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Directed secretion by immune cells requires formation of the

immunological synapse at the site of cell-cell contact,

concomitant with a dramatic induction of cell polarity. Recent

findings provide us with insights into the various steps that are

required for these processes: for example, the first

identification of a protein at the centrosome that regulates its

relocation to the plasma membrane; the use of super-

resolution imaging techniques to reveal a residual actin

network at the immunological synapse that may permit

secretory granule exocytosis; and the drawing of parallels

between primary cilia and IS architecture. Here we discuss

these and other novel findings that have advanced our

understanding of the complex process of immunological

synapse formation and subsequent induced cell polarity in

immune cells.
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Introduction
The rearrangement of cell components to form the dis-

tinctive immunological synapse (IS), illustrated in Fig. 1,

occurs when immune cells polarise in response to recog-

nition of an antigen presenting cell (APC) [1,2]. Recep-

tors involved in APC recognition and intracellular

organelles both polarise towards the IS, permitting the

transmission of signals and precise secretion towards the

APC. IS formation and induction of cell polarity are

especially important for cytotoxic T cells (CTL) and

natural killer (NK) cells as these events allow the cells

to use polarised secretion to destroy APCs, the stages of

which are depicted in Fig. 2. Although the IS and cell

polarisation in immune cells are tightly linked, we still do

not completely understand this interplay, and much of

the current research is focused on extending our knowl-

edge in this area. This review will focus on the secretory

synapses formed by CTL and NK cells.
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Insights from new techniques
The dynamic formation of the IS has been uncovered in

greater detail recently due to increased use of advanced

microscopy techniques. A number of different approaches

have been employed to obtain high-resolution images of

the cell–cell interface, yielding new insights into the

formation of the IS. Those of interest are summarised

in Fig. 3 and discussed subsequently.

Optical tweezers can rotate interacting cells so that the

interface lies in the higher resolution xy plane instead of

the xz plane (Fig. 3a). This method avoids combining xy
planes, which generates a low-resolution image in the z
plane. Its use is nicely demonstrated in an in-depth

assessment of interactions of signalling components

SLP-76 and LAT, adaptor proteins that are phosphory-

lated downstream of the TCR thus allowing signal propa-

gation. The study suggests that it is vesicular LAT that is

important for signal transduction [3��,4]. Using a similar

principle, conjugate orientation in micropit arrays also

allows positioning of the interface in the horizontal ima-

ging plane [5] (Fig. 3b).

Total internal reflection fluorescence microscopy

(TIRFM) on cells adhered to planar lipid bilayers also

generates high-resolution images of the IS (Fig. 3c) and

has been used extensively to identify the mechanisms

controlling the clustering of receptors into the central

supramolecular activation complex (cSMAC, Fig. 1b).

These assays have revealed receptor microclusters form

at the periphery of the IS and migrate inward centripe-

tally, controlled by F-actin flow [6]. Further microcluster

TIRFM studies, complemented by super-resolution

stimulated emission depletion microscopy (STEDM),

revealed dynein-dependent movement along microtu-

bules closer to the IS centre [7�], suggesting two distinct

phases of movement as shown for B cells [8]. Photoacti-

vatable linkages between T cell receptor (TCR) and

peptide-major histocompatibility receptor (pMHC)

monomers additionally demonstrated that TCR bound

to pMHC are selectively recruited to the cSMAC [9].

Confocal imaging indicates that actin is cleared to the

dSMAC of the IS [10], but two simultaneously published

papers highlighted the benefits of super-resolution

microscopy by revealing a residual actin network across

the NK IS where secretion occurs [11�,12�] (Fig. 3d).

This is more noticeable in the higher resolution STEDM

images [12�] than the 3D-structured illumination micro-

scopy [11�]. The authors suggest a role for the residual

actin in granule secretion, discussed in ‘Control of

granule delivery’.
Current Opinion in Cell Biology 2013, 25:85–91
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Figure 1
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The immunological synapse (IS) in cytotoxic T cells (CTL).

