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ABSTRACT
Recently, inorganic anions and sulphonamides, two of the main classes of zinc-binding carbonic anhydrase
inhibitors (CAIs), were investigated for inhibition of the a-class carbonic anhydrase (CA, EC 4.2.1.1) from
Neisseria gonorrhoeae, NgCA. As an extension to our previous studies, we report that dithiocarbamates
(DTCs) derived from primary or secondary amines constitute a class of efficient inhibitors of NgCA. KIs
ranging between 83.7 and 827nM were measured for a series of 31 DTCs that incorporated various ali-
phatic, aromatic, and heterocyclic scaffolds. A subset of DTCs were selected for antimicrobial testing
against N. gonorrhoeae, and three molecules displayed minimum inhibitory concentration (MIC) values less
than or equal to 8mg/mL. As NgCA was recently validated as an antibacterial drug target, the DTCs may
lead to development of novel antigonococcal agents.
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1. Introduction

A decase ago, prokaryotic carbonic anhydrases (CAs, EC 4.2.1.1)
were proposed as drug targets for development of novel antibac-
terials1. CAs catalyse the interconversion between CO2 and bicar-
bonate, which generate a pH imbalance; CAs are widespread in
bacteria and play an important role in various metabolic func-
tions2,3. Bacteria encode at least four genetic families of CAs,
including the a-, b-, c-, and i-CAs, with many species containing
more than one class and more than one CA isoform; however the
functions of these different CAs have only recently started to be
understood in detail1–3. Although comprehensive in vitro inhib-
ition studies of bacterial CAs are available1,2, these results have
only recenlty been validated in vivo. Seminal reports of Flaherty’s
and Seleem’s groups showed that in some bacteria, such as in
vancomycin-resistant enterococci (VRE) or Neisseria gonorrhoeae,
clinically used sulphonamide CA inhibitors (CAIs) possess potent
antibacterial activity4,5. N. gonorrhoeae is a sexually transmitted
pathogen that is becoming a global health concern due to
increased resistance to a wide range of antibioticsincluding next
generation cephalosporins6,7. Acetazolamide, the CAI par excel-
lence, and some of its newly designed derivatives were recently
shown to be bacteriostatic against N. gonorrhoeae with minimum
inhibitory concentration values as low as 0.25 lg/mL and no tox-
icity obseved to host cells5. Sulphonamides, of which acetazola-
mide belongs to, are one of the main classes of CAIs, and their

interaction with bacterial CAs from various pathogens has been
extensively studied in the last decade8–11. As there is an urgent
need for novel antibacterials, including antigonococcal agents, a
deeper investigation of CA and profiling various classes of CAIs
may be of great interest. A previous study of anion inhibitors
found interesting inhibitory effects of N,N-diethyl-ditiocarbamate
[5b], which was as a low micromolar inhibitor of the a-CA N. gon-
orrhoeae (NgCA). Based upon this previous study, we investigated
dithiocarbamates as inhibitors of NgCA.

2. Materials and methods

2.1. Enzymology and CA activity and inhibition measurements

An Applied Photophysics stopped-flow instrument was used to
assay the CA- catalysed CO2 hydration activity12. Phenol red
(0.2mM) was used as a pH indicator, working at the absorbance
maximum of 557 nm, with 10mM HEPES (pH 7.4) as a buffer, and
in the presence of 10mM NaClO4 to maintain constant ionic
strength, in order to follow the initial rates of the CA-catalysed
CO2 hydration reaction for a period of 10–100 s. The CO2 concen-
trations ranged from 1.7 to 17mM for the determination of the
kinetic parameters and inhibition constants. For each inhibitor, at
least six traces of the initial 5–10% of the reaction were used to
determine the initial velocity. The uncatalyzed rates were deter-
mined in the same manner and subtracted from the total
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observed rates. Stock solutions of inhibitors (10–20mM) were pre-
pared in distilled-deionized water, and dilutions up to 0.01mM
were done thereafter with the assay buffer. Inhibitor and enzyme
solutions were preincubated together for 15min at room tempera-
ture prior to the assay, in order to allow for the formation of the
E-I complex. The inhibition constants were obtained by non-linear
least-squares methods using Prism 3 and the Cheng-Prusoff equa-
tion, as reported earlier13,14, and represent the mean from at least
three different determinations. The NgCA concentration in the
assay system was 6.3 nM. The NgCA used was a recombinant
enzyme obtained in-house, as described earlier5,15,16.

