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Microbial induced carbonate precipitation (MICP) has recently applied to

immobilize heavy metals toward preventing their threats to public health

and sustainable development of surrounding environments. However, for

copper metallurgy activities higher copper ion concentrations cause the

ureolytic bacteria to lose their activity, leading to some difficulty in forming

carbonate precipitation for copper immobilization (referred to also as

“biomineralization”). A series test tube experiments were conducted in

the present work to investigate the effects of bacterial inoculation and

pH conditions on the copper immobilization efficiency. The numerical

simulations mainly aimed to compare with the experimental results to

verify its applicability. The copper immobilization efficiency was attained

through azurite precipitation under pH in a 4–6 range, while due to Cu2+

migration and diffusion, it reduced to zero under pH below 4. In case

pH fell within a 7–9 range, the immobilization efficiency was attained

via malachite precipitation. The copper-ammonia complexes formation

reduced the immobilization efficiency to zero. The reductions were attributed

either to the low degree of urea hydrolysis or to inappropriate pH

conditions. The findings shed light on the necessity of securing the urease

activity and modifying pH conditions using the two-step biomineralization

approach while applying the MICP technology to remedy copper-rich

water bodies.
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Introduction

Copper (Cu) is an indispensable trace element for human
health, plant and animal growth, and it has an activating effect
on some key enzymes in cellular metabolism (Facchin et al.,
2013). However, it can impose serious threats to organisms if
the concentration exceeds the legal limit (Elalfy et al., 2021; Guo
et al., 2021). Most of the copper in nature exists as compounds
(i.e., copper minerals), and in China, the development of copper
mining, smelting, and processing has raised the potential of their
migration and diffusion in surrounding environments (Bai et al.,
2021b,c; Hu et al., 2021a, 2022a,b; Wang et al., 2022b; Xue et al.,
2021; Yu et al., 2021). Nowadays there are various physical and
chemical measures available for remedying copper-rich water
bodies. However, these methods are time-consuming, costly,
and not environmental-friendly (Qdais and Moussa, 2004; Wei
et al., 2005; Fu and Wang, 2011; You et al., 2018; Chen et al.,
2022a,b; Li et al., 2022; Wang et al., 2022a). In recent years, the
microbial-induced carbonate precipitation (MICP) technology
has attracted extensive attention as an alternative to traditional
measures (Achal et al., 2012a; Chen and Achal, 2019; Ye et al.,
2021; Xue et al., 2022a,b).

The MICP technology can precipitate carbonates between
soil particles and has been widely applied to calcareous sand
reinforcement (Jiang et al., 2019; Lai et al., 2020; Rahman
et al., 2020; Zhang et al., 2020; Cui et al., 2021; Xiao et al.,
2021; Yang et al., 2022), while studies on the remediation of
heavy metals using the MICP technology are markedly limited
(Kang et al., 2015; Li et al., 2021; Wang et al., 2022e,f). The
principle of the MICP technology is to catalyze urea hydrolysis
through secreting the urease using the ureolytic bacteria,
discharging hydroxide and ammonium ions (see Eqs. 1–3) and
subsequently yielding carbonates. Heavy metal ions and calcium
ions could co-precipitate with bacteria as nucleation sites in
the biomineralization process (see Eqs. 4–7) (Li et al., 2013).
As a result, the “net” effect of such a reaction corresponds
to an increase in surrounding pH (Schwantes-Cezario et al.,
2017; Cui et al., 2022). The use of carbonates aims to capsulize
heavy metal ions by forming carbonate precipitation (termed
immobilization of heavy metals hereafter), preventing their
migration and diffusion (Achal et al., 2011; Achal et al., 2012b;
Jiang and Soga, 2019; Chen and Achal, 2019; Schwantes-Cezario
et al., 2020; Liu et al., 2021; Mujah et al., 2021; Zeng et al.,
2021). Ali et al. (2022) reported that strain B. diminuta isolated
from soil could immobilize Cd2+ and Zn2+ in solution by co-
precipitation. In addition, extracellular polymers (EPS) secreted
by bacteria can provide nucleation sites and promote bacteria
to immobilize heavy metal ions in solution (Chen et al., 2016;
Casas et al., 2020; Qiao et al., 2021; Kim et al., 2021).

