
R E S E A R CH A R T I C L E

Individual functional parcellation revealed compensation of
dynamic limbic network organization in healthy ageing

Tiantian Liu1 | Zhongyan Shi1 | Jian Zhang2 | Kexin Wang1 | Yuanhao Li1 |

Guangying Pei1 | Li Wang1 | Jinglong Wu3 | Tianyi Yan1

1School of Life Science, Beijing Institute of

Technology, Beijing, China

2Intelligent Robotics Institute, School of

Mechatronical Engineering, Beijing Institute of

Technology, Beijing, China

3School of Medical Technology, Beijing

Institute of Technology, Beijing, China

Correspondence

Tianyi Yan and Guangying Pei, School of Life

Science, Beijing Institute of Technology,

5 South Zhongguancun Street, Haidian

District, Beijing, China.

Email: yantianyi@bit.edu.cn and

pei_guangying@bit.edu.cn

Funding information

Beijing Municipal Science and Technology

Commission, Grant/Award Number:

Z201100007720009; China Postdoctoral

Science Foundation, Grant/Award Number:

2020TQ0040; Fundamental Research Funds

for the Central Universities, Grant/Award

Number: 2021CX11011; National Key

Research and Development Program of China,

Grant/Award Number: 2020YFC2007305;

National Natural Science Foundation of China,

Grant/Award Numbers: 12104049, 61727807,

82071912, U20A20191; UK Biotechnology

and Biological Sciences Research Council,

Grant/Award Number: BB/H008217/1

Abstract

Using group-level functional parcellations and constant-length sliding window analy-

sis, dynamic functional connectivity studies have revealed network-specific impair-

ment and compensation in healthy ageing. However, functional parcellation and

dynamic time windows vary across individuals; individual-level ageing-related brain

dynamics are uncertain. Here, we performed individual parcellation and individual-

length sliding window clustering to characterize ageing-related dynamic network

changes. Healthy participants (n = 637, 18–88 years) from the Cambridge Centre for

Ageing and Neuroscience dataset were included. An individual seven-network parcel-

lation, varied from group-level parcellation, was mapped for each participant. For

each network, strong and weak cognitive brain states were revealed by individual-

length sliding window clustering and canonical correlation analysis. The results

showed negative linear correlations between age and change ratios of sizes in the

default mode, frontoparietal, and salience networks and a positive linear correlation

between age and change ratios of size in the limbic network (LN). With increasing

age, the occurrence and dwell time of strong states showed inverted U-shaped pat-

terns or a linear decreasing pattern in most networks but showed a linear increasing

pattern in the LN. Overall, this study reveals a compensative increase in emotional

networks (i.e., the LN) and a decline in cognitive and primary sensory networks in

healthy ageing. These findings may provide insights into network-specific and

individual-level targeting during neuromodulation in ageing and ageing-related

diseases.
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1 | INTRODUCTION

Healthy ageing is typically characterized by subtle declines and slow-

ing in general cognitive abilities, which may further progress into path-

ological impairment and even dementia. The development of

noninvasive neuroimaging methods, such as various magnetic reso-

nance imaging (MRI) sequences, has made it possible to detect struc-

tural and functional brain markers in ageing, such as regional cortical

thickness (Frangou et al., 2022), white matter integrity (Miller

et al., 2016), and functional network organization (Power et al., 2011).

Structural brain changes have been extensively studied in the context

of healthy ageing and related neurodegenerative disorders (Yan

et al., 2018) but are assumed to occur later than functional changes

(Jack et al., 2010; Zonneveld et al., 2019). Functional studies, espe-

cially studies on functional network organization, could help motivate

investigations of or interventions for ageing-related neurodegenera-

tive disorders, such as Alzheimer's disease (AD) (B. Wang et al., 2017;

Xu et al., 2021). For example, functional networks can serve as indi-

vidual intervention targets in healthy older adults and AD patients

when using noninvasive neuromodulation to enhance cognitive func-

tions (Nilakantan et al., 2019).

Resting-state functional MRI (rs-fMRI) measures intrinsic low-

frequency (<0.1 Hz) blood oxygenation level-dependent (BOLD) signal

activities (Cordes et al., 2001) and has revealed large-scale functional

networks, including those linked to high-order cognitive and emo-

tional functions (default mode [DMN], attentional [AN], salience [SN],

frontoparietal [FPN], and limbic [LN] networks) and those supporting

primary sensory functions (visual [VN] and motor-sensory

[MN] networks) (Yeo et al., 2011). These networks are organized to

support different brain cognitive functions by segregating and inte-

grating within and between networks (Yan et al., 2022; H. Y. Zhang

et al., 2021) and have revealed neural dedifferentiation in healthy age-

ing, which indicates decreased independence, decreased segregation

of functional networks and inability to specify relevant neural circuits

to mediate specialized functional processes (Chan et al., 2014; King

et al., 2018). Static functional connectivity (FC) analysis measures sta-

tistical temporal correlations of mean BOLD time series signals

between distinct brain regions across the entire scanning time and has

shown that the ageing brain undergoes complex functional reorgani-

zation and compensation (H. Zhang et al., 2017; Zonneveld

et al., 2019). Ageing-related reorganization is characterized by weaker

within-network connectivity and controversial between-network find-

ings, that is, greater between-network connectivity (Geerligs

et al., 2015; Spreng & Turner, 2019; Zonneveld et al., 2019) or weaker

between-network connectivity (Varangis et al., 2019; H. Y. Zhang

et al., 2021).

