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Enhanced droplet collision rates 
and impact velocities in turbulent 
flows: The effect of poly-dispersity 
and transient phases
Martin James1,2 & Samriddhi Sankar Ray   3

We compare the collision rates and the typical collisional velocities amongst droplets of different sizes 
in a poly-disperse suspension advected by two- and three-dimensional turbulent flows. We show that 
the collision rate is enhanced in the transient phase for droplets for which the size-ratios between the 
colliding pairs is large as well as obtain precise theoretical estimates of the dependence of the impact 
velocity of particles-pairs on their relative sizes. These analytical results are validated against data 
from our direct numerical simulations. Our results suggest that an explanation of the rapid growth 
of droplets, e.g., in warm clouds, may well lie in the dynamics of particles in transient phases where 
increased collision rates between large and small particles could result in runaway process. Our results 
are also important to model coalescence or fragmentation (depending on the impact velocities) and will 
be crucial, for example, in obtaining precise coalescence kernels in such systems.

The study of collisions and coalescences of droplets in a turbulent flow is central to understanding a pleth-
ora of natural phenomena. Such phenomena, which span a variety of spatial and temporal scales, range from 
planet-formation in circumstellar disks1,2 to rain drop formation in warm clouds3–6. In particular, for the latter, 
the observed rapid growth of droplets, leading to rain, in a warm cloud is not yet completely understood. A com-
mon, key question underlying all such problems is to understand and explain the rate with which such droplets 
grow, essentially through collisions resulting in coalescences. In recent years as studies in turbulent transport 
and the dynamics of inertial particles have been at the forefront of research in fluid dynamics, there have been 
great advances in enunciating the role of turbulent mixing, preferential concentration and intermittency in the 
rapid growth of droplet sizes, through coalescences, in suspensions advected by a turbulent flow. Hence several 
questions related to the relative velocities and collision rates of droplets4,7–16, the enhanced settling in the presence 
of gravity17–21, and most recently the abrupt growth in droplet sizes through coalescence22 have been explored, 
theoretically and in experiments, in great detail. It is therefore of great importance in the area of the earth sciences 
as well as, more generally, in the context of non-equilibrium statistical mechanics to understand possible origins 
of this discrepancy in numerical and theoretical results from observed data23.

We know that the nucleation sites (aerosols) lead to condensation in the super-saturated environment of a 
warm cloud. However such a process leads to droplets which are around 8 μm, much smaller than the typical 
droplets sizes which initiate rain. It is believed that the turbulent airflow results in efficient mixing, coupled with 
the preferential concentration of such droplets, exactly similar to heavy, inertial particles in turbulence, yielding 
more and more collisions, often resulting in coalescences, to generate bigger and bigger droplets. Much of the 
work in this field have dealt with mono-disperse (same-sized droplets) suspensions in flows where both the par-
ticle dynamics and the turbulent flow itself is in a statistically stationary regime. Indeed it is now well established 
that turbulence enhances collision rates amongst droplets and could partially explain accelerated growth rates, 
e.g., of water droplets in clouds, which cannot be captured through kinetic models. However the bottleneck in 
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estimating the early time initiation of rain–as observed in nature–is still an unresolved issue despite intense 
numerical and theoretical studies over the past few years23.

Much of the work related to the issues of collision rates and relative velocities of particle-pairs deal with 
systems of identical particles21,24,25. However in nature, the distribution of particles is typically inhomogeneous. 
Hence particles of different sizes interact with one another. Furthermore, to critically understand if coalescences 
dominate–leading to the growth of larger and larger droplets–an estimate of the strength of impact velocities of 
particles with different radii is crucial. In particular the role of preferential concentration (which changes with 
particle radii) of particles at small scales as well as possible large velocity differences due to caustics8 and the sling 
effect4 ought to result in non-trivial collisional velocities in an inhomogeneous size distribution of particles in a 
turbulent flow.

In this work, we study the complementary problems of the velocity difference between colliding droplets in 
two and three dimensions as well as the rate of collisions in such systems. Our approach is different from previous 
studies in two critical aspects: (1) Typically, earlier studies have focussed on a mono-disperse suspension of par-
ticles; we now look at a poly-disperse suspension of droplets. (2) Secondly, and more crucially, we also examine 
the collision, and hence coalescence, rates between different-sized particles not in the statistically steady state 
of particle dynamics but in the transient phase before the distribution converges to a non-equilibrium steady 
measure. Finally we measure the typical velocities of impacts–in the steady state–and obtain asymptotic scaling 
relations which are validated by our numerical simulation in two and three dimensions. To our knowledge this is 
the first time that the transient phase has been studied and, as we show below, our results indicate that reasons for 
the rapid growth of droplets seen in nature lie in this regime.