The IS forms at the site of cell contact between CTL and APC (a), with a series of supramolecular activation clusters (SMAC) forming as receptors

segregate into a characteristic bullseye pattern when viewed en face (b) the central SMAC (cSMAC) with clustered T cell receptors (TCRs) involved in

target recognition; the peripheral SMAC (pSMAC) with integrins involved in adhesion and the distal SMAC (dSMAC) with excluded phosphatases

(CD45) and actin. Polarised secretion from CTL is directed by the centrosome (see Fig. 2) [13], which contacts the cSMAC forming the secretory

domain around this point [49].
Control of centrosome polarisation
A key event in IS induced cell polarisation is movement

of the centrosome right up to the membrane at the edge of

the cSMAC, initially observed in CTL [13] and more

recently in CD4 [14��] as well as NK and NKT cells [15�]
(Figs. 1 and 2). As the centrosome is the microtubule

organising centre of CTL, its movement induces reorga-

nisation of the intracellular microtubule cytoskeleton,

which is thought to allow polarised secretion of lytic

granules at the IS (see ‘Control of granule delivery’

and Fig. 2). Interestingly, although movement of the

centrosome and its membrane docking were observed

many years ago, the literature is yet to comprehensively

explain how this precise and very unusual movement is

controlled.

Many studies suggest that the cytoskeleton, along with

motor proteins, may permit the centrosome to move to

the IS. Dynein and related molecules have long been

implicated in this process (Fig. 2v). Huse linked diacyl-

glycerol (DAG) accumulation at the IS with dynein

recruitment and centrosome polarisation [16], and more

recently depletion of DAG kinase z revealed its participa-

tion in restricting DAG to the IS, although this study did

not assess the subsequent effect on centrosome reorien-

tation [17]. Proteins linking the cytoskeleton and mem-

brane also appear to have a role; ezrin localises to the

Jurkat IS along with the epithelial cell polarity protein
Current Opinion in Cell Biology 2013, 25:85–91 
Discs-large homolog 1 (Dlg1) [18]. This work also

suggested ezrin regulates Dlg1 because ezrin depletion

caused a modest decrease in Dlg1 IS localisation, with

depletion of Dlg1 itself having some negative impact on

the ability of the centrosome to polarise to the IS.

Additionally, expression of key leucine–aspartate

domains of paxillin, (a centrosome localised cytoskeletal

adaptor protein best known for regulation of focal adhe-

sions [19]) reduced CTL centrosome polarisation by 48%

[20], again suggesting that cytoskeletal rearrangements

have a role in induced centrosome movement.

Another intriguing candidate is casein kinase I-d (CKId)

which, when depleted from Jurkat cells, caused a strong

reduction in centrosome polarisation to the IS [21��].
What is particularly fascinating about CKId is that it is

one of the first centrosomal proteins found to influence

centrosome positioning towards the IS, although CKId

regulates microtubule growth and so may well control

centrosome positioning in this way. CKId interacts with

microtubule binding protein EB1 and the p150glued sub-

unit of dynactin, and, since CKId localised to the centro-

some but was not seen at the IS, these interactions seem

more probably to be involved in microtubule anchoring.

IQGAP1, which binds microtubules’ plus-ends and links

them to the actin cytoskeleton, has been shown to localise

with actin in the dSMAC of the IS (Fig. 1) [13]. Inter-

estingly, IQGAP1 knockdown studies in an NK cell line
www.sciencedirect.com
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Figure 2
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Cell polarity in CTL upon IS formation.

(i) Migrating CTL recognise potential target APCs by engagement of peptide-major histocompatibility complex (pMHC) on the APC with cognate T cell

receptor (TCR) on the CTL. (ii) Once TCR has engaged with pMHC, signalling within the CTL begins to occur, inducing the formation of the IS and

polarisation of the CTL. (iii) The centrosome (which is the microtubule organising centre in CTL) moves from the uropod of the cell where it is found in

migrating CTL and repositions itself at the point of TCR signalling. Cytotoxic granules move along microtubules in a minus-end direction towards the

polarised centrosome. (iv) Secretion of cytotoxic granules at the secretory domain of the IS induces cell death in the recognised target APC. (v)

Zoomed in from box in (iii) showing dynein moving granules in a minus-end direction along microtubules towards the centrosome where they are

secreted towards the target cell.
showed decreased centrosome polarisation towards the IS

[22]. Furthermore, in mouse CTL devoid of stathmin, a

microtubule binding protein, target killing was decreased

by 25%, with a similar decrease in centrosome polarisation

[23].