CO(NH2)2 +H2O→ 2NH3 + CO2 (1)

2NH3 + 2H2O↔ 2NH4
+
+ 2OH− (2)

CO2 + 2OH− ↔ HCO3
−
+OH− ↔ CO3

2−
+H2O (3)

Ca2+
+ Cell→ Cell− Ca2+ (4)

M2+
+ Cell→ Cell−M2+ (5)

Cell− Ca2+
+ CO3

2−
→ Cell− CaCO3(s) (6)

Cell−M2+
+ CO3

2−
→ Cell−MCO3(s) (7)

Recent studies indicated that the copper immobilization
efficiency generally maintains at low levels compared to other
heavy metals (Achal et al., 2011; Li et al., 2013; Mugwar and
Harbottle, 2016; Bai et al., 2019, 2021a; Hu et al., 2021b; Wang
et al., 2022c,d). It is due to the fact that copper ions bind
to the functional groups of the urease, and as a result, its
spatial structure is badly modified causing its denaturation and
inactivation (Krajewska, 2008; Seplveda et al., 2021). Among
all the positive divalent heavy metals, copper has the highest
toxicity on the urease activity except mercury, and securing the
urease activity against copper metal is deemed a challenging
task while introducing the MICP technology (Zaborska et al.,
2004; Jiang et al., 2019). Increasing the initial urea concentration
may improve the resistance of the urease against copper metal.
However, the higher the urea concentration, the higher the
surrounding pH, and the higher the potential of forming
complexes unfavorable for the immobilization of copper metal
(Ferris et al., 2004; Torres-Aravena et al., 2018; Duarte-
Nass et al., 2020; Liu et al., 2020; Seplveda et al., 2021;
Tarach et al., 2021; Chen et al., 2022a,c; Xue et al., 2022c).

Conducting a closer look to the literature on the
biomineralization, however, reveals a number of gaps and
shortcomings. To this end, the present work proposes a two-step
biomineralization approach; the first step allows the ureolytic
bacteria hydrolyze urea to discharge the amount of carbonate
and hydroxyl ions necessary for forming carbonates in the
second step. The second step mainly aims to use the ureolytic
bacteria as nucleation sites to precipitate carbonate, capsulizing
copper metal (Torres-Aravena et al., 2018; Duarte-Nass et al.,
2020). Prior to the second step where the urease is inoculated to
the medium containing copper metal, the amount of carbonate
and ammonia ions necessary for forming carbonates in the
second step is already yielded in the first step, mitigating
the effect of Cu2+ toxicity. In addition, different inoculation
proportions may consider in the second step to modify the
surrounding pH, thus preventing the formation of complexes
unfavorable for securing the copper immobilization efficiency.
The objectives of this study are: (1) To conduct test tube
experiments to investigate the effects of bacterial inoculation
and pH surrounding conditions, (2) to highlight the necessity
of modifying pH and distinguish the speciation of precipitation
against different pH ranges using the numerical simulations,
and (3) to propose the two-step biomineralization approach to
secure the immobilization efficiency.
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Materials and methods

Ureolytic bacteria culture

Sporosarcina pasteurii, a basophilic ureolytic bacterium, was
used in the present work. It was activated in a sterile liquid
medium, which consists of 20 g/L yeast extract, 10 g/L NH4Cl,
20 g/L urea, 10 mg/L MnSO4·H2O, 24 mg/L NiCl2·6H2O. The
surrounding pH for the sterile liquid medium was adjusted
to 8.8 using 1 M solution of NaOH. The activated ureolytic
bacteria were mixed with glycerol using a ratio of 7:3 and
stored at –20 ◦C. They were subjected to shaking culture at
30 ◦C and 180 rpm for 30 h. Further, the chemicals of urea,
MnSO4·H2O, NiCl2·6H2O, NaOH, and Cu(NO3)2·3H2O were
diluted to given concentrations, respectively, and applied to the
subsequent test tube experiments.