We focus on the aspects mentioned above because the collision frequency and the collision velocities are 
both key ingredients which ought to determine the growth of droplets. In nature, particle suspensions are inho-
mogeneous in their size distributions and far from the model mono-disperse suspension typically studied. 
Furthermore, in natural settings processes such as nucleation and droplet-droplet interactions, must be character-
ised by non-stationary (transient) measures, at least on short time scales. Indeed because of coalescences and con-
densation, the distribution of particle sizes are time-dependent and hence the dynamics of the droplet suspension 
rarely get a chance to converge to a non-equilibrium stationary state. It is natural, therefore, that such a problem 
is best studied within the framework of the transient phase of particle dynamics. Hence it behooves us to explore, 
numerically, the intriguing possibility of a further enhancement in collision rates in transient regimes as well as 
the possibility of accelerated droplet growths when the suspension itself is poly-disperse. We should emphasize 
that our turbulent advecting flow is in a non-equilibrium statistical steady state; the transients we refer to has 
to do with the transient, particle dynamics before they converge to their statistically steady measure; it is these 
transient phases which, for reasons explained above, are ubiquitous in nature and thus deserving of our attention.

For clarity, we first report our results on the impact velocities and then on collision frequencies in the section 
after that. We keep in mind that our results for the collisional velocities are for both two and three dimensions 
and are consistent with our analytical predictions. We discuss the issue of collision frequencies only in the context 
of two-dimensional flows; our preliminary results for 3D are consistent with the data reported here. However we 
will report the results on the collision frequencies in three dimensions, with a systematic in Froude and Stokes 
numbers, in future work.

Results
We consider a fluid flow whose velocity u is a solution to the incompressible Navier–Stokes equation

ν∂ + ⋅ ∇ = −∇ + ∇ + ∇ ⋅ =u u u u f up( ) , 0, (1)t
2

where ν designates the fluid kinematic viscosity. In two dimensions (2D), it is often convenient to re-write this in 
the vorticity (ω)-stream function (ψ) formulation26,27 as

ω ψ ω ν ω µω∂ − = ∇ + −ωJ f( , ) , (2)t
2

where J(ψ, ω) ≡ (∂xψ) (∂yω) − (∂xω) (∂yψ) and μ is the coefficient of Ekman friction. At the point (x, y) the veloc-
ity u ≡ (−∂yψ, ∂xψ) and the vorticity ω = ∇ψ.

We now study the dynamics of small inertial particles (droplets) which are suspended in a turbulent flow field 
obtained as a solution of Eq. (1) in three dimensions (3D) or of Eq. (2) in two dimensions (2D) in the limit of 
small ν or large Reynolds numbers. We assume that our particles are much smaller than the Kolmogorov scale η, 
much heavier than the surrounding fluid, and with a small Reynolds number associated to their slip velocity. The 
motion of the i-th particle, in the turbulent fluid, is damped through a viscous Stokes drag and their trajectories 
xi(t) are defined via
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The relaxation time τp = 2ρpa2/(9ρfν), where ρp and ρf are the particle and fluid mass density respectively and a 
the particle radius, allows us to define a non-dimensional Stokes number St = τp/τη; the small time-scale τη is the 
Kolmogorov time scale and an intrinsic property of the fluid. In 2D, a natural Kolmogorov time scale is hard to 
define; we therefore measure the Stokes number St = λ1τp, where λ1 is the Lyapunov exponent of the flow. As was 
shown by in ref.28, this can be related to the smallest time-scale τmin in 2D flows as the minimum value of 

−k E k( ( ) )3 1. We obtain the radius of the particles from the definition of the Stokes time τp by choosing the density 
ratio to be 1000 (such as water in air).
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Impact Velocities.  The impact velocity between colliding droplets, which determines the chance of coales-
cence or fragmentation, is defined as the velocity difference of the two particles at vanishing separation. Thence, 
we define the impact velocity between two particles, labelled 1 and 2, of Stokes numbers St1 and St2 as 
Δ = 〈|(v2 − v1) · ̂r|〉, where the unit vector r̂ defines the vector connecting the centers of the two particles, with the 
constraint that (v2 − v1) · ̂r < 0 which define a pair of approaching particles (We note that the same definition can 
be arrived at by considering the velocity longitudinal structure function calculated in the limit where the pair 
separation goes to 0). The averaging 〈·〉 is defined over all colliding pairs.