Of interest is the fact that stathmin knockout mice also

show impaired protein kinase C-u localisation at the IS [23]

and that recently this cSMAC localising kinase was impli-

cated as a major player in centrosome polarisation to the

membrane [24]. Such links propose a complicated relation-

ship between proteins segregating at the IS and other

cellular components which is proving difficult to dissect.

Further studies focussing on the control of centrosome

positioning by cSMAC accumulated TCR signalling com-

ponents (Fig. 1) have only become possible with the de-

velopment of inducible knock-out models, since many of

these proteins are required for T cell development. TCR

signalling is drastically reduced in CTL lacking the

cSMAC kinase Lck, with residual ERK and calcium signals

being sufficient for the centrosome to polarise around the

nucleus towards the IS, but the centrosome unable to

actually dock at the plasma membrane [25]. Subsequently,

secretion is prevented, demonstrating clearly that
www.sciencedirect.com 
centrosome docking is essential for granule delivery to

the IS and that TCR signalling has a role in this process.

One curious aspect of centrosome polarisation is that

CTL killing is, perhaps surprisingly, unimpaired when

centrosome movement is restricted by tethering the

centrosome to the nuclear membrane. Under these con-

ditions the centrosome is still able to polarise to the IS and

CTL kill their targets as efficiently as control CTL [26].

Collectively, these studies support a role for various

aspects of cytoskeletal control in promoting centrosome

polarisation and docking, as well as TCR signalling, but

the mechanism of centrosome movement still necessi-

tates a clearer explanation.

Control of granule delivery
As stated in ‘Control of centrosome polarisation’, CTL,

CD4, NK and NKT cells employ the centrosome for

organisation of microtubules’ minus-ends at the point of

signalling on the plasma membrane (Fig. 2) [13,14��,15�],
suggesting that these cell types use the same mechanism

for polarised secretion at the IS. The minus-end directed

movement of cytolytic granules allows precise delivery to
Current Opinion in Cell Biology 2013, 25:85–91
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Figure 3
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Confocal SIM

Fluorescence microscopy for study of the IS.

(a) An immune cell conjugate, shown here as a CTL and an APC, is trapped using optical tweezers and reorientated. The IS now lies in the focal plane

of the confocal microscope allowing high-resolution imaging. The optical tweezers are shown as yellow light surrounding the conjugate with the orange

lines representing force generating units required for reorientation. (b) As demonstrated by Biggs [5], a grid can be fabricated with pits into which APCs

can be seeded. Upon addition of immune cells to the plate, for example CTL, the size constraints of the pit cause the IS to form in the microscope focal

plane, increasing the resolution obtainable. This method allows many conjugates to be prepared in the correct orientation compared to the optical

tweezer method due to the number of pits on the array. (c) Immune cells will conjugate to a planar lipid bilayer containing specific activating proteins,

as if recognising an APC. In this schematic, a CTL has interacted with a planar lipid bilayer, consequently forming an IS and high-resolution imaging is

obtained by total internal reflection microscopy. An evanescent wave, generated upon reflection of light at the coverslip, ascends only 100 nm into the

CTL meaning background fluorescence is much reduced and high-resolution of IS components is obtained as only fluorophores in this small

illuminated region are activated. (d) A comparison of a widefield deconvoluted confocal image the IS of a T cell activated with poly-L-lysine and anti-

CD3 to that obtained using super-resolution structured illumination microscopy (SIM). Images are of the same cell, showing actin in white and the

centrosome in blue, achieved by use of Phalloidin-Alexa Fluor 488 (Sigma) and anti-pericentrin (abcam ab4448). SIM reveals more detail at the IS

centre as well as at the dSMAC. Scale bars are 2 mm. Imaging was performed using DeltaVision OMX 3D-SIM System V3 (Applied Precision) at the

Gurdon Institute, Cambridge, UK. All data capture used an Olympus 100 � 1.4NA oil objective, 405 and 488 nm laser illumination and standard

excitation and emission filter sets. 3D-SIM images were sectioned using 125 nm Z-step size. Raw 3-phase images were rendered and reconstructed in

3D by softWoRx 5.0.0 (Applied Precision) software. Images obtained and provided by Nele Dieckmann and Nicola Lawrence, Cambridge, UK.
the IS [13] and implies a role for motor proteins. Rab7 is

required for cytolytic granules to move towards the CTL

centrosome via an indirect interaction with the minus-end

directed motor dynein [27] and, similarly, NK cell granule
Current Opinion in Cell Biology 2013, 25:85–91 
convergence on the centrosome also depends on dynein

([28], Fig. 2v). Recent papers have suggested modifi-

cations of this scheme. In a report in CTL, knockdown

of the plus-end directed motor protein kinesin-1 provided
www.sciencedirect.com
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a modest reduction in degranulation, used to support the

idea that plus-end movement along short microtubules

might mediate the final delivery of granules to the IS [29].

