

where NN;; is the chain length within which the first of the amino acids of group ¢ is located.
N; 2, N; 3, N; 4.N; 5 measure the chain lengths within which the 25%, 50%, 75% and 100% of the amino
acids of group ¢ are located, respectively.

Based on the 7 different cluster profiles in Table 7, the prediction results obtained by the proposed
CTD features are investigated and compared.

3.2.2. Bi-Profile Bayes

Statistical differences usually exist in the position-specific amino acid composition of protein
sequences between positive and negative datasets. In this study, the bi-profile Bayes method is utilized
to extract the statistical information about the position-specific amino acid composition between positive
and negative datasets.

A previous study has shown that signal peptides play a vital role in the structures and functions of
proteins [31]. Generally, important targeting signal peptides often occur at the N-terminal and retention
signal peptides for protein sorting at the C-terminal of proteins [32]. In order to extract significant signal

peptide information of a protein, the sequence segments at N-terminus and C-terminus are considered.
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For the two-class classification problem, suppose C; and C; correspond to the negative class and
the positive class, respectively; the amino acid composition at each position of the N-terminus and

C-terminus with the length of m is calculated by the following formula.
(vaN%7 7Nz]a 7N7]n70{76ga 701]7707]71)7] = 071 (4)

where 7 = 0 represents the amino acid information extracted from the negative dataset; 7 = 1
represents the amino acid information extracted from the positive dataset; Nij are the posterior
probabilities of 20 native amino acids at the ¢-th position of the N-terminus, represented by Nij =
(Nf 1,Nl?;2, e ,NZQO)T; and C/ are the posterior probabilities of 20 native amino acids at the i-th
position of the C-terminus, formulated as C’ij = (C’f 1 C’f YRR Cf 2O)T.

Based on the bi-profile Bayes method, a test protein sample can be formulated as:
(PJ{/WP]%/? 7P]1\7717P61'7Pg'7 7P£’n;P]1\qfl+17P]TVn+27"' 7P]T\/n+m;PgL+17Pg‘l+27'” anHm) (5)

where (Py, P%,---,P%) denote the posterior probabilities of each amino acid at each position
of the N-terminus of the test protein sample in the positive dataset, which are extracted from
(N}, N, -+ N} oo N, (PA P2, -+ P5) and denote the posterior probabilities of each amino
acid at each position of the C-terminus of the test protein sample in the positive dataset, which are
extracted from (C},C3,--- ,C} .-+ CL).

Similarly, (Pgt PRt? ... PRt™), extracted from (N?, N9, --- NP2 --- NO), represent the
posterior probabilities of each amino acid at each position of the N-terminus in the negative dataset;
and (PA PRt2 ... Pot™) extracted from (CY,C9, -, CY ... CY), represent the posterior

probabilities of each amino acid at each position of the C-terminus in the negative dataset.
The length of the N- or C-terminus can affect the predictive performance of a classifier. Therefore,
different lengths of the N- or C-terminus are investigated variably from 15 to 25 residues to find out the

discriminative one.
3.2.3. Pseudo-Amino Acid Composition

Physicochemical properties of amino acids have a crucial influence on protein structures and
functions [33].  Therefore, extracting features from protein sequences based on appropriate
physicochemical properties may prospectively improve the performance of a predictor.

Previous studies have shown that certain physicochemical properties are related to the functions
and structures of bacteriophage virion proteins. Coia et al. [34] have revealed that amino acids with
small side-chain masses are prone to occur in bacteriophage virion proteins. Marvin et al. [35] have
demonstrated that certain physicochemical properties, such as amphipathicity and charge, play vital
roles in the functions of bacteriophage virion proteins. Kuzmicheva et al. [36] have reported that
bacteriophage virion proteins should preserve small amino acids sharing diminutive positively-charged
surfaces and higher occupied molecular orbitals.

Sequence order information represents important properties of protein sequences for prediction
purposes, which may affect the predictive performance of a predictor [37]. The PseAAC approach,
proposed by Chou [38], takes into consideration physicochemical properties and sequence order

information of protein sequences.
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In order to extract discriminative physicochemical features of protein sequences, 10 widely-used
physicochemical properties of amino acids are adopted from the AAlndex (amino acid index)
database [39] to calculate the correlations between residues along a protein sequence using the PseAAC
method. They are the number of atoms, the number of potential hydrogen bonds, the number of
electrostatic charges, the isoelectric point, mass, flexibility, hydrophilicity, hydrophobicity, propensity
and the electron-ion interaction potential.