In Fig. 1(a) we show a pseudo-color plot of the amplitude of the impact velocity Δ as a function of the Stokes 
numbers of the colliding particles is shown from our data from the 2D simulations, with similar results obtained 
in our 3D DNS. (In this plot and all subsequent plots, we show Δ normalised by the Kolmogorov velocity 
uη = η/τη of the underlying turbulent fluid; in 2D we choose uη = η/τmin). Qualitatively, it is easy to understand 
the diagonal (St1 = St2) behaviour of Δ: The two-particle velocity correlation between particles (when the size 
of one particle is fixed and the other varied) attains a maximum when particles are of the same size (St1 = St2)29. 
Consequently, Δ attains a minimum when the approaching particles have the same Stokes number as is clearly 
seen in Fig. 1(a). For larger Stokes numbers, Δ becomes larger because of the formation of caustics which allow 
same-sized particles to collide with each other with arbitrarily large velocities.

In order to gain a complete understanding of the dependence of Δ on St1 and St2, it is useful to return 
to Eq. (3). Let us consider two particles 1 and 2 with Stokes times τ1 = τ and τ2 = ατ1 = ατ. We consider the 
non-dimensional form of Eq. (3) (by including factors of τη) to obtain

τ
= − −

d
d St

v v u1 [ ];1
1 1

τ α
= − − .

d
d St

v v u1 [ ]2
2 2

For brevity, we set u(xi, t) = ui. Thence we obtain

Figure 1.  Impact velocities. (a) Impact velocity Δ(St1, St2) as a function of Stokes numbers of approaching 
particles in 2D. Representative plots of Δ as a function of (b) St for same-sized particles (c) St2 for 

= . St 0 005 1 and for tracers in 3D, and (d) = . St 12 5 1 in 2D and for = St 20 1 in 3D (inset). The blue 
solid curves (and black solid curve in (b)) are our theoretical predictions and the symbols are data from our 
simulations in 2D and 3D (inset). The error bars on our numerical data are comparable to the symbol size.
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We have assumed here that at small particle separations |r|, the fluid velocity is smooth and hence 
σ− ≡ ⋅ ∼u u r 01 2 , as |r| → 0 (σ is the gradient of the fluid velocity).

So far we have made only one defensible assumption in deriving Eq. (4) which has to do with the smoothness 
of the velocity field at small scales. To this extent Eq. (4) is exact in both 2D and 3D. Let us now explore the vari-
ous asymptotics of this equation and obtain theoretical estimates of Δ for different combinations of Stokes num-
bers which can then be tested against data from our DNSs in 2D and 3D. The following limits naturally arise in 
this case (see Table 1 for a compact version of these limits): Case 1: α = 1 with no assumption on St; Case 2: 
Particle 1 is very small and close to being a tracer ( St 1) and α ∼ (1) such that <



St 12 ; Case 3: Particle 1 is 
still small ( St 1) but α  1 such that St 12 ; and Case 4: For >∼St 1. To obtain the limiting form of Δ from 
Eq. (4) in each such case, we assume that at time t = 0 the particles have come close to each other (without actually 
colliding) with a velocity difference Δ0 and then, over a time τ, they touch.

For α = 1 (Case 1), integrating Eq. (4), we obtain Δ = Δ0 exp (−τ/St), where (and in what follows) Δ0 is the 
constant of integration. In Fig. 1(b) we test our theoretical prediction (solid line) against data from our DNSs 
(symbols) in both 2D and 3D (inset) and find excellent agreement between the two.

We now address the important question of what happens when the two colliding particles have different Stokes 
numbers. Let us begin with Case 2 where St 1 (v1 ≈ u1) and α ∼ (1) . In this limit, we can rewrite Eq. (4) as
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Since αSt < 1, we can set α =∆St 0d
dt

 and obtain ∆ ∼ St2. In the other limit, Case 3, where St 1 and α  1 
such that αSt > 1, we notice that ⋅ ∼ ⋅ ∼α

α
− ˆ ˆr r 0St
St

d
dt

d
dt

v v(1 ) 1 1  to leading order since St 1. Thence we obtain 
Δ = Δ0 exp (−τ/St2).