2.2. Chemistry

DTCs 1–30 were previosuly reported by one of our groups17,18

and were of > 99% purity. DTC 31, acetazolamide, buffers and
other reagents are commercially available from Sigma-Aldrich
(Milan, Italy).

2.3. Bacterial strains and media

Strains and media used in this study were previously reported by
our group5,19. N. gonorrhoeae strains used in the study were clin-
ical isolates obtained from the Centres for Disease Control and
Prevention (CDC). Media and reagents were purchased commer-
cially: brucella broth, IsoVitaleX, and chocolate II agar plates
(Becton, Dickinson and Company, Cockeysville, MD, USA), yeast
extract and dextrose (Fisher Bioreagents, Fairlawn, NJ, USA), prote-
ase peptone (Oxoid, Lenexa, KS, USA), haematin, pyridoxal, and
nicotinamide adenine dinucleotide (NAD) (Chem-Impex
International, Wood Dale, IL, USA), and phosphate buffered saline
(PBS) (Corning, Manassas, VA, USA).

2.4. Antibacterial activity of DTCs against N.
gonorrhoeae strains

The (MICs of DTCs compounds were carried out using the broth
microdilution method as described previously5,19. Briefly, bacterial
strains were grown for 24 h on GC chocolate agar II, at 37� C in
presence of 5% CO2. Then a bacterial suspension equivalent to 1.0
McFarland standard was prepared and diluted in brucella broth
supplemented with yeast extract, protease peptone, haematin,
pyridoxal, NAD, and IsoVitaleX, to achieve a bacterial concentra-
tion of about 1� 106 CFU/mL. Test agents were added in the 96-

well plates and serially diluted along the plates. Plates were then,
incubated for 24 h at 37� C either aerobically or in the presence of
5% CO2 before determining the MICs as observed visually.

3. Results and discussion

Sulphonamide-type CAIs were first used to inhibit growth of N.
gonorrhoeae in vitro in the 1960s; however, it was not untill the
1990s that Carter’s group reported the presumed presence of CAs
in N. gonorrhoeae by using a monospecific antibody prepared
against the purified Neisseria sicca enzyme15. This enzyme was
thereafter purified and characterised in 1997 by Lindskog’s
group16, who showed that NgCA is an a-class enzyme that pos-
sesses a high catalytic activity, with a kcat for the CO2 hydration
reaction of 1.7� 106 s�1 17. The same group showed that NgCA
was inhibited by metal complexing anions such as cyanide, cyan-
ate, thiocyanate, and azide (as determined by using the esterase
actvity of the enzyme with 4-nitrophenyl acetate as a substrate16)
as well as by the sulphonamide acetazolamide (5-acetamido-1,3,4-
thiadiazole-2-sulphonamide)16. Thereafter, we reported a compre-
hensive anion inhibition study of NgCA [5b], which found that the
most effective inhibitors were sulfamide, sulphamic acid, and N,N-
diethyl-dithiocarbamate. This compound possesses the CS2

� zinc-
binding group (ZBG), also present in trithiocarbonate (TTC)17,
which has been shown via X-ray crystallography on human CAs
(hCAs) to bind in a monodentate fashion to the metal ion from
the enzyme’s active site to displace the nucleophile (water or
hydroxide ion) that is essential in the catalytic process17. The X-
ray structure of TTC bound to hCA II led thereafter to the discov-
ery of DTCs and their derivatives (monothiocarbamates and xan-
thates) as potent CAIs18,20. X-ray crystallography of some DTCs
bound to hCA II demonstrated that their ZBG is coordinated in a
monodentate fashion to the metal ion whereas the organic scaf-
fold participates in a range of favourable interactions with the
active site amino acid residues18 – Figure 1.