However, since kinesin-1 plays a role in centrosome

stability and positioning [30,31] this provides an alterna-

tive explanation.

As discussed in ‘Insights from new techniques’, super-

resolution imaging revealed a fine actin network remain-

ing across the IS during secretion [11�,12�]. These results

from NK cells, that include a striking EM image of a

granule surrounded by the actin network, led to the

proposal that the synapse interface is more like a colander

with many small actin holes where the centrosome deli-

vers cytolytic granules [12�]. This is interesting because

actin and non-muscle myosinIIA are thought to be

involved in the final steps of cytolytic granule exocytosis

[32], including some lysosome related organelles [33].

Furthermore, NK cytolytic granules appear to be sur-

rounded by non-muscle myosinIIA [34], potentially par-

alleling the detailed picture of exocrine secretion in

pancreatic cells in which myosinIIA and IIB facilitate

collapse of the secretory granule [32]. In support of this

concept are findings from Eric Long’s lab in which the

granules fuse but do not diffuse away from the membrane

[35].

Secretion is not the only role for myosinIIA. A series of

recent studies support its role in IS actin reorganisation by

taking advantage of small novel probes for polymerised

actin, LifeAct and/or Tractin, in combination with the

specific myosinIIA inhibitor blebbistatin [36�,37,38�]. All

of these studies reveal myosinIIA is important for cen-

tripetal movement of TCR microclusters within the IS by

inhibiting actin dynamics and consequently affecting

downstream signalling [38�].

The final steps of granule secretion still remain some-

thing of a mystery, with a number of different SNARE

proteins implicated, but their precise sites of action

remaining unresolved. This stems, partly, from the fact

that the entire secretory pathway contributes to the final

readout of secretion. CTL or NK cells deficient in

VAMPs4, 7 or 8, Vti1b, or syntaxin7 reveal modest or

transient reductions in granule release, suggesting they

are involved somewhere in the secretory pathway [39–
41]. Even proteins identified from genetic diseases, such

as syntaxin11 or Munc18-2 where mutations cause loss of

CTL exocytosis in vivo, remain difficult to understand

since culture with interleukin-2 corrects secretory defects

[42,43].

The immunological synapse as a frustrated
cilium
Centrosome docking at the plasma membrane is an

unusual event, seen only during cilia formation and

cytokinesis (see [44]). This similarity between IS and
www.sciencedirect.com 
cilia, first noted by the centrosome docking at the

synapse [13], is intriguing because, historically,

lymphocytes are thought to be one of a very small

number of cell types that do not form primary cilia

[45,46]. A number of observations support these paral-

lels including the polarisation of secretory and endo-

cytic organelles to the point of centrosome docking in

both cilia and the IS [47], the expression of intrafla-

gellar proteins in lymphocytes [48] and the cilia-like

protrusions that form during centrosome docking at the

IS [45]. These observations support the idea that cen-

trosome docking leads to the specialisation of an area of

plasma membrane for endocytosis and exocytosis,

which is critical for both cilia and IS function.

Conclusions
The IS forms an area of membrane specialisation for

polarised secretion from immune cells. This involves

reorganisation of not only cell surface receptors, but also

actin and microtubule cytoskeletons leading to focused

signalling and secretion. In the past couple of years a great

deal has been learnt about the mechanisms that control

synapse formation. However, further work elucidating a

clear pathway that regulates centrosome movement

within immune cells is still required. Clarifying the roles

of actin and myosins at the IS, as well as proteins required

for exocytosis, is crucial in order to resolve current dis-

crepancies in the field. Together these approaches should

answer key questions regarding spatial and temporal

regulation of IS formation and cell polarisation.
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