Using a “dynamic” analysis, in which time-varying, dynamic FC is

measured within a series of overlapping “sliding windows” in the

BOLD timeseries data (Preti et al., 2017), studies have found that

older adults spend more time in a baseline, weak connectivity state

(Tian et al., 2018), indicating loss of dynamics and the inability to

adapt to environmental variations (Garrett et al., 2021). In addition,

older adults may spend less time in a series of different states, as

revealed by the following discrepant findings. The brain state may be

characterized by antagonistic activity of the DMN and AN (K. Y. Chen

et al., 2022), by high connectivity within the MN and the cognitive

control network (Tian et al., 2018), or by many positive connections

among subnetworks (Xia et al., 2019). Overall, static between-network

connectivity and dynamic functional network state findings are con-

troversial, and we suspect that these discrepancies are due to the use

of different analytic methods, especially node or region of interest

(ROI) spatial definitions, when constructing individual functional

networks.

Like many other complex networks, nodes and edges are two

basic elements in brain functional networks. Generally, nodes are typi-

cally defined by ROIs in a predefined, group-average and nonoverlap-

ping resting-state network (RSN) parcellation. Edges, also named FCs,

are typically defined by Pearson or partial correlation coefficients of

averaged BOLD time series in ROIs. However, of particular impor-

tance, different RSN parcellations may assign the same voxel or vertex

to different networks, especially voxels (or vertices) in subcortical net-

works (Doucet et al., 2019). In addition, most group-level parcellations

are derived from young adult (age <40 years) data (Gordon

et al., 2016; Power et al., 2011; Yeo et al., 2011) but are not suitable

for participants across the lifespan. Inspired by this question, one

study mapped individual functional parcellation and revealed location

reconfiguration of functional regions in ageing adults (Geerligs

et al., 2017), indicating inaccurate calculation of node signals and FC

using young adult brain parcellations. Recent studies have focused on

age-appropriate brain parcellation, including an age-appropriate func-

tional parcellation derived from older adults, ages ranging from 55 to

95 years (Doucet et al., 2021), and five cohort-specific parcellations

(age range: 20–34, 35–49, 50–64, 65–79, and 80–93 years). How-

ever, no matter what the group-level parcellation is, averaging individ-

ual BOLD signal data based on group-level network parcellation

(Braga & Buckner, 2017) may underestimate certain participant-

specific properties and details of functional network architecture, such

as cross-individual variations in the shape, size, and position of func-

tional networks (Bijsterbosch et al., 2018). Therefore, it is necessary

to map individual-level parcellation and further analyse ageing-related

changes based on it.

Recent methodological breakthroughs, in which individual-level

parcellation has been mapped using iterative clustering analysis on

group-level parcellations (M. L. Li et al., 2019; D. H. Wang

et al., 2015), offer the opportunity to characterize dynamic functional

network organization changes with age at the individual level. In addi-

tion, researchers have noticed the drawback and limitation of fixed-

length sliding window analysis and proposed data-driven segmenta-

tion of sliding windows (Choe et al., 2017), such as the hidden Markov

model (G. M. Zhang et al., 2020), the dynamic conditional correlation

model (Lindquist et al., 2014), and activation-informed temporal seg-

mentation (Duda et al., 2021). Considering differences in interindivi-

dual parcellation, internetwork organization and interindividual sliding

window activities with increasing age, we used individual participant

parcellation and individual network dynamic analysis on individual

sliding window lengths to advance the understanding of dynamic
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network organization. In addition, we correlated recurring dynamic

brain states with multiple cognitive behavioural measures to assign

different states to corresponding cognitive levels. According to the

compensation hypothesis (Cabeza et al., 2018; Reuter-Lorenz &

Park, 2014), we expected to find inverted “U-shaped” correlations

(impairment) between high cognitive level brain states and age in most

networks and “U-shaped” correlations (compensation) in specific

networks.

2 | MATERIALS AND METHODS

2.1 | Dataset

Neuroimaging data from 639 cognitively healthy participants were

studied as part of the Cambridge Center for Ageing and Neuroscience

(Cam-CAN) project (Stage 2 cohort, available at http://www.mrc-cbu.

cam.ac.uk/datasets/camcan/) (Shafto et al., 2014; Taylor et al., 2017).

The included participants were not diagnosed with diseases that

would impact brain functions, such as dementia, AD, Parkinson's dis-

ease, multiple sclerosis, stroke, or epilepsy (more exclusion criteria are

shown in Shafto et al. (2014)). Two participants were excluded from

the analyses due to excessive head motion (details below), resulting in

637 participants (18–88 years old, mean ± SD age = 54.25

± 18.45 years; 311 males and 326 females) included in the final sam-

ple. All participants gave written informed consent, and the Cam-

bridgeshire 2 Research Ethics Committee approved the study.

Participants' exclusion criteria of Cam-CAN and more details are

shown in a previous publication (Shafto et al., 2014).

For each participant, T1 structural and resting-state BOLD fMRI

data were acquired on a 3 T Siemens TIM Trio System using a

32-channel head coil. The high-resolution T1-weighted structural

images were acquired using a magnetization prepared rapid gradient

echo sequence, with repetition time (TR) = 2250 ms, echo time

(TE) = 2.99 ms, inversion time (TI) = 900 ms, FA = 9�, field of view

(FOV) = 256 � 240 � 192 mm3, and voxel size = 1 � 1 � 1 mm3. Rs-

fMRI images were acquired using an echo-planar imaging sequence,

with TR = 1970 ms, TE = 30 ms, flip angle = 78�,

FOV = 192 � 192 mm2, voxel size = 3 � 3 � 4.44 mm3, slice

thickness = 3.7 mm, and slice number = 32. During individual rs-fMRI

scanning (8 min and 40 s, 261 volumes), participants were instructed

to rest with their eyes closed.