Thus, we decided to investigate a series of previously reported
DTCs18, types 1–30 together with the N,N-diethyl derivative 31,
for their interaction with NgCA (Table 1). The following structure-
activity relationship (SAR) may be observed from the data pre-
sented in Table 1:

i. The most effective NgCA inhibitors among the investigated
DTCs were compounds 1, 20 and 29, which showed KIs in
the range of 83.7–136 nM. It is interesting to note that both

Figure 1. (A) Surface representation of hCA II active site in adduct with superimposed trithiocarbonate (cyan, PDB 3K7K) and the DTC morpholinocarbodithioate 23
(magenta, PDB 3P5A). The hydrophobic half of the CA active site is shown in red, and the hydrophilic one in blue; the proton shuttle residue His64 is shown in green.
Cartoon view of hCA II active site in complex with B) trithiocarbonate and C) DTC 23.
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Table 1. Inhibition constants (KIs) of DTC inhibitors 1–31 against hCA I, II, and NgCA by a stopped flow CO2 hydration assay, using acetazolamide (AAZ) as the
standard drug12.

DTC Structure

Ki (nM)
a

hCA I hCA II NgCA

1 H2NO2S

N
H

S

SNa

97.5 48.1 83.7

2

N
H

S

SNa

425 107.0 259

3

N
N
H

SK

S 85.9 35.8 568

4

HO N
H

S

SK

295 24.3 438

5

HO N
H

S

SK

706 41.7 413

6

N
O

O
S

SK
H
N

683 13.2 538

7

N
O

ONa
SNaS 485 80.1 827

8

N
NaO

O

S

SNa

337 78.7 514

9

N

S

SNa

O

NaO

290 45.4 297

10

N
HO

S

SNa

428 60.7 367

11

N

H
N SNa

S

615 65.9 473

12

N

H
N SNa

S

494 48.7 482

13

N

O

NaO S

SNa

496 80.5 242

14 109 8.9 335
(continued)
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Table 1. Continued.

DTC Structure

Ki (nM)
a

hCA I hCA II NgCA
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252 30.1 731
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415 67.2 84.4
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66.5 17.3 454
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0.97 0.95 554

23
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N SNa
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24

N SNa

S 69.9 25.4 654

25
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SNa

43.1 50.9 460

26

N
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SNa

1838 55.5 522

(continued)
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20 and 29 possess the same scaffold of piperazine-dithiocar-
bamate. However, in the case of 29 a second DTC function is
incorporated, whereas for 20, a bulkier cyclohexyl-aminocar-
bonylmethyl moiety is present. This leads to an increased
inhibitory effect in the case of 20 compared to 29 (84.4 ver-
sus 136 nM, Table 1), probably due to favourable contacts
between the bulky tail and amino acid residues from the
active site. The second observation pertains to compounds 1
and 2. Derivative 1 incorporated two ZBGs, the DTC and the
sulphonamide ones, whereas the second structurally related
derivative (2) lacks the sulphonamide moiety. It is likely in
the case of 1 that sulphonamide is the dominant interacting
group and participates in the enzyme inhibition process by
binding to the zinc ion in the active site. This is however
impossible for 2, which exhibited 3.1 times weaker NgCA
inhibitory activity compared to 1. However, derivative 2 still
significantly inhibited the NgCA CO2 hydrase activity with a
KI of 259 nM.

ii. Another small group of DTCs, including 2, 9, 13, and 28
showed KIs in the range of 242 – 297 nM, which indicates
that they are effective NgCA inhibitors. The next most effect-
ive inhibitors showed KIs between 300 and 500 nM and
included 4, 5, 10–12, 14, 15, 21, 23, 25, and 30. These
compounds incorporated a variety of diverse aliphatic, aro-
matic, and heterocyclic scaffolds, and are derivatives of both
primary and secondary amines. This proves that many
diverse chemical entities may lead to the development of
efficient DTC inhibitors of NgCA (Table 1).

iii. The least effective inhibitors were 3, 6–8, 16–19, 22, 26, and
27, which showed KIs in the range of 514–827 nM. Finally,
31, the lead compound was the least effective DTC inhibitor,

with a KI of 5100 nM. In contrast, acetazolamide, a sulphona-
mide derivative, was an effective NgCA inhibitor, with an
activity in the same range as the most effective DTCs men-
tioned above (Table 1).

iv. Many of the investigated DTCs were much more effective as
inhibitors against hCA II than NgCA, whereas their activity on
hCA I was in the same range as against the bacterial enzyme,
i.e. in the high nanomolar range.