Urease activity measurement

The urease activity (termed UA hereafter) under different
bacterial inoculation proportions was measured in Cu2+

contained 0.5 M urea solution, which aims to evaluate the effect
of Cu2+ toxicity on the ureolytic bacteria and urease activity.
The concentration of Cu2+ and the bacterial inoculation
proportion were 5, 10, and 20 mM, and 1:9, 1:3, and
1:1, respectively.

pH, EC (electric conductivity), and UA, while catalyzing
urea hydrolysis, were measured using a benchtop pH meter
(Hanna Instruments Inc. HI2003) and a benchtop conductivity
meter (Hanna Instruments Inc. HI2314), respectively. UA was
measured on a basis of the ureolysis rate, as recommended by
Whiffin et al. (2007); 2 mL final reaction solution is mixed with
18 mL 1.11 M urea, and EC is measured at 0 min and 5 min after
the mixing. UA can be evaluated using the equation below:

UA =
EC5 − EC0

5
× 10× 1.11(mM Urea min−1) (8)

where EC0 and EC5 are electrical conductivity at 0 and
5 min, respectively. NH4

+ concentration of the final reaction
solution is measured at 0, 24 and 48 h, respectively, and the
method for measuring NH4

+ concentration corresponds to the

TABLE 2 Scheme applied to the test tube experiments.

Parameters
applied to the
first step

Parameters
applied to the

second step

Concentration
of Cu(NO3)2

(mM)

Urea at 333 mM
NH4Cl at 187 mM

1:9 20, 40, 60

1:3 20, 40, 60

1:1 0–50

modified Nessler method (Whiffin et al., 2007). There were three
replicates for each test set.

Numerical simulations

To evaluate the effect of Cu2+ concentration and pH
on the speciation of precipitation and copper immobilization
efficiency, the biomineralization process was reproduced using
the Visual MINTEQ software package, although the process of
urea hydrolysis has been neglected. The initial concentration
for NH4

+ and CO3
2− was calculated in accordance with

the bacterial inoculation proportion. Table 1 summarize the
parameters applied to the numerical simulations.

Test tube experiments

This part aims to elaborate more about the details applied
to the test tube experiments. First, a Cu(NO3)2 solution at
concentrations varying in a 0–60 mM range was prepared, while
the ureolytic bacteria were cultivated with yeast extract and
ammonia nitrogen, during which time urea at 333 mM was
also added to the culture medium. Second, the urea hydrolysis
proceeded with the bacterial inoculation proportions of 1:9, 1:3,
and 1:1, respectively, for 48 consecutive hours. The aforesaid
two-step biomineralization approach is the first proposed by
the authors and primarily aims not only to discharge NH4

+

and OH− preventing not only the effect of Cu2+ toxicity but
the formation of complexes unfavorable for securing the copper
immobilization efficiency. NH4

+ and Cu2+ concentrations
were measured at 0, 24, and 48 h, respectively. An atomic

TABLE 1 Parameters applied to the numerical simulations of the copper immobilization efficiency against Cu(NO3)2 concentration and pH
considering bacterial inoculation proportions of 1:9, 1:3, 1:1, and 3:1, respectively.

Bacterial inoculation proportion Ion concentration (mM) pH

Cu2+ NO3
− NH4

+ CO3
2− Cl−

1:9 5, 20, 40, 60, 80 10, 40, 80, 120, 160 85.3 33.3 18.7 0–13

1:3 213.25 83.25 46.75

1:1 426.5 166.5 93.5

3:1 639.75 249.75 140.25
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spectrophotometer (Beijing Purkinje General Instrument TAS-
990) was responsible for the Cu2+ concentration measurements.
The copper immobilization efficiency can be evaluated as
follows:’

Immobilization efficiency = ((C0 − C1)/C0)× 100% (9)

where C0 and C1 are Cu2+ ions concentration before and
after remediation, respectively. Table 2 summarize the scheme
applied to the test tube experiment. There were three replicates
for each test set.