In addition, this study included 13 cognitive variables derived

from 8 outside-MRI cognitive tasks, including the fluid intelligence

task, the hotel task, the picture–picture priming task, the proverb

comprehension task, the visual short-term memory task, the choice

motor coefficient of variation task, the face recognition task, and the

emotion expression recognition task. These cognitive tasks are used

to evaluate five cognitive domains, including executive functions, lan-

guage functions, memory function, motor function, and emotional

processing. A brief description of each variable is summarized in

Table 1, and full descriptions are given in a previous publication

(Shafto et al., 2014).

2.2 | Data preprocessing

Rs-fMRI data were preprocessed using FSL (https://fsl.fmrib.ox.ac.uk/

fsl/fslwiki/) with the following steps: discarding the first 10 volumes,

correcting head motion by MCFLIRT, slice timing correction, extract-

ing nonbrain tissues with BET, spatial smoothing with full width at half

maximum = 6 mm, normalizing intensity, high-pass temporal filtering

(cut-off frequency = 0.01 Hz) and registering the rs-fMRI to high-

resolution T1-weighted structural images. To exclude the head motion

effects, head movements exceeding 2 mm or 2� in any direction were

discarded (n = 2). The final sample included 637 participants. In addi-

tion, the covariate head motion was calculated as the average of the

root mean squared realign parameters at all 251 time points using

MCFLIRT.

T1-weighted structural images were processed using the FreeSur-

fer version 6.0.0 software package. Total cortical grey matter volume

was calculated as a covariate in statistical analyses (details below). The

structural and functional images were aligned using boundary-based

registration. Rs-fMRI data were aligned to a spherical coordinate sys-

tem by sampling from the cortical ribbon in a single interpolation. The

rs-fMRI data of each individual were first registered to the FreeSurfer

surface template, which consisted of 40,962 vertices in each hemi-

sphere. The smoothed data were then downsampled to a mesh of

2562 vertices in each hemisphere using the mri_surf2surf function in

the FreeSurfer software package.

2.3 | Individual parcellation and functional
network size calculation

Individual parcellation analysis was performed using the HFR_ai tool-

box with the following steps (M. L. Li et al., 2019) (Figure 1). First,

guided by the group-level 18 functional network parcellation derived

from 1000 healthy participants (M. L. Li et al., 2019; D. H. Wang

et al., 2015; Yeo et al., 2011), an iterative parcellation algorithm was

applied to individual surface-projected rs-fMRI data, and each vertex

on the cortical surface was assigned to one of 18 networks, resulting

in 18 individual network parcellations for every participant. Second,

individual-level cortical network parcellations were segmented into

discrete patches using a clustering algorithm. Third, the patches were

matched to 116 cortical ROIs extracted from 18 group-level networks,

resulting in individual ROI parcellations. It is important to note that if

a patch did not overlap with any cortical ROI and was not near any

ROI, the patch would be labelled “unrecognized.” Thus, the number of

individual cortical ROIs was less than or equal to 116. Considering the

intersection of individual ROI parcellation, only 27 homologous ROIs

were retained for 100% of participants, and the number of ROIs was

too small to analyse individual functional variations. Therefore, we

kept ROIs that were defined for 90% of participants. Finally, 88 ROIs

were kept for subsequent analysis.

To better summarize between-participants functional variations

in network size and compare them with previous findings, we further

grouped the 18 networks into seven well-studied functional networks,
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including the AN, DMN, FPN, MN, LN, SN, and VN. Given any of

seven networks, the change ratio of the network size (Sr) was quanti-

fied as follows:

Sr ¼

Pm

k¼1
lk�

Pm

j¼1
lj

Pm

j¼1
lj

where m indicates the number of vertices in the given network, lk indi-

cates the assigned label of vertex k within individual-level ROI parcel-

lation, and lj indicates the assigned label of vertex j within group-level

ROI parcellation. The assigned label was 1 or 0. Finally, the change

ratio of the network size was calculated for each network for each

participant.

2.4 | Clustering-based dynamic functional state
construction

For each participant, 251 volumes (time points), with 88 ROIs in

each volume, were included in the following analysis (Figure 1). At

each time point, the average of the preprocessed BOLD signal

across all vertices in a given ROI was extracted. Considering the dif-

ferent resting-state FC patterns of different networks, we separately

applied a sliding window and clustering analysis to each of the seven

networks. Given one network and one participant, dynamic FC was

calculated using a sliding window method, with varied window

length (ranging from 18 TR to 28 TR) and fixed sliding step length

(1 TR). The optimum window length (L) at time point t was defined

as follows:

L tð Þ¼ max
a

Xn

roi¼1

x tþa�1, roið Þ
 !

where x indicates whether the given ROI signal at time point (t +-

a � 1) was local extrema. If the ROI signal was larger (or lower) than

the signal at the former and the latter time points, the ROI signal at

the current time point was a local extremum, and x was equal to 1;

otherwise, x was equal to 0, a indicates a different window length

(range from 18 to 28), and n indicates the number of ROIs within a

given network. The number of ROIs (n) was equal to 10, 17, 23, 4, 14,

10, and 10 for the AN, DMN, FPN, MN, LN, SN, and VN, respectively.

Finally, the optimum window length kept most local extrema (varia-

tions) within the given network.