Given the strong assumptions made in arriving at the two limits above, it is important to check our prediction 
against data from our DNSs. In Fig. 1(c) we show a representative plot of the impact velocity Δ between particles 
of Stokes number St = 0.005 (2D) and tracers (3D, inset) (For the 3D simulations, we choose tracers for the refer-
ence particle; our theoretical predictions can be shown to hold in the case when St1 = 0 as well) with particles of 
different Stokes numbers. We immediately notice that when <



St 12 , Δ is indeed linear with St2 and the data 
(symbols) consistent with our theoretical prediction shown as a blue curve. In the other limit when St 12 , our 
data from numerical simulations is in excellent agreement with the theoretical prediction Δ ~ exp(−1/St2).

Let us finally turn to the situation when >∼St 1 (Case 4). In Fig. 1(d) we show a representative plot of the 
impact velocity between a particle of Stokes number St = 12.5 (2D) and St = 20 (3D, inset) with all other particles. 
From our numerical data we see that that Δ shows rapid variation when <



St St2 1. However we do not have a 
self-consistent understanding of the functional form of the decrease in Δ from Eq. (4).

Collision Rates.  We now investigate the possibility of enhanced collision rates in turbulent flows. It is 
important to note that this work proposes a novel mechanism to explain a puzzle in the atmospheric sciences: 
Hence two-dimensional flows are useful for this study as it allows us, numerically, to study the collision rates 
in greater detail. This is in addition to the reason that atmospheric flows are often effectively modeled by the 
two-dimensional Navier-Stokes equation. We thus consider a poly-disperse suspension of droplets in a 
two-dimensional turbulent flow.

We begin by examining the collision rates R∞, in the statistical steady state, amongst particle-pairs of different 
Stokes numbers. In Fig. 2(a) we show the collision rate R∞, as a function of the Stokes numbers of the colliding 
pairs, in a pseudo-color plot in the statistically steady state. We see clearly a peak in R∞ for same-sized particles, 
i.e., along the diagonal in Fig. 2(a) since same-sized particles cluster much more than different-sized ones do. 
However, at very small Stokes numbers, in the limit of tracers, the collision rate shows a different behaviour 
(Fig. 2(b)) as has also been studied earlier for a smooth random flow by Bec, et al.24. In this tracer limit, particles 
are uniformly distributed which make collisions amongst particles of the same size less probable. By contrast, the 
higher probability of collisions among different-sized particles results from the finite impact velocity.

In order to illustrate this better, in Fig. 2(c) we show R∞ for same-sized particles as a function of their Stokes 
number. Given our definition of R∞, the Saffman-Turner prediction30,31 suggests a linear behaviour for 
two-dimensional flows for small Stokes numbers; in the inset of Fig. 2(c) we find an excellent agreement with this 
prediction. Our results in the large Stokes limit (Fig. 2(c)) suggests that, asymptotically, R∞ saturates to a constant 
in agreement with the Abrahamson limit24,32. We note that our collision rates, when considering same-sized 

Case St1 St2 Prediction Figure

Case 1 – St1 Δ = Δ0 exp (−τ/St) Fig. 1(b)

Case 2
St 11 <∼St 12 Δ ~ St2 Fig. 1(c)

Case 3
St 11 St 12 Δ = Δ0 exp (−τ/St2) Fig. 1(c)

Case 4 >∼St 11 St2 ≠ St1 None Fig. 1(d)

Table 1.  Analytical Predictions. A summary of the different asymptotics and the theoretical predictions for Δ.
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particles in two-dimensional flow, are in complete agreement with previous theoretical and numerical studies for 
smooth random as well as turbulent flows in two dimensions24,33. We also observe the curiously sharp increase, 
with a peak for <



St 1, in the collision rate for same-sized particles which can be understood through models 
using a combination of clustering and caustics23.