Results and discussion

Test tube experiments

Effect of bacterial inoculation
UA is an important indicator that determines the

growth and reproduction of the ureolytic bacteria during
the biomineralization process. Furthermore, the higher the
UA, the higher the resistance of the ureolytic bacteria against
copper metal (Song et al., 2017). Considering copper metal can

significantly impede the bacteria’s growth and reproduction
(Zaborska et al., 2004), the degradation mechanism is
summarized as copper metal binding to the functional groups
of the urease and modifying its spatial structure, thus causing
its denaturation and inactivation (Krajewska, 2008). Duarte-
Nass et al. (2020) suggested that increasing the initial urea
concentration could improve the resistance of ureolytic bacteria
against Cu2+ toxicity. Despite that, such high initial urea
concentration, however, turns the surrounding pH into alkaline
environments promoting the formation of copper-ammonia
complexes unfavorable for securing the copper immobilization
efficiency (Liu et al., 2018; Duarte-Nass et al., 2020).

When subjected to 20 mM Cu2+, UA goes into a decline
for the bacterial inoculation proportion = 1:1, while for the
bacterial inoculation proportions = 1:3 and 1:9, it shows
a smaller change (see Figure 1A). UA for all the bacterial
inoculation proportions reduces to approximately zero 4 h after
the beginning of bacterial inoculation, indicating that the effect
of Cu2+ toxicity depresses the growth and reproduction of
the ureolytic bacteria and causes some difficulty in catalyzing
urea hydrolysis. For this reason, the measurements of EC and
NH4

+ show a small change because of a small number of NH4
+

and OH− discharged, as depicted in Figures 1B,C. UA for the

FIGURE 1

(A) UA vs. treatment time relationship, (B) EC vs. treatment time relationship, and (C) NH4
+ vs. treatment time relationship when subjected to

Cu2+ concentration at 20 mM.
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FIGURE 2

(A) UA vs. treatment time relationship, (B) EC vs. treatment time relationship, and (C) NH4
+ vs. treatment time relationship when subjected to

Cu2+ concentration at 10 mM.

FIGURE 3

(A) UA vs. treatment time relationship, (B) EC vs. treatment time relationship, and (C) NH4
+ vs. treatment time relationship when subjected to

Cu2+ concentration at 5 mM.

Frontiers in Microbiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1001464
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1001464 September 12, 2022 Time: 16:57 # 6

Xue et al. 10.3389/fmicb.2022.1001464

FIGURE 4

(A) pH vs. treatment time relationship under Cu2+ concentration at 20 mM, (B) pH vs. treatment time relationship under Cu2+ concentration at
10 mM, (C) pH vs. treatment time relationship under Cu2+ concentration at 5 mM, and (D) schematical illustration of copper-ammonia complex.

bacterial inoculation proportion = 1:1 goes into a decline at
the very beginning of bacterial inoculation when subjected to
10 mM Cu2+, and goes up 12 h following the commencement
of bacterial inoculation, as shown in Figure 2A. In contrast, UA
for the other two inoculation proportions presents a negligible
change all long. These results indicate that the ureolytic bacteria
for the bacterial inoculation proportion = 1:1 could remain its
activity when subjected to 10 mM Cu2+, and for the other two
inoculation proportions, the effect of Cu2+ toxicity depresses
the growth and reproduction of the ureolytic bacteria reducing
the secretion of the urease. The measurements of EC and
NH4

+ provide testimony of the above argument, as shown in
Figures 2B,C. Given the inoculation proportion= 1:1, UA going
up 12 h after the beginning of bacterial inoculation is attributed
to the reduction in the effect of Cu2+ toxicity, induced by the
formation of copper-ammonia complexes. In other words, the
formation of copper-ammonia complexes causes an inability of
depressing the growth of the ureolytic bacteria and enhances the
resistance of the urease against Cu2+ toxicity. When subjected

to 5 mM Cu2+, the behavior can also be recognized as UA
going down rapidly and going up till the end of the process
and becomes more distinct compared to 10 mM Cu2+. UA for
the inoculation proportion = 1:3 even surpasses that for the
inoculation proportion = 1:1 12 h after the commencement of
bacterial inoculation. The relatively higher urea concentration
for the inoculation proportion = 1:3 may be considered as
the main cause leading to such phenomenon. EC and NH4

+

measurements give testimony to the argument made, as shown
in Figures 3B,C.