For consistency among different participants, the first to 224th

consecutive windows were used for the following analysis. In each

time window, Pearson correlation coefficients were calculated for

pairwise ROI signals to obtain FC measures. To improve the normality

of the correlation coefficient matrix, we transformed the matrix into z

TABLE 1 Description of cognitive tasks (table adapted from Tibon et al. (2021) and Taylor et al. (2017))

Cognitive domain Cognitive task Variables

Descriptive statistics for N = 637

(Mean, SD)

Executive

functions

Fluid intelligence Total score on the Cattell task Mean = 31.92, SD = 6.71

Hotel task Deviation from optimum time allocation on the

hotel task

Mean = 305.31, SD = 173.29

Language

functions

Picture–picture priming Number of trials with RT > 200 ms and correct

response (not hesitation)

Mean = 0.68, SD = 0.21

Proverb comprehension Sum of three scores (0: incorrect, 1: concrete, 2:

abstract)

Mean = 4.52, SD = 1.62

Memory function Visual short-term memory Number of reportable items with four coloured

discs

Mean = 2.51, SD = 0.81

Motor function Choice motor coefficient of

variation

Coefficient of variation for all trials, response

times were inverted (1/RT) before the

response time measures were computed,

response times 3 SD above or below the

mean were removed before computing the

response time measures

Mean = 0.19, SD = 0.06

Emotional

processing

Face recognition Total score on the Benton faces task Mean = 22.91, SD = 2.36

Emotion expression recognition Accuracy of anger expression Mean = 80.64, SD = 23.94

Accuracy of disgust expression Mean = 84.44, SD = 21.08

Accuracy of fear expression Mean = 73.86, SD = 23.55

Accuracy of happy expression Mean = 96.34, SD = 11.56

Accuracy of sad expression Mean = 90.93, SD = 17.28

Accuracy of surprise expression Mean = 88.20, SD = 14.87

Abbreviation: SD, standard deviation.
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scores using Fisher's r-to-z transformation. Finally, we obtained a

224 � 88 � 88 dynamic FC matrix for each participant.

The k-means clustering algorithm was employed to classify the

FC matrix into different groups based on similarities and to capture

the reoccurring FC patterns across time and participants. A total of

142,688 (637 participants � 224 windows) samples were used as

observations, and off-diagonal elements in the FC matrix were used

as features. In detail, 10 ROIs were included within the VN, so all FCs

related to those 10 ROIs were extracted as the input of VN k-means

clustering. Therefore, seven rounds of clustering were performed on

dynamic FC of the AN (10 � 87 features), DMN (17 � 87 features),

FPN (23 � 87 features), LN (4 � 87 features), MN (14 � 87 features),

SN (10 � 87 features), and VN (10 � 87 features). When performing

clustering analysis, the Manhattan distance (L1 norm) was used to esti-

mate the similarity among FC matrices because the Manhattan dis-

tance was more preferable than the Euclidean distance (L2 norm) for

the case of high-dimensional data (Aggarwal et al., 2001). To improve

the stability of clustering, we iterated k-means clustering 100 times.

Since clustering analysis was performed on each network and cluster-

ing centres were matched for all networks, k was set to 2 to match

F IGURE 1 Workflow of analysis. (a) Individual dynamic functional connectivity construction. Group-level network templates including seven
networks were extracted from a previous publication (Yeo et al., 2011). Individual preprocessed functional magnetic resonance imaging (fMRI)
time courses were iteratively clustered based on the group network template to generate individual network parcellation. Then, the network
parcellation was separated into the region of interest (ROI) parcellation. ROI signals were extracted to calculate dynamic functional connectivity
(FC) using individual sliding windows. (b) Groupwise clustering and statistical analysis. Dynamic FC within each network of all subjects was
combined into a feature matrix. Clustering analysis was performed on these seven network feature matrices, resulting in clustering centres for
each participant. Using canonical correlation analysis, clustering centres were grouped into the strong state and weak state. Finally, groupwise
changes with age were calculated and summarized to determine ageing impairment and compensation. AN, attentional network; DMN, default
mode network; FPN, frontoparietal network; LN, limbic network; MN, motor-sensory network; SN, salience network; VN, visual network
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the clustering results with low deviation. In addition, two clusters

were widely reported in previous fMRI studies (Kim et al., 2017; H. Li

et al., 2022; D. Zhang et al., 2022; Zheng et al., 2022). Finally, cluster-

ing algorithms labelled FC matrices into one of the two clusters, and

the median FC in the same cluster was calculated as a cluster centroid.

Here, the cluster centroids were defined as brain states.

2.5 | Dynamic functional state analysis

To depict the characteristics of dynamic functional states, amplitude

was defined as the average of absolute FC in each state. In addition,

we calculated two clustering indexes to compare the temporal metrics

from each participant's state vector, including (1) dwell time, which

was calculated by the maximum consecutive windows assigned to the

same state and represented how long the participant stayed in the

state continuously; and (2) occurrence, which was calculated by the

number of windows assigned to one state. For each participant, clus-

tering of each network resulted in two amplitudes, two dwell times,

and two occurrence values.

2.6 | Statistical analysis

To exclude the influences of covariates, we first constructed a linear

model, with each metric (including the change ratio of the network

size, amplitude, dwell time, occurrence, and transition time) as the

dependent variable and covariates (including head motion, sex, and

cortical grey matter volume) as independent variables. The resulting

residuals were used to construct linear and quadratic regression

models of age with a significance level of p < .05. Then, the Akaike

information criterion (AIC) was used to compare the goodness of fit of

linear and quadratic regression models. When exhibiting quadratic

relations (U-shape or inverted U-shape), according to a previous study

(K. Y. Liu et al., 2019), a post hoc “two-lines” test was performed to

assess whether there was a point where the slope of function was

changed. The point was then defined as peak age. In addition, differ-

ences among networks, including size, amplitude, dwell time, occur-

rence, and transition time, were tested using a generalized estimated

equation (GEE), with head motion, sex, and cortical grey matter vol-

ume as covariates.

