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Simple Summary: Wild boar (WB) originate in southeastern Asia. With the migration of WBs
into the European continent, their domestication started as early as the Neolithic period. With the
continuous domestication and considering people’s different needs for pork, many local WB breeds
with their own characteristics appeared on European land. In this article, the whole genome files of
10 local WB and 38 domestic local breeds (1098 individuals in total) were screened in terms of genetic
differences in metabolism, disease, and temperament by genome-wide association scan selection
signals. Moreover, the geographical distribution and historical events of the different breeds were
combined to confirm the wide genetic contribution of WB to the domestication process. The results
of this study will provide a reference on the metabolism and emotionality between European WBs
and domestic pigs.

Abstract: The phenotypic characteristics of existing domestic pigs (DPs) greatly differ from those of
wild boar (WB) populations thousands of years ago. After thousands of years of human domestication,
WB and DP have diverged greatly in terms of genetics. Theoretically, worldwide local pigs have
independent contributions from their local WBs at the beginning of Sus scrofa domestication. The
investigation of the vicissitude of the heredity material between domestic populations and their wild
ancestors will help in further understanding the domestication history of domestic animals. In the
present study, we performed a genome-wide association scan (GWSA) and phylogeny estimation
with a total of 1098 public European Illumina 60K single nucleotide polymorphism data, which
included 650 local DPs and 448 WBs. The results revealed that the phylogenetic relationship of WBs
corresponds to their geographical distribution and carries large divergence with DPs, and all WB
breeds (e.g., HRWB, SBWB, and TIWB) presents a closely linkage with the middle WB (e.g., HRWB,
and PLWB). In addition, 64 selected candidate genes (e.g., IDH2, PIP5K1B, SMARCA2, KIF5C, and
TJP2) were identified from GWSA. A total of 63 known multiple biological functional pathways
were annotated by 22 genes, and ubiquinone and other terpenoid-quinone biosynthesis pathways
that belong to the metabolism of cofactors and vitamins were significantly enriched (p < 0.05). The
most frequent (28.57%) pathways were classified under metabolism. We confirmed that the middle
European WB has made an important genetic contribution to the entire European WB populations. A
series of selected genes discovered from this study provides the scientific community with a deeper
understanding of the heredity performance of metabolism and emotion and the real purpose behind
domestication.
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1. Introduction

As important economic animals in meat production for human consumption in the
world, domestic pigs (DPs) are important for achieving political and economic stability [1,2].
The DP population that is distributed widely throughout the world has excellent envi-
ronmental adaptability and disease resistance [3,4], and it is the only genetic material
library for commercial pig breeding [5]. Crossbreeding between WB and DP is becoming a
favorable method for the improvement of some DP traits.

Many studies have identified the key candidate parameters for environmental adapt-
ability and economic traits, such as high-altitude adaptability [6], litter size [7,8], growth
performance [9,10], and meat quality [7]. In addition, the genetic diversity and population
phylogeny classification of DPs are among the concerns of the academic community [4,11].

WB first appeared in Southeast Asia and then gradually spread to Asia and Europe.
Since the Neolithic Age, humans have begun to domesticate WB populations [12,13],
and around 6000 BC, European WBs were domesticated from the southeast of Europe
and gradually expanded to northern European lands [14]. Around 4000 BC, with the
expansion of the wild boar (WB) population from the Near East, data show that WBs were
domesticated in the Paris Basin [15]. In some areas of northern Germany, data show that
they had access to DPs [16].

WBs are inferior in terms of fecundity [17], growth ability, and meat quality [15] to
DPs [17,18], although these characteristics are more advantageous in terms of disease
resistance and adversity adaptability [19–21]. However, more research has focused on
observing the dynamic distribution of WB populations and conservation [22–24].

At present, WB, as a global distributed ancestor of DP, can be regarded as homologous
ancestors to help us understand the genetic material changes of DP from WB to domestic
population in the past thousands of years. Therefore, in the present study, we conducted
a wide-genome selected sweep analysis between WB and DP from Europe by using the
public genome-wide single nucleotide polymorphism (SNP) data. In-depth investigation
of the common genetic basis behind the common domestication activities of pig should be
conducted to support and improve the understanding of the historical role of domestication.

2. Materials and Methods
2.1. Ethics Statement and Sample Collection

A total of 1098 European pigs Illumina 60k SNP data (Table S1), including 448 WBs
and 650 DPs, were obtained [25,26]. The regional distribution of 1098 individual European
pigs is shown in Figure 1. The original datasets were amalgamated and filtered by Plink
with minor allele frequency ≤0.05, and 41,748 SNPs were retained for subsequent analysis.



Animals 2022, 12, 1037 3 of 9

Figure 1. Regional distribution map of 1098 individual European pigs. Refer to the data source
article for specific group geographic divisions [22,23]. These dots indicate the distribution, source
and quantity of samples.

2.2. Data Analysis

A neighbor-joining phylogenetic tree was estimated using VCF2Dis (https://github.
com/BGI-shenzhen/VCF2Dis, accessed on 7 July 2021), visualized using FastME 2.0 [27],
and subjected to beautification by using iTOL (https://itol.embl.de/, accessed on 8 July
2021). Principal component analysis (PCA) was performed and visualized by GCTA
and R program (ggplot2 package), respectively. The pairwise fixation index (FST) [28]
and Tajima’s D [29] were calculated with 40 kb sliding windows by using vcftools (http:
//vcftools.sourceforge.net/, accessed on 25 June 2021) between DPs and WB. Candidate
genes were annotated by the intersection of both parameters with top 10% threshold
(FST > 0.2052, Tajima’s D > 4.4681). The results are shown in Tables S3 and S4 in the
Supplementary Materials. Finally, genome annotation based on Kyoto Encyclopedia of
Genes and Genomes was carried out for the candidate genes by using KOBAS 3.0. The
linkage