On the whole, when subjected to 20 mM Cu2+, either
for higher inoculation proportions or lower inoculation
proportions the majority of the ureolytic bacteria lose their
activity in the first 4 h because of the effect of Cu2+

toxicity. For this reason, a small number of NH4
+ and OH−

are discharged and EC, therefore, shows a small increase.
The effect of Cu2+ toxicity badly depresses the growth and
reproduction of the ureolytic bacteria for the subsequent
8 h. The ureolytic bacteria that remain active 12 h after the
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FIGURE 5

(A) pH vs. treatment time relationship, (B) UA vs. treatment time relationship, (C) NH4
+ vs. Cu(NO3)2 concentration relationship and, (D) copper

immobilization efficiency vs. Cu(NO3)2 concentration relationship for the bacterial inoculation proportion = 1:1.

commencement of bacterial inoculation begin showing their
resistance against Cu2+ toxicity. The formation of copper-
ammonia complexes reduces the effect of Cu2+ toxicity on
the ureolytic bacteria and UA. This phenomenon becomes
more pronounced when subjected to lower Cu2+ concentrations
and higher bacterial inoculation proportions (e.g., 1:3 and
1:1). When subjected to 10 mM Cu2+, the ureolytic bacteria
remain active only when the bacterial inoculation proportion
is raised to 1:1, whereas the ureolytic bacteria, when subjected
to 5 mM Cu2+, remain active even when the inoculation
proportion is reduced to 1:3. These results lead us to
summarize that although higher inoculation proportions can
improve the resistance of the ureolytic bacteria against Cu2+

toxicity and promote the secretion of the urease, their use
is accompanied by discharging more OH− throughout the
biomineralization process, turning surrounding environments
into alkaline conditions and promoting the copper-ammonia
complexes formation. The copper-ammonia complexes largely
raise the potential of Cu2+ migration and diffusion, causing
an inability of securing the copper immobilization efficiency.
As indicated by Figure 3C, an improvement in EC and

NH4
+ may cause misleading interferences concerning the

use of high inoculation proportion of 1:1 for improving
the copper immobilization efficiency. Therefore, it is argued
that higher inoculation proportions pave the way to secure
copper immobilization efficiency. In addition to UA, particular
attention to the surrounding pH conditions should also be given,
preventing a reduction in the copper immobilization efficiency
by the copper-ammonia complexes formation.

Effect of surrounding pH conditions
The temporal relationships of pH against the bacterial

inoculation proportion= 1:9, 1:3, and 1:1 when subjected to 20,
10, and 5 mM Cu2+ are shown in Figures 4A–C, respectively.
The results from the previous section indicate that when
subjected to 10 mM Cu2+, the ureolytic bacteria remaining
active is present only when the inoculation proportion is raised
to 1:1, while the bacteria that remain active, when subjected to
5 mM Cu2+, presents even when the inoculation proportion
is as low as 1:3. The value of surrounding pH corresponding
to the these results, however, exceeds 9 (Duarte-Nass et al.,
2020). As discussed, the ureolytic bacteria can be characterized
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FIGURE 6

(A) copper immobilization efficiency vs. pH relationship for the inoculation proportion = 1:9, (B) copper immobilization efficiency vs. pH
relationship for the inoculation proportion = 1:3, (C) copper immobilization efficiency vs. pH relationship for the inoculation proportion = 1:1,
and (D) copper immobilization efficiency vs. pH relationship for the inoculation proportion = 3:1 [Cu(NO3)2 concentration = 40 mM].

as UA going down in the first 4 h after the commencement of
bacterial inoculation, and UA going up since after 12 h (see
Figures 2A, 3A). The bacteria that remain active 12 h after
the commencement of bacterial inoculation can reproduce and
catalyze urea hydrolysis, discharging NH4

+ and OH−. This
is deemed as the main cause leading to the value of pH in
excess of 9.