Let us now address the issue of collision rates R in the transient phase. It is worth reiterating that the advecting 
turbulent flow is in a non-equilibrium steady state: it is the particles which are in a non-stationary distribution 
and hence in a transient phase. In Fig. 3(a) (inset) we show R as a function of St1 and St2. We immediately note 
that in the transient phase there is an enhanced collision rate amongst particle pairs such that St 11  and St 12 . 
This striking result shows that the chance to form bigger, or super drops, through the merging of large and small 
particles is accentuated in the transient phase and could be key to explaining the emergence of fat tails in droplet 
size distribution in a turbulent suspension, such as in warm clouds. In contrast, for colliding pairs with similar 
Stokes numbers and sizes, the collision rate is actually smaller in the transient phase when compared to the steady 

Figure 2.  The collision rate R∞, in the steady state. (a) Pseudo-color plot of the collision rate R∞ as a function of 
St1 and St2 of the colliding pairs. In (b) we magnify the behaviour of R∞ for St1, St 12 . The color-bar is 
normalised by the maximum in R∞ for the full Stokes number range. (c) Collision rate R∞ for collision between 
particles of the same size. In the inset we magnify the behaviour of R∞ in the small Stokes limit.

Figure 3.  The collision rate R, in the transient phase. (a) The collision rate R, during the transient phase, 
between a reference particle with St = 0.05 and all the other particles. The curves correspond to times t = 0.5 τη 
(pink diamonds, uppermost curve), t = τη (blue circles) and t = 1.5 τη (red squares). The almost linear line with 
black triangles correspond the steady state distribution R∞ result. Inset: Pseudo color plot of the collision rate R 
during the transient phase; the color bar is normalised with the maximum in R∞. This snapshot is taken at time 
of the order of τη. (b) The collision rate R as a function of time τ (normalised by τη) for different-sized particles. 
We show representative plots for the case when St1 = 0.96 and for (i) St2 = 0.053 (pink circles), (ii) St2 = 0.03 
(blue diamonds), and (iii) St2 = 0.005 (red squares). We observe a rapid decrease in the collision rate with time 
till it saturates to the asymptotic value R∞ at large times.
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state distribution (Fig. 3(a), inset). This is easily understood in terms of the negative divergence of the velocity 
field of inertial particles leading to preferential concentration as t → ∞.

In order to illustrate this better, we take a reference particle in the small Stokes limit and measure the collision 
rate R with other particles of different Stokes numbers. In Fig. 3(a), we show a representative plot with the refer-
ence Stokes number St = 0.05 at different times. The lowest, linear curve is at the largest times when R → R∞. At 
smaller times, when the particle dynamics have not converged to the steady state distribution we find an increased 
collision rate as compared to the steady state distribution. Thus we have obtained strong numerical evidence for 
the enhancement of collision rates amongst dissimilar particles in the transient phase and the opposite effect for 
particles with the same Stokes number. It is now important to examine and characterise how R relaxes to R∞ in 
time. In Fig. 3(b) we show, for representative values of Stokes number, the approach to R∞ for different-Stokes 
particles. We observe a rapid decrease in R as a function of the normalised time τ = t/τmin till it saturates to R∞. 
We also observe in this time-dependence a gentle oscillatory behaviour. Thence we characterise this relaxation 
process which illustrate that indeed for short, transient times there is significant enhancement of collision rates 
when compared to measurements made in the asymptotic steady state. A quantitative understanding of the func-
tional form of this relaxation will be addressed elsewhere. It is clear from these plots that particles with smaller 
Stokes numbers tend to relax faster to their stationary distribution than the ones with larger Stokes number. In 
particular this relaxation time is typically, as seen from our plot, little larger than the shortest time-scale of the 
flow.

Let us finally measure the actual enhancement of the collisions–and hence, coalescences–in the transient 
phase. This is quantified by taking the ratio R/R∞ and plotting it as a function of the Stokes number as shown in 
Fig. 4. In Fig. 4 we find a maximum enhancement of close to a factor of 2.5 for Stokes numbers (1) when it col-
lides with a tracer-like (St = 0.05 in this case) particle in the transient phase as compared to the steady, long time 
distribution regime. We have looked at data with other small Stokes reference particle and found a similar behav-
iour as is suggested in Fig. 3(a) along and close to either the St1 or St2 axes.