A subset of DTCs were selected for antibacterial testing against
three clinical strains of N. gonorrhoeae. It has previously been
established that bacteria will become less susceptible to CAIs in
conditions that contain elevated levels of CO2

21
. Molecules were

assayed in both ambient air conditions as well as conditions con-
taining 5% CO2 to assess for activity at the proposed intracellular
NgCA. The three strains tested displayed reduced susceptibility
towards the molecules under elevated CO2 conditions suggesting
that inhibition of NgCA is, at least partially, responsible for the
antimicrobial activity of these molecules. The control antibiotic
azithromycin, which has a different mechanism of action, did not
display differential activity based on the culture conditions. This
result provides confidence that the difference in CO2 levels did
not have unintended effects on the bacteria that would result in
non-specific reduced susceptibility to the test agent.

It was observed that in this cohort, three DTCs, 1, 22, and 24
exhibited moderate antigonococcal activity. DTC 1 was the most
potent molecule with a MIC value of 1–2 mg/mL against N. gonor-
rhoeae (Table 2). This was followed by 22 (MIC ¼ 2–4 mg/mL) and
24 (MIC ¼4–8 mg/mL). DTCs 23 and 25 each displayed weak anti-
bacterial activity against N. gonorrhoeae with MIC values ranging
from 8 to 32 mg/mL. It is interesting to note that while 1 was the

Table 1. Continued.

DTC Structure

Ki (nM)
a

hCA I hCA II NgCA

27

N

S

SNa

157 27.8 577

28

HN
N SNa

S 31.9 13.5 276

29

N
N SNa

S

NaS

S

12.6 0.92 136

30

N SNa

S

NC

48.4 40.8 365

31b

N

S

SNa

790 3100 5100

AAZ – 250 12.0 75.0
aMean from three different assays, determined using a stopped flow technique (errors were in the range of ± 5–10% of the reported values); bfrom ref. [5b].
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most potent molecule against both NgCA and N. gonorrhoeae, the
DTCs that exhibited moderate potency against N. gonorrhoeae (22
and 23) were among the weaker analogues versus NgCA (KIs >

500 nM). Moreover, the weakest DTCs, in terms of antigonococcal
activity, were 23, 25, 28, 29, and 30 with MIC values > 8 mg/mL;
however, these molecules were more potent inhibitor of NgCA
with activities in the range of 136� 460 nM. Several of these mol-
ecules contain polar functional groups such as morpholine (23),
piperazine (28) and Di-DTC (29) moieties that may have an
adverse effect on molecule accumulation within the Gram-nega-
tive bacterial cell, thus leading to reduced antigonococcal activity.
As for DTC 25, this molecule contains hydrophobic linear alkyl
chains that give rise to additional rotatable bonds that also may
have an adverse effect on accumulation into Gram-negative bac-
terial cells22,23. In summary, while the DTCs displayed moderate-
to-weak antibacterial activity against the N. gonorrhoeae strains
tested, the data does suggest that the DTC functionality may be a
useful modification to incorporate into a drug design campaign
for development of new anti-gonococcal agents.

4. Conclusions

NgCA, a high-activity a-CA present in the genome of N. gonor-
rhoeae, was investigated for potential inhibition by a series of 31
DTCs derived from both primary and secondary amines. NgCA
was inhibited by all investigated derivatives, with KIs in the range
of 83.7 nM � 5.1 mM. The most effective NgCA inhibitors were con-
tained piperazine-dithiocarbamates that showed activity with KIs
< 140 nM; however, these molecules did not display antibacterial
activity in vitro against N. gonorrhoeae. Conversely, DTCs contain-
ing more hydrophobic amines did exhibit moderate antibacterial
activity even though these analogs possessed reduced NgCA
activity. This data suggests that DTCs could be incorporated as
the zinc-binding groups in place of sulphonamides, into more
traditional CAI molecular scaffolds. Since antibiotic resistance is
well documented against many N. gonorrhoeae strains worldwide,
finding alternative chemotypes to presently used drugs is relevant.
Our study provides interesting steps regarding developing these
types of enzyme inhibitors.
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