The Kolmogorov–Smirnov test was used to assess normality, and

amplitude differences in the two clustering states were tested by the

Wilcoxon rank sum test. Since multiple variates were included in ampli-

tudes of each state (7 networks) and cognitive task (13 variables), corre-

lations between amplitudes and cognitive tests were modelled using

canonical correlation analysis (CCA) (Tibon et al., 2021), a powerful

method to simultaneously examine linear relationships between multi-

ple amplitudes and cognitive tasks derived from each participant. Then,

the statistical comparison of correlation coefficients of CCA was per-

formed using the “cocor” package (Diedenhofen & Musch, 2015).

The significance level was set to p < .05, and a false discovery

rate correction was applied to correct multiple correlations. The above

statistical analyses were performed using MATLAB R2014a, R 4.1.2 or

SPSS 23. GEE was performed using SPSS 23, a U-shaped relationship

post hoc “two-lines” test was performed using R 4.1.2, and other ana-

lyses were performed using MATLAB R2014a.

3 | RESULTS

3.1 | Individual parcellation and network size
differences

Representative individual 18 network parcellation is shown in

Figure 2a. Individual network sizes of the AN, DMN, FPN, LN, MN,

SN, and VN were 539.87 ± 89.89, 631.70 ± 110.83, 987.56 ± 102.73,

446.23 ± 89.89, 1051.08 ± 96.28, 311.76 ± 77.18, and 535.35

± 62.80 (mean ± SD), respectively. The change ratios of sizes were

0.14 ± 0.19 for AN, �0.13 ± 0.15 for DMN, 0.29 ± 0.13 for FPN,

0.39 ± 0.28 for LN, 0.11 ± 0.10 for MN, �0.08 ± 0.23 for SN, and

0.04 ± 0.12 for VN. The AIC showed that linear regression was more

suitable than quadratic regression (absolute differences in AIC

between linear and quadratic regression [AICdiff]: 1.55). As shown in

Figure 2b, DMN (adjusted r2 = .018, p < .001), FPN (adjusted

r2 = .025, p < .001), and SN (adjusted r2 = .038, p < .001) showed sig-

nificant negative correlations with age, while LN showed significant

positive correlations with age (adjusted r2 = .027, p < .001). No signifi-

cant correlations were found in AN (adjusted r2 = .004, p = .064), MN

(adjusted r2 = .004, p = .065), or VN (adjusted r2 = .005, p = .064). In

addition, GEE analysis showed significant differences in the change

ratio of size between each pair of networks (all p < .01; Figure 2c).

3.2 | Dynamic functional states

Medians of States 1 and 2 amplitudes were 0.16 and 0.26 for AN, 0.13

and 0.15 for DMN, 0.13 and 0.28 for FPN, 0.12 and 0.33 for LN, 0.14

and 0.25 for MN, 0.15 and 0.32 for SN, and 0.12 and 0.33 for VN

(Figure 3a). The Wilcoxon rank sum test showed significantly high ampli-

tudes for State 2 and low amplitudes for State 1 (all p < .05), indicating

strong interactions for State 2. Clustering centroids are shown in

Figure 3b as dynamic functional states. Since we performed clustering

analysis for a given network-related FC, the state matrix was asymmetric

but approximately symmetric. As shown in Figure 3c, CCA showed strong

positive correlations between amplitude and cognitive tasks in State

1 (r = .407, p < .001) and State 2 (r = .466, p < .001), and the correlation

coefficients of State 2 were larger than those of State 1 (z = 1.83,

p = .034), indicating that State 2 may support more cognitive tasks.

3.3 | Dynamic functional state changes with
ageing

To investigate changes in the two states with ageing, we examined

how the temporal properties, including the mean dwell time,
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F IGURE 2 Individual network parcellations and ageing changes. (a) Group network parcellations and three participants' network parcellations
(Sub 1, Sub 2, and Sub 3). Networks are shown in different colours. (b) Network size changes with age. Linear regression was performed on the
size of seven networks and age, with sex, head motion, and cortical grey matter volume as covariates. Significant linear decrease (DMN, SN, FPN)
and increase (LN) relationships with age are plotted in blue and red, respectively. The change ratio of size in VN, MN and AN showed no
significant relationships and are plotted in black. False discovery rate (FDR) correction was applied for multiple comparisons. (c) The change ratio
of network size is shown in box and whisker plots. Generalized estimated equation (GEE) analysis showed significant differences between each
pair of networks (all p < .01). AN, attentional network; LN, limbic network; DMN, default mode network; FPN, frontoparietal network; MN,
motor-sensory network; SN, salience network; VN, visual network

F IGURE 3 Differences in two cluster centres (states). (a) Median amplitude. Amplitude was compared by the Wilcoxon rank sum test.
(b) Cluster centres (states). Different states were classified according to amplitude. (c) Canonical correlation analysis was performed between
state amplitudes and cognitive behavioural tasks. Each participant was plotted as one dot. The colour of the dot indicates age. AN, attentional
network; LN, limbic network; DMN, default mode network; FPN, frontoparietal network; MN, motor-sensory network; SN, salience network; VN,
visual network. * indicates p < .05; ** indicates p < .001
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occurrence, and transition time, varied with age. For State 1 (low ampli-

tude and cognitive correlations), the dwell time of LN (absolute differ-

ences in AIC between linear and quadratic regression, AICdiff = 1.84)

and FPN (AICdiff = 1.23) showed significant negative linear correlations

with age (Figure 4a). SN (AICdiff = 8.15) showed significant quadratic

correlations with age, and “two-lines” tests were significant (Figure 4b).