pH below 9 is attained using 20–50 mM Cu2+ where
the effect of Cu2+ toxicity can depress the growth and
reproduction of the ureolytic bacteria (see Figures 5A,B). The
ureolytic bacteria remain active when subjected to 0–10 mM
Cu2+, discharging NH4

+ throughout the biomineralization
process (see Figure 5C). It is worth to note that the
copper immobilization efficiency could be as low as 5%
under the inoculation proportion being 1:1, and such low
copper immobilization efficiency still holds true when Cu2+

concentration decreases to 5 mM (see Figure 5D). These results
conflict with our consensus that lower Cu2+ concentrations
can ease the effect of Cu2+ toxicity on the ureolytic bacteria
and promote the secretion of the urease by the ureolytic
bacteria, thus improving the degree of urea hydrolysis and
subsequently the copper immobilization efficiency. There are
two underlying mechanisms revealed by the present work.
Although the ureolytic bacteria remain active when subjected to
0–10 mM Cu2+, the highest inoculation proportion of 1:1 not
only eases the effect of Cu2+ toxicity on the ureolytic bacteria
and UA but turns the surrounding pH into alkaline conditions
(pH > 9), promoting the formation of copper-ammonia
complexes. The copper-ammonia complexes raise the potential
of Cu2+ migration and diffusion and reduce the copper
immobilization efficiency to as low as 5%. Furthermore, despite
pH below 9 and no copper-ammonia complex formation, the
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FIGURE 7

(A) copper immobilization efficiency vs. pH relationship for the inoculation proportion = 1:9, (B) copper immobilization efficiency vs. pH
relationship for the inoculation proportion = 1:3, (C) copper immobilization efficiency vs. pH relationship for the inoculation proportion = 1:1,
and (D) copper immobilization efficiency vs. pH relationship for the inoculation proportion = 3:1 [Cu(NO3)2 concentration = 20 mM].

effect of Cu2+ toxicity badly depresses the ureolytic bacteria and
UA when subjected to a range of 20–50 mM Cu2+, reducing
the degree of urea hydrolysis. The lower the degree of urea
hydrolysis, the lesser the carbonate precipitated, and the lower
the copper immobilization efficiency. The reduction in the
degree of urea hydrolysis reduces the copper immobilization
efficiency to approximately 5%.

Numerical simulations

Considering harsh pH conditions and the precipitation
speciation have been neglected in the test tube experiments,
they are interpreted a step further using a series of numerical
simulations. Given 40 mM Cu(NO3)2, the relationships of
the copper immobilization efficiency vs. the surrounding pH
against the inoculation proportions of 1:9, 1:3, 1:1, and 3:1 are

shown in Figure 6. Under the inoculation proportion = 1:9,
there are three speciations of carbonate precipitation, including
azurite [(Cu3(OH)2(CO3)2], malachite [Cu2(OH)2CO3], and
tenorite (CuO), when pH remains above 4 (see Figure 6A).
The copper immobilization efficiency increases notably when
pH is increased from 4.0 to 4.5. It reaches approximately 100%
when pH falls within a 5–12 range, with the exception of pH
surrounding 9 where a reduction in the copper immobilization
efficiency occurs. When pH is below 4, Cu2+ are present in a
free state and no carbonate precipitation is found, reducing the
copper immobilization efficiency to zero. The aforesaid three
speciations of carbonate precipitation are also present under
the inoculation proportion = 1:3 (see Figure 6B). Similarly,
Cu2+ are present in a free state when pH remains below 4.
Except pH surrounding 9, the copper immobilization efficiency
reaches nearly 100% as pH falls within a 5–12 range. Such
reduction in the copper immobilization efficiency under the
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FIGURE 8

(A) copper immobilization efficiency vs. pH relationship for the inoculation proportion = 1:9, (B) copper immobilization efficiency vs. pH
relationship for the inoculation proportion = 1:3, (C) copper immobilization efficiency vs. pH relationship for the inoculation proportion = 1:1,
and (D) copper immobilization efficiency vs. pH relationship for the inoculation proportion = 3:1 [Cu(NO3)2 concentration = 60 mM].