Discussion
At this stage, before we turn to a discussion of our results, it is important to remark about the constant of integra-
tion used to obtain the impact velocities. Δ0 is the typically velocity difference with which two droplets come near 
each other. From very general conditions, it is likely that Δ0 should depend on turbulent intensity, the spatial 
dimension, as well as the relative Stokes numbers of the fluid (when St1, ∼St (1)2 . However we do not have an 
analytical expression for Δ0 and as our theoretical and numerical results suggest, Δ0 is likely to be a constant or 
an algebraic, sub-dominant prefactor at least in the range of Stokes numbers studied here (For droplets which are 
large, it is plausible that Δ0 ~ St 25). From our data, we are however, able to extract the Reynolds number depend-
ence of Δ0. In Fig. 5, we show a plot of a normalised Δ0 versus Reλ from our simulations in three dimensions; not 
surprisingly we find an increase in Δ0 as the system becomes more and more turbulent.

It is important to stress the rationale behind using two-dimensional flows (and neglecting coalescences) when 
we measured our enhancement factor in the collision frequency. There have been a lot of studies which show 
that very often the correct framework to study such geophysical or astrophysical systems is the two-dimensional 
Navier-Stokes equations or its quasi-2D variants34. Besides, this exploratory, theoretical work underlines the 
importance of the often neglected transients in such non-equilibrium processes. Consequently, the dimension-
ality of the flow does not detract from the qualitative message while at the same time the relative computational 
ease of two-dimensional simulations allow us to obtain more statistics and hence a firmer confirmation of our 
theoretical conjectures.

Before concluding, it is worthwhile to note that our work is two-fold and aimed at contributing to our under-
standing of turbulent transport and its role in forming larger aggregates through coalescence. A stumbling block 
in a fully self-consistent theory to explain such accelerated growths is the lack of realistic collision-coalescence 
kernels for different-sized particles which incorporate both fragmentation and coalescence. A first step in this 

Figure 4.  Enhancement factor. The enhancement factor R/R∞ for a reference particle with St = 0.05 in the 
transient phase (t = τη).
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direction is, of course, determining the dependence of impact velocities of colliding particles on their sizes. Our 
results, summarised in Table 1, are important in their implication. We show that the larger particles (large Stokes 
numbers) do not collide with arbitrarily large velocities with the smaller, tracer-like particles but actually saturate 
(~exp(−1/St)). This suggests that in inhomogeneous suspensions, such as the polydisperse droplet distribution 
in warm clouds, a run-away growth for large droplets through coalescence (and not fragmenting because of large 
velocity differences) is likely to be the dominant mechanism triggering rain22,23. Remarkably, also, our results 
seem to be independent of dimension. It should be noted that similar results can be obtained from the calcula-
tions of collision rates in simplified statistical models as shown, e.g., in Refs.8,16 when the colliding particles have 
the same Stokes numbers. In particular we have shown that there is a limiting form for the impact velocity and 
hence in natural settings coalescence–and not fragmentation due to large Δ–should be the dominant mecha-
nism. Therefore this work is a significant step in developing models for coalescing droplets. Important questions 
related to Reynolds and Froude number effects is beyond the scope of the present work and the issue of collision 
frequencies in polydisperse suspensions is addressed elsewhere.

The second aspect of this work has to do with collision frequencies and the possible enhancement of colli-
sions in the transient phase (as defined before). In this part, we ignored real coalescences or collisions. This is 
because in we wish to understand whether transients–which are ignored in theory and simulations but present in 
nature–lead to an enhancement in the rate at which different-sized droplets collide. A fraction of such collisions 
lead to coalescences. So our focus has been in understanding where enhanced collisions can arise from which in 
turn lead to rapid growth in droplet formation. Coalescence is important, at this level, to the extent that it leads 
to poly-dispersity. Hence although, as we explained, coalescences can be ignored (to begin with) the effect of 
poly-dispersity cannot. This is why in our study we do include poly-dispersity but not coalescence or collisions. 
We refer the reader to Bec, et al.22 for a detailed study of coalescences and droplet growths in a turbulent flow in 
the statistically steady regime.

We thus addressed the neglected question of how particles evolve in the transient phase through a systematic 
numerical study of heavy inertial particles in a turbulent flow. We find the remarkably striking result that in the 
transient, evolving phase, collisions between dissimilar particles are enhanced by more than a factor of two as 
compared to the rates in steady states. Previous studies have typically concentrated on non-equilibrium steady 
states as well as mono-disperse suspension. And it is within that framework, that earlier studies have tried to 
understand the observed fast time scales in which droplets grow in a suspension advected by a turbulent flow. Our 
work, which opens up an entirely new possibility, suggests that the answer to explain rapid growth of droplets may 
well lie in the dynamics of particles in transient phases where increased collision rates between large and small 
particles result in runaway process and a rapid increase in the number of large droplets. We have reported results 
for the collision frequencies from our two-dimensional study but preliminary results suggest that the phenom-
ena is valid in three dimensions as well. However we will be carrying out a systematic study in three dimensions 
which will be reported elsewhere. Furthermore, given the results on gravitational settling for heavy particles21, it 
would also be important to study the effect of gravity on these transient collisions in three-dimensional flows. We 
note that for these results reported here, we have not included gravitational effects.