In terms of the 10 physicochemical properties mentioned above, based on PseAAC, a given protein
sequence with L amino acids can be formulated as:

T
P = (Q/J%ﬂﬂ%, 7¢}/7w%7w%7"' 7¢%/7"' 7¢%07w%07"' ) }/0) (6)
1 =
%Y:L__Y Pl (7=1,2,..,10,0 <y < L) (7)
=1

where 1" denotes a transpose operator; W is the y-th tier correlation factor based on the j-th
physicochemical property; and p] is the j-th physicochemical property value of the i-th residue along
the protein sequence. 7y is closely related to sequence order information and plays an important role in
the performance of a predictor. Therefore, we evaluate the discrimination power of the features based on
different y varying from 1 to 10.

3.2.4. Position-Specific Scoring Matrix

Protein sequences have stemmed from a very finite number of ancestral species protein sequences,
involving changes, insertions and deletions of single or several residues [40]. As a result, the original and
resultant protein sequences may have few sequence similarities, but they may still share some structure
similarities and the same functions [41]. Therefore, evolutionary conservations can determine important
biological functions and contribute to biological analysis [42].

The position-specific scoring matrix (PSSM) is adopted in this study to extract evolution information,
which has been widely employed in protein attribute prediction problems [43,44]. To obtain the PSSM
profiles, the Position-Specific Iterative BLAST (PSI-BLAST) [45], a powerful sequence searching
program, is applied to search the non-redundant (NR) database for multiple sequence alignment through
3 iterations using the E-value cutoff of 0.0001. For a given protein sequence with L amino acids, the
corresponding PSSM has L x 20 elements and is defined as:

E1—>1 E1—>2 e E1—>j e E1—>20
E2~>1 E2~>2 e E2aj e EQ—)QO
P _ : : DY : o e : 8
FEsM Ez’—>1 Ez‘—>2 e Ei—)j e Ez‘—>20 ( )
| EL—>1 EL—>2 T EL—)j T EL—>20 |
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where the values in the ¢-th row are the probabilities of the i-th residue in a given protein sequence
mutating to 20 native amino acids. Then, the PSSM is normalized with the following sigmoid function
to scale each element to a range of O to 1:

f(x) = (9)

where z is the original PSSM value.

To obtain a uniform number of features, we sum up all of the columns and rows in the PSSM
corresponding to the amino acids in the same group of cluster profiles as indicated in Section 3.2.1.
For the cluster profile with NV groups, the PSSM profile is transformed to a N x /N matrix following the
above procedures. The elements of the N x N matrix are employed to encode each protein sequence.
The discrimination power of the proposed PSSM conservation scores based on 7 cluster profiles is
evaluated, respectively. Then, the cluster profile that achieves the best performance is chosen to extract
features from PSSM.

3.3. Feature Selection

Through the feature extraction methods, protein sequences are encoded into various numerical feature
vectors. However, not all of the extracted features contribute to the prediction. Much information
redundancy or noise may exist in the extracted features, which will deteriorate the performance of a
predictor and result in dimensional disaster [46].

Feature selection is essential to overcome the above troubles. It is a critical step in the classification
problems to select the discriminative features and decrease model complexity, which can not only lower
computation complexity, but also build a high-quality and robust prediction model [47]. In this study,
the Relief algorithm combined with IFS is employed to acquire the optimal feature subsets of individual
feature spaces.

Relief: The Relief algorithm, originally proposed by Kira [48], is used to depict the relevance between
the features and class labels. Based on the ability of the feature to distinguish the near samples, the Relief
algorithm is a feature-weighting algorithm that can be used to estimate the quality of each feature. During

the process, the Relief algorithm endows each feature with a weighting iteratively as formulated by:

0, rT=1

where Wg and Wg“ are separately the current and next weighting values. p stands for a given feature,
and z; denotes the i-th sample sequence. H (x;), referred to as a near hit, represents the nearest neighbor
samples from the same class label against ;. M (x;), referred to as a near miss, represents the nearest
neighbor samples from the different class labels against ;. Y and .S are the sample sets with the same
and different class labels against z;, respectively. m is the number of random samples, and the function
of dif f(x,z,y) is used for calculating the distance between the random samples.