inoculation proportion = 1:1 and 3:1, respectively, is also noted
(see Figures 6C,D). It is also present when subjected to 20 mM
and 60 mM Cu(NO3)2, respectively (see Figures 7, 8). In this
situation (pH approximately 9) precipitation even disappears
under the inoculation proportion = 3:1. Taking a close look
at the variations of the copper immobilization efficiency shown
in Figures 6–8, higher Cu2+ concentrations narrow pH ranges
that are associated with the formation of copper-ammonia
complexes. For example, pH corresponding to the formation
of copper-ammonia complexes is narrowed from 8.2 to 10.2
range when subjected to 20 mM Cu2+ to 8.6–10 range when
subjected to 60 mM Cu2+. In other words, there is a higher
possibility for the copper-ammonia complexes to form when
subjected to lower Cu2+ concentrations. These phenomena are
due to the fact that lower Cu2+ concentrations in fact turn
surrounding environments into alkaline conditions favorable

for forming the copper-ammonia complexes. In contrast, higher
Cu2+ concentrations provide acidic environments.

In acidic environments, the hydrolysis of CO3
2− is going

forward and ammonia is present in NH4
+ form. Considering

HCO3
− and H2CO3 as well as NH4

+ are not going to react
with Cu2+, the majority of Cu2+ is present in a free state and
the remaining is biomineralized with CO3

2−, thereby forming
azurite precipitation (see Figures 6–8). Under pH below 4, Cu2+

in a free state raises its migration and diffusion potential and is
deemed as the main contributor to the reduction in the copper
immobilization efficiency. In short, under pH in a 4–6 range
(in most cases), the copper immobilization efficiency is attained
through azurite precipitation. The copper immobilization
efficiency drops sharply to zero under pH below 4 due to Cu2+

migration and diffusion. In contrast, the hydrolysis of CO3
2− is

going backward in alkaline environments, and ammonia is, in
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FIGURE 9

(A) copper immobilization efficiency vs. Cu(NO3)2 concentration relationship and (B) NH4
+ concentration vs. Cu(NO3)2 concentration

relationship for the inoculation proportion = 1:9; (C) copper immobilization efficiency vs. Cu(NO3)2 concentration relationship and
(D) NH4 + concentration vs. Cu(NO3)2 concentration relationship for the inoculation proportion = 1:3.

turn, present in NH3 form. NH3 is going to react with Cu2+,
forming the copper-ammonia complexes. The remaining is
going to precipitate with CO3

2− to form malachite precipitation
(see Figures 6–8). It is noteworthy that tenorite is precipitated
under pH above 10, corresponding to a copper immobilization
efficiency of approximately 100%. Notwithstanding that, its
chemical and thermodynamic properties are not as good as the
other two carbonates (i.e., azurite and malachite) because it
dissolves under harsh pH and temperature conditions, causing
an inability of preventing Cu2+ migration and diffusion. To
summarize, under pH surrounding 9, the copper-ammonia
complexes notably reduce the copper immobilization efficiency
to zero by promoting Cu2+ migration and diffusion. In
case pH falls within a 7–9 range (in most cases), the
copper immobilization efficiency is attained through malachite
precipitation.

Copper immobilization efficiency

This part aims not only to verify the applicability of the
numerical simulations applied to the present work but to

investigate further the effect of Cu2+ concentration on the
immobilization efficiency under a given pH value (Mugwar and
Harbottle, 2016). It can be observed that for the inoculation
proportion = 1:9, the copper immobilization efficiency
being approximately 90% is the highest under Cu(NO3)2

concentration at 40 mM, corresponding to pH = 6.79 (see
Figures 9B,D). Further, the copper immobilization efficiency
approximately 45% is the lowest when subjected to Cu(NO3)2

concentration at 20 mM, which corresponds to pH = 8.39.
These results are in line with the simulated results, thereby
verifying the applicability of the numerical simulations (see
Figures 6–8). The reductions in the copper immobilization
efficiencies, when subjected to Cu(NO3)2 = 20 mM and
60 mM, appear to be attributed to the effect of pH
conditions. Although the majority of the ureolytic bacteria
lose their activity in the second step of the two-step
biomineralization, the discharge of OH− (relevant to bacterial
inoculation proportion) in the first step determine not only pH
conditions but also the speciation of carbonate precipitation.
pH = 8.88, induced by the inoculation proportion = 1:3, gives
alkaline environments when subjected to 20 mM Cu(NO3)2

and promotes the formation of copper-ammonia complexes,
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FIGURE 10