No ageing-related correlations were found in dwell time of State 1 in

AN (AICdiff = 1.80; linear correlation with age: adjusted r2 = �.002,

p = .86), DMN (AICdiff = 1.92; linear correlation with age: adjusted

r2 = �.0008, p = .67), MN (AICdiff = 2.00; linear correlation with age:

adjusted r2 = �.001, p = .86) or VN (AICdiff = 0.29; quadratic correla-

tion with age: adjusted r2 = .0005, p = .54).

For State 2 (high amplitude and cognitive correlations), dwell time

of AN (AICdiff = 14.52) and MN (AICdiff = 12.02) showed significant

quadratic correlations with age, and “two-lines” tests were significant.

FPN (AICdiff = 7.13) and VN (AICdiff = 11.40) also showed significant

quadratic correlations with age, but “two-lines” tests were not signifi-

cant (Figure 5). The dwell time of the DMN (AICdiff = 1.83) showed

significant negative linear correlations with age, while the dwell time

of the LN (AICdiff = 0.25) showed significant positive linear correla-

tions (Figure 6). No significant correlations were found in the dwell

time of SN (AICdiff = 1.18; linear correlation with age: adjusted

r2 = �.001, p = .68).

Since the sum of occurrence of two states was constant (= 224

windows), their relationships with age were opposite, and the signifi-

cance p value was the same. Thus, we only reported the results of the

occurrence of State 2. The occurrence of State 2 was 65.45 ± 62.74

for AN, 98.90 ± 73.30 for DMN, 59.40 ± 65.59 for FPN, 76.05

F IGURE 4 Ageing-related changes in dwell time (State 1). (a) Linear decrease in dwell time (State 1) in the LN and FPN with increasing age.
Linear regression r2 and p values are shown, with sex, head motion, and cortical grey matter volume as covariates. (b) U-shaped changes in the
salience network (SN). Quadratic regression r2 and p values are shown, with sex, head motion, and cortical grey matter volume as covariates. The
“two-lines” test showed an increase up to 50 years, followed by a decline. FPN, frontoparietal network; LN, limbic network; SN, salience network

752 LIU ET AL.



F IGURE 5 Legend on next page.

LIU ET AL. 753



± 77.44 for LN, 65.85 ± 66.76 for MN, 80.13 ± 69.68 for SN, and

68.63 ± 70.20 for VN. The occurrence of the DMN showed a linear

decrease with age (AICdiff = 1.12; linear correlation with age: adjusted

r2 = .008, p = .022), and no significant correlations were found in the

occurrence of SN (AICdiff = 1.88; quadratic correlation with age:

adjusted r2 = .004, p = .141). Quadratic correlations were found in

AN (AICdiff = 16.13; quadratic correlation with age: adjusted

r2 = .058, p < .001), FPN (AICdiff = 13.74; quadratic correlation with

age: adjusted r2 = .064, p < .001), MN (AICdiff = 14.96; quadratic cor-

relation with age: adjusted r2 = .061, p < .001), VN (AICdiff = 19.50;

quadratic correlation with age: adjusted r2 = .082, p < .001), and LN

(AICdiff = 1.50; quadratic correlation with age: adjusted r2 = .030,

p < .001). Of these, only the correlations of LN first decreased and

then increased (Figure 7). GEE showed that the occurrence of the

DMN was higher than that of any of the other six networks (all

p < .001), and the occurrence of the FPN was lower than that of any

of the other six networks (all p < .05). In addition, the occurrence of

SN was larger than that of MN (p = .015) and AN (p = .009).

Significant inverted U-shaped patterns were found in AN (upward

slope: p = .0213; downward slope: p < .001) and MN (upward slope:

p = .0136; downward slope: p < .001). The occurrences of FPN

(upward slope: p = .0675; downward slope: p < .001) and VN (upward

slope: p = .0650; downward slope: p < .001) were marginally

significant, but LN was not significant (upward slope: p = .9536;

downward slope: p < .001). Finally, in terms of the occurrence of State

2, we proposed a model to describe the impairment and compensa-

tion of AN, MN, FPN, VN, and LN with ageing (Figure 8). Inverted U-

shaped correlations with age were defined as impairment processes,

and U-shaped correlations with age were defined as compensation

processes.

4 | DISCUSSION

The present study used individual ROI parcellation and individual-

length sliding window analysis to characterize dynamic variations in

individual functional network states across the lifespan (18–88 years).