The ranked feature list can be obtained based on W,,p = 1,2, ..., N, represented as:

F= {f17f2,-~;fN} (12)
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where f; represents the feature with the highest value of W), f, with the second highest value of W, ,- - -,
and fxy with the lowest value of W,.

Incremental feature selection: Based on the ranked feature list according to their relevance to the
classes evaluated by Relief, IFS, one of the well-known searching strategies of feature selection, is
employed to determine the optimal feature subset.

The IFS procedure starts with an empty subset and adds features in the ranked feature list one by one
from higher to lower rank into the feature subset [49]. A new subset is generated when a new feature in
the ranked list is added, and the i-th feature subset can be formulated as:

Fo={fif2.--, fi}(1 <i<N) (13)

For each feature subset F;, an RF-based predictor is constructed and evaluated by 10-fold
cross-validation. The IFS curve can be drawn with accuracy values as the y-axis and index ¢ of F;
as the x-axis. The optimal feature subset is obtained when the IFS curve reaches its peak.

3.4. Machine Learning Method

Random Forest: The RF method, developed by L. Breiman [50], is a popular machine learning method
that has been successfully employed in various biological prediction problems [51,52]. It is an ensemble
classifier generating multiple decision trees, where each decision tree is constructed based on the training
dataset and produces a classification label. To predict a test sample, its feature vector is put into each of
the decision trees in the forest, and each tree gives a vote suggesting one class. Then, the RF method
will choose the final classification label with the most votes over all of the decision trees as the output
class [53]. Refer to [50] for a detailed description of the RF method. In this study, 4 random forest
models are developed, and each one is trained by the individual feature space described in Section 3.2.

Logistic regression: Logistic regression (LR), a probabilistic statistical classification model, is a
machine learning framework suitable to establish the logistic relationship between the two class labels
and the numerical feature vectors [54]. It has been widely applied to various pattern recognition
problems, such as the prediction of flexible regions in proteins [55], the determination of protein folding
kinetic types [56] and the prediction of lysine acetylation site [33].

Given a protein sequence and its feature vector, the likelihood can be calculated by the logistic
regression model. The feature vector F' = (f, fa, ..., fx) combined with the class label is used as
the input: .

P = 1 + e—(©@0+01f1+02 fo+.. 40N fN) (14)

where the optimized regression coefficients 0, 0, ...0 5 are obtained based on the training dataset.
In this study, the logistic regression approach integrates the outputs of the 4 RF models to provide the
final prediction score P, which is formulated as:

1

P =
1+ e—(00+6151+0252+6353+04.54)

(15)

where the constant term 6, and the coefficient 8; of each RF output S; are deduced through the regression
process based on the training dataset.
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For protein sequences in the test dataset, P has values between 0 and 1, which will be optimized to
maximize the accuracy for bacteriophage virion protein prediction.
The WEKA (Waikato Environment for Knowledge Analysis) software package [57] is used for the

above-mentioned machine learning algorithms, where default parameters are employed for 4 RF models.

3.5. Ensemble Learning Method

Every single classifier has its own shortcomings, and it will not always perform well on all
datasets [14]. Ensemble learning emerges as a promising measure to overcome this problem. Unlike
the single-prediction algorithm, ensemble learning consists of multiple basic individual classifiers and
then aggregates the outputs of all independent classifiers to tackle the same classification task [58]. Due
to the procedure of consulting several experts for suggestions before giving the final results, the ensemble
learning is supposed to significantly improve the performance of a prediction method [59].

In this study, 4 different random forest models as the first layer are constructed. Then, two popular
methods, majority voting and stacking, are employed to combine the 4 random forest models to give the
final prediction results.

Majority voting: The majority voting strategy, the simplest way to combine the predicted class
labels of multiple classifiers [60], is used to aggregate the independent classifiers. The target protein
sequence is assigned to the predicted class label whose score function has the maximum value, that is
the corresponding class label achieves the highest number of votes [60].

For a query protein, denote the output of the i-th RF model by:

sij €{-1,1},i=1,2,..,4;j=1,2 (16)

where j denotes the predicted class label. s; 1 = 1, s;2 = —1 separately represent the sample predicted
as the positive class ('} and the sample predicted as the negative class Cs.
The output of the 4 RF models is given as a 4-dimensional vector [s j, S ;, 834, Sa;]7. The query

protein is assigned to the positive class when S > 0 according to the following formula:

4
S = Z Sij (17)
i=1

Otherwise, it is predicted as the negative class.