Our work, given its premise, throws up several interesting and open questions. It is now important to inves-
tigate systematically this enhancement in the case of three-dimensional turbulence and to observe them in con-
trolled laboratory experiments. Furthermore, the effect of transients in the flow itself need to be studied in great 
detail, with different classes of initial conditions, with collisions and coalescences, as well as possible Reynolds 
number dependence on the effect of enhancement. Also, given the rather novel framework proposed in this work 
for accelerated droplet growths, it would be important to test this hypothesis in systems which allow a two-way 
coupling between the particles and the fluid, as well as, to test the key idea in this work on two-dimensional syn-
thetic flows by using the different approaches35,36 to see if we can obtain a theoretical estimate of our enhancement 
factor. Finally, a key to having a microscopic understanding of particle dynamics, inter alia coalescence rates, may 

Figure 5.  Effect of the Reynolds number. A plot of the ∆ ∆
λ=

/0 0Re 160
, from our 3D simulations, for various values 

of Reλ.
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well lie in having a quantitative theory for how the dynamics relax to its stationary distribution as illustrated in 
Fig. 3(b). These questions will be addressed in future work

Methods
We perform direct numerical simulations (DNSs) of Eq. (3) coupled with either Eq. (1) or Eq. (2). We solve 
Eq. (1) (Eq. (2)) on a 2π periodic domain, with N3 (N2) collocation points, by using a standard pseudospectral 
method and a second-order Runge-Kutta scheme for time-marching. We drive the system to a statistically steady 
non-equilibrium homogeneous, isotropic turbulent state via the large-scale forcing f at small wavenumbers. We 
perform simulations involving particles with 200 different Stokes numbers and the representative results reported 
here were obtained with simulations upto a million particles. We use a bilinear interpolation technique to obtain 
the fluid velocity u(xi) at the (typically off-grid) particle positions whilst solving for Eq. (3). We list the various 
parameters of our simulation in Table 2.

Let us now describe how we characterise the collision rate R in the transient phase or the collision rate R∞ in 
the stationary regime. By definition R and R∞ are functions of the Stokes numbers St1 and St2 of the colliding pair. 
If we denote the position vectors of particles ① and ②, of radius a1 and a2, by r1 and r2, then a collision is regis-
tered when |r1 − r2| = a1 + a2. The collision rates R and R∞ is defined as the number of collisions between particles 
① and ② per unit time and normalised by the total number of particles Np in the suspension. At long times 

τT min, the particle dynamics settle to a non-equilibrium stationary distribution. In this stationary regime, we 
compute the number of collisions Nc between ① and ② over a time interval  τ∆ ∼t (1000 )min  and thence obtain 

=∞ ∆
R N

tN
c

p
2
. At shorter times t T , when the dynamics are in a transient phase, we calculate the number of 

collisions Nc between ① and ②. Since this is a transient phase, we do not average over time (as we do for R∞) but 
average over several independent initial configurations Nconfig of the particles. We therefore obtain =

Σ
R

N

N N

N c

p

config

config
2

 

corresponding to time t (Collision detection is an O (Np
2) problem and, hence, is computationally prohibitive for 

large values of Np. We thus use a grid based algorithm where the 2π × 2π domain was divided into grids such that 
no particle crosses more than one grid during one time step. For each particle, collisions with other particles in 
the same grid and adjacent grids were counted. This procedure ensures that no collision is missed). From our 
definition, it is obvious that R, unlike R∞, depends on time and as t → T, R → R∞. In our study of transient phases, 
we perform simulations with several initial particle configurations Nconfig. Each initial configuration consists of 
particles distributed randomly in the flow with zero velocity; different initial conditions thus differ from each 
other in the initial particle positions. Our results for various sets of initial conditions were in agreement with each 
other within the error-bars (which are of the order of the symbol sizes in the figures shown).
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