The individual parcellation captured individual variations and revealed

a linear decrease in the DMN, SN, and FPN and a linear increase in LN

with increasing age, indicating atrophy of most cognitive functional

networks but expansion of emotion-related LN in healthy ageing. In

addition, sliding windows and k-means clustering analysis were

applied to each of seven networks, including AN, MN, FPN, VN,

DMN, LN, and SN, and revealed two recurring brain states for each

network. One was strong, characterized by strong FC amplitude and

strong correlations with cognitive tasks, and the other was weak,

F IGURE 5 Ageing-related U-shaped changes in dwell time (State 2). (a–d) U-shaped changes in AN, MN, FPN and VN, respectively. Quadratic
regression r2 and p values are shown, with sex, head motion, and cortical grey matter volume as covariates. (a) The “two-lines” test showed an
increase up to 50 years followed by a decline. (b) The “two-lines” test showed an increase up to 48 years followed by a decline. (c) The “two-
lines” test showed a significant decrease after 53 years. (d) The “two-lines” test showed a significant decrease after 50 years. AN, attentional
network; FPN, frontoparietal network; MN, motor-sensory network; VN, visual network

F IGURE 6 Ageing-related changes in dwell time (State 2). (a) Linear decrease in dwell time (State 2) in the DMN with increasing age.
(b) Linear increase in dwell time (State 2) in LN with increasing age. Linear regression r2 and p values are shown, with sex, head motion, and
cortical grey matter volume as covariates. AN, attentional network; DMN, default mode network; FPN, frontoparietal network; LN, limbic
network; MN, motor-sensory network; VN, visual network
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characterized by weaker FC amplitude and weaker correlations with

cognitive tasks than the strong state. In terms of weak state analysis,

LN and FPN dwell time showed a linear decrease, and SN dwell time

showed an inverted U-shaped correlation with age, suggesting the dif-

ficulties of maintaining the same brain states in the healthy ageing

process. In terms of strong state analysis, DMN occurred and dwelled

less with increasing age; FPN and VN began to occur and dwell less in

middle age (50–53 years); AN and MN occurred and dwelled more

before middle age (48–52 years) followed by a decline. These findings

suggest that in the healthy ageing process, the resting brain may allo-

cate insufficient time to the strong state, characterized by a high

correlation with cognitive function, which may further lead to ineffi-

cient cognitive resource allocation. In addition, we have shown that

the LN strong state dwells more with increasing age and occurs more

in middle-aged adults (older than 47 years), indicating the compensa-

tion of the LN strong state for the impaired process of most functional

network states.

In this study, individual cortical parcellation was mapped using

established group-level parcellation (Yeo et al., 2011) and each partici-

pant's BOLD signal variations. Functional network size indicates the

number of vertices assigned to the same network in individual parcel-

lation relative to the number of vertices in group parcellation. Similar

F IGURE 7 Ageing-related changes of occurrence (State 2). (a) Changes in seven networks, including AN, FPN, MN, VN, SN, DMN, and
LN. Quadratic regression r2 and p values are shown, with sex, head motion, and cortical grey matter volume as covariates. (b) Comparisons of
occurrence among different networks. Generalized estimated equation (GEE) analysis and post hoc comparisons. AN, attentional network; DMN,
default mode network; FPN, frontoparietal network; LN, limbic network; MN, motor-sensory network; SN, salience network; VN, visual network.
* indicates p < .05; ** indicates p < .01. # indicates p < .05 when compared with any other network
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to prior studies using group-level network parcellations (Bajaj

et al., 2017; Lowe et al., 2019; Westlye et al., 2010), our study pro-

vides support for brain atrophy with age. Based on our observations,

the change ratios of sizes in high-order association networks, includ-

ing the DMN, SN, and FPN, decreased with increasing age, indicating

a shrunken cortex across the adult lifespan. In comparison, the change

F IGURE 8 U-shaped changes of occurrence (State 2). (a) The “two-lines” test for AN, MN, FPN, VN, and LN. The “two-lines” test showed
significant upward and downward slopes in AN and MN. No significant upward slope was found in the FPN, VN, or LN. (b) Scheme of the
impairment and compensation process. The blue line indicates the impairment process of AN, MN, FPN, and VN. The red line indicates the
compensation process of LN. AN, attentional network; FPN, frontoparietal network; LN, limbic network; MN, motor-sensory network; VN, visual
network
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ratio of sizes in primary sensory networks, including the MN and VN,

is relatively maintained. These findings support the theory that late-

developing networks (i.e., high-order networks) are sensitive to the

ageing process (Douaud et al., 2014; T. Liu et al., 2022; Westlye

et al., 2010). Notably, we found a significant positive linear association

between age and the change ratio of LN size, suggesting that LN size

may consistently expand across the adult lifespan. It has been sug-

gested that changes in the LN are different from other high-order cog-

nitive networks during development and the ageing process. One

previous early adult (18–45 years) study showed that the cortical

thickness of primary sensory and high-order networks is negatively

correlated with age, except for the LN (Bajaj et al., 2017). In addition,

one previous study mapped group parcellation of children and com-

pared it to adult parcellation (Yeo's parcellation (Yeo et al., 2011)).

They found that the parcellation of primary sensory networks is simi-

lar, but the DMN regions in adult parcellations are partially assigned

to the LN in children (Tooley et al., 2022). These findings support our

results that three main cognitive networks, including the DMN, FPN,

and SN, shrink, but the emotional network, that is, the LN, expands

across the adult lifespan.

At the temporal scale, this study revealed one strong state, char-

acterized by strong FC amplitude and strong correlations with cogni-

tive functions, and one weak state, characterized by weak FC

amplitude and weak correlations with cognitive functions. Temporal

metrics were calculated for each state, including occurrence, indicat-

ing how often a state occurs, and dwell time, indicating how much

time is spent in a state before transitioning to the other state. In our

study, the two states were clustered by within and between FC of

each network, resulting in 14 states (7 networks � 2 states). Weak

states of three networks (LN, FPN, and SN) showed significant corre-

lations with age, and strong states of six networks (AN, MN, FPN, VN,

DMN, and LN) showed significant correlations with age. These find-

ings suggest that strong brain states, characterized by strong FC

amplitude and strong correlations with cognitive functions, are more

vulnerable than weak brain states. Correlations between dynamic

brain states and cognitive functions have been reported in a previous

study (Vidaurre et al., 2017). Healthy ageing studies have further

revealed the weak state and showed increased dwell time of the weak

state with increasing age (K. Y. Chen et al., 2022; Tian et al., 2018),

supporting the stability of the weak state and the vulnerability of the

strong state.