Stacking: Stacking is an approach for combining multiple classifiers and achieves the highest
generalization accuracy [61]. Compared to the majority voting method, stacking will learn twice in
two layers. In the first layer, a number of individual classifiers are generated using the original feature
vectors as the input. In the second layer, a specific classifier is employed to combine the predicted
probabilities for every class label from the classifiers in the first layer [62].

In this study, 4 random forest models are generated as the first layer, each of which is trained
by 4 different feature spaces, respectively. Then, the logistic regression approach integrates the
4 independent prediction scores from the first layer to give the final results.

Majority voting and stacking both have their own particular merits. The former is the simplest

combination strategy, without cross-validation and the training of the second-layer classifier, which
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is computationally inexpensive. The latter provides the function of being highly extensible to more
classifier algorithms at both the first and second layers, regardless of their internal structures [62].
In the study, the performance of majority voting and stacking will be compared.

3.6. Performance Measures

The independent dataset test, the sub-sampling test (e.g., 5-fold or 10-fold cross-validation) and the
jackknife test are widely applied to examine the performance of a predictor [63]. The jackknife test is
deemed as the most objective method in statistical prediction, which can always obtain a unique outcome
for a given benchmark dataset [59]. To reduce the computational complexity, 10-fold cross-validation
is adopted in this study. During 10-fold cross-validation, the training dataset is randomly divided into
10 equally-sized folds. Each fold is used as the testing set, and the remaining 9 folds as the training set.
This process is repeated 10 times with different combinations of training and testing datasets. Then, the
ultimate result is obtained by averaging the 10 prediction results.

To illuminate the performance of the predictor more intuitively, 4 common measurements: sensitivity
(Sn), specificity (Sp), accuracy (Acc) and Matthew’s correlation coefficient M C'C' are adopted, which
are formulated as:

TP
_ P 1
Sn = TPIFN (18)
TN
-t 1
= TN L FP (19)
TP+ TN

Acc — 2
T TPIFP+TN+FN (20)

TP «TN — FP FN
MCC = * * 1)

V(TP + FN)(TP+ FP)(TN + FP)(TN + FN)
where T'P, T'N, F'P and F'N stand for the numbers of true positive, true negative, false positive and
false negative, respectively.

To further evaluate the performance of the classifier, the receiver operating characteristic (ROC) curve,
one of the most valid measures in pattern recognition, is also employed [64]. The ROC curve is plotted
with the Sn as the y-axis and 1 — Sp as the z-axis by varying the thresholds. The area under the ROC
curve (AUC) is the index for model evaluation obtained from the ROC curve. The higher AUC value
corresponds to the better performance of the classifier.

4. Conclusions

Bacteriophage virion proteins have the functions of specificity determination for the host bacteria,
antigenicity of bacteriophages and clinical phage therapy. Due to the major functions of bacteriophage
virion proteins in deciding applications of bacteriophages, identifying bacteriophage virion proteins is
crucial for understanding the relationship between bacteriophage and host bacteria and the influence of
bacteriophages on the development of new pathogens and antibacterial drugs. It is urgent to develop
computational methods for rapidly and effectively identifying bacteriophages virion proteins. An
ensemble method for bacteriophage virion protein prediction has been presented in this study with hybrid
features extracted from CTD, bi-profile Bayes, Pse AAC and PSSM. To solve the dimensional disaster
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and to improve the performance, Relief combined with the IFS method is adopted to obtain the optimal
feature subsets. The AUC's of individual RF modules based on four individual optimal features are
0.845, 0.888, 0.823 and 0.822, respectively, indicating the discrimination power of the selected features.
The four RF models are combined by a stacking strategy with an accuracy of 0.85. To evaluate the
prediction performance objectively, the proposed ensemble method is tested on the independent testing
dataset and compared to previous studies. The prediction results of our proposed method are superior
to those of the earlier studies. Thus, the proposed method may provide a useful tool for understanding
the relationship between bacteriophage and host bacteria. Furthermore, it may provide crucial clues to

develop new pathogens and antibacterial drugs in the future.

Supplementary Materials
Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/09/21734/s1.
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