Schematic illustration of the underlying mechanisms affecting the copper immobilization efficiency.

yielding the copper immobilization efficiency way below
10% (see Figures 9C,D). In contrast, when subjected to
60 mM Cu(NO3)2, pH = 6.89, resulting from the inoculation
proportion = 1:3, gives acidic environments and then prevent
the formation of copper-ammonia complexes, corresponding
to the copper immobilization efficiency approximately 80%.
In most cases the copper immobilization efficiency using
the two-step biomineralization approach higher than 45% is
much higher than that using the ordinary biomineralization
approach despite a discrepancy in the bacterial inoculation
proportion (see Figure 5D). That is to say, the two-step
biomineralization approach elevates the copper immobilization
efficiency and such improvement is especially pronounced when
subjected to higher Cu(NO3)2 concentrations. However, the
copper immobilization efficiency way below 10% under the
bacterial inoculation proportion = 1:3 appears when subjected
to 20 mM Cu(NO3)2. Modification concerning pH conditions
may consider by reducing the inoculation proportion to 1:9 to
prevent the reduction in the copper immobiliztion efficiency.
To conclude, the two-step biomineralization approach prevents
the effect of Cu2+ toxicity by discharging NH4

+ and OH−

prior to inoculating the ureolytic bacteria to the liquid medium
containing Cu(NO3)2. Discharging NH4

+ and OH− while
cultivating the ureolytic bacteria is deemed as the first step
(see Figure 10). To prevent the formation of copper-ammonia

complexes, pH conditions are modified by reducing the
inoculation proportion, referred to also as the second step.
As a result, the copper immobilization efficiency remains very
high when even subjected to higher Cu(NO3)2 concentrations.
The use of the two-step biomineralization to secure the urease
activity and also to modify pH conditions is considered of
great necessity while applying the MICP technology to remedy
copper-rich water bodies.

Conclusion

The proposed two-step biomineralization approach to
secure the urease activity and also to modify pH conditions to
prevent the copper-ammonia complexes formation was applied
to copper immobilization. Based on the results and discussion,
some main conclusions can be drawn as follows:

(1) The copper immobilization efficiency way below 10%
for the bacterial inoculation proportion = 1:1 is
attained and still holds true even when Cu(NO3)2

concentration is reduced to 5 mM. Although higher
inoculation proportions can improve the resistance of
the ureolytic bacteria against Cu2+ toxicity, their use
is accompanied by discharging more OH−, turning
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surrounding environments into alkaline conditions and
promoting the formation of copper-ammonia complexes.
For this reason, the potential of Cu2+ migration is raised,
causing an inability of securing the copper immobilization
efficiency.

(2) 20–50 mM Cu(NO3)2 can badly depress the ureolytic
bacteria and then reduces the degree of urea hydrolysis.
The lower the degree of urea hydrolysis, the lesser
the carbonate precipitated, and the lower the copper
immobilization efficiency. The lack of CO3

2−, induced
by the reduction in the degree of urea hydrolysis, is
considered to be the main cause leading to the copper
immobilization efficiency way below 10% when subjected
to 20–50 mM Cu(NO3)2.

(3) Under pH in a 4–6 range (in most cases), the copper
immobilization efficiency is attained through azurite
precipitation. The copper immobilization efficiency drops
to zero under pH below 4 due to Cu2+ migration and
diffusion. Under pH surrounding 9, the copper-ammonia
complexes reduce the copper immobilization efficiency to
zero. In case pH falls within a 7–9 range (in most cases),
the copper immobilization efficiency is attained through
malachite precipitation. The findings shed light on the
necessity of securing the urease activity and modifying pH
conditions while applying the MICP technology to remedy
copper-rich water bodies.
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