In this study, the occurrence and dwell time of AN and MN strong

states and the dwell time of SN weak states showed inverted U-

shaped correlations with age. Previous studies have also shown non-

linear correlations between temporal parameters and age (K. Y. Chen

et al., 2022; Kupis et al., 2021; Snyder et al., 2021), but these studies

do not further test the validity of U-shaped correlations, that is,

whether the upward and downward slope is significant. In this study,

we performed a post hoc “two-lines” test and revealed an inverted U-

shaped model with maximum temporal parameters occurring at

approximately 50 years (i.e., an upward slope before approximately

50 years followed by a downward slope). We also found that the

occurrence and dwell time of the VN strong state is nonlinearly

correlated with age, but the upward trend is not significant, suggest-

ing that the VN strong state occupies less time with increasing age

after approximately 50 years. In addition, the peak age is supported

by a previous study (participants: 21–86 years), which reported that

structural intrinsic brain volume changes exhibit an inverted U-shaped

correlation with peaks occurring at approximately 45 years of age

(Bagarinao et al., 2018).

The FPN, DMN, and SN are three key networks related to ageing

(Damoiseaux et al., 2008; Hardcastle et al., 2022; Oschmann, Gawry-

luk, & Alzheimer's Disease Neuroimaging Initiative, 2020). This study

revealed SN changes in weak states and DMN changes in strong

states, indicating the state dependence of ageing-related changes in

the SN and DMN. Different dynamic states of the SN have been

examined and showed quadratic relationships with age (Snyder

et al., 2021). In addition, DMN-dominant states have shown linear

relationships with age (T. Liu et al., 2022) and reduced occurrence in

participants with subjective cognitive decline (Liang et al., 2021). Dif-

ferent from the state dependence of SN and DMN, the FPN exhibits

decreasing dwell time in terms of both strong and weak states, indi-

cating the wide functional changes of the FPN. The FPN is a flexible

hub in the brain, and one previous study showed a quadric relation-

ship between FPN state and age (Kupis et al., 2021). In addition, FPN

changes can be modulated by cognitive training in older adults (65–

84 years) (Hardcastle et al., 2022).

With the decreased occurrence and dwell time of most networks,

our results showed a compensative increase in the LN in terms of

strong state analysis. The LN includes the bilateral anterior temporal

lobe, medial temporal lobe, subgenual anterior cingulate cortex, and

medial and lateral orbitofrontal cortex (Oosterwijk et al., 2012) and

plays a significant role in emotional and reward-related processing

(Cao et al., 2021; Rolls, 2019). Compared to other higher-order and

primary sensory networks, the LN has shown the largest functional

network pattern changes during the first 6 years of life (H. T. Chen

et al., 2021). An independent component analysis compared FC differ-

ences between young (18–33 years) and old (58–85 years) adults and

found differences in cognitive networks but not in emotion networks

(Nashiro et al., 2017), suggesting cognitive function decline and emo-

tional function maintenance with age. In line with these results, we

found that the LN strong state occurred and dwelled more with

increasing age, indicating the compensative function of the LN. This is

supported by a local FC analysis on the same dataset, which also

found decreased local FC within the VN, SMN, and DMN but

increased local FC within the basal ganglia network with increasing

age (Wen et al., 2020). In addition, one study analysed baseline, 1-, 2-,

3-, and 4-year follow-up rs-fMRI data from old adults (64–87 years)

and reported decreased segregation of the DMN, FPN, and SN and an

increase in the LN (Malagurski et al., 2020). Overall, compared to the

decline in other cognitive networks, such as the DMN, FPN, and SN,

the LN may maintain and even compensatively increase with increas-

ing age (Nashiro et al., 2012; Scheibe & Carstensen, 2010).

Several limitations should be considered when interpreting these

findings. First, this study reports ageing-related changes in a group of

participants, not within individuals, as individual studies require
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longitudinal follow-up. Second, this rs-fMRI dataset collected 261 vol-

umes (8 min and 40 s) for each participant, and more volumes would

result in more precise individual parcellation (D. H. Wang et al., 2015).

However, the relatively less precise parcellation is tolerable compared

to group parcellation in ageing studies (Geerligs et al., 2017). Third,

we clustered all dynamic FCs into two brain states, as done in previ-

ous studies (Kim et al., 2017). However, some studies clustered more

brain states, such as three (Tian et al., 2018) and five (Xia et al., 2019).

Perhaps each participant has an individual number of recurrent brain

states, but this would make group comparisons more difficult. Thus,

more research is needed to describe individual brain states.

5 | CONCLUSION

In summary, this study used individual functional parcellation and indi-

vidual sliding window clustering to reveal brain functional changes

across the lifespan. Individual parcellations showed that the sizes of

the DMN, FPN and SN decreased with increasing age, accompanied

by an increase in LN size. In terms of individual sliding window clus-

tering analysis, we revealed two brain states for each functional net-

work, in which one has strong FC amplitudes and strong correlations

with cognitive functions, called the strong state, and the other is the

weak state. Temporal clustering showed that ageing-related decline

was common in strong states and late adulthood (older than 47–

53 years). Notably, the FPN showed a decreasing pattern in both

strong and weak states, and only LN strong states showed an increas-

ing pattern across the lifespan. Overall, our findings highlight the com-

pensative function of the LN in functional network size and dynamics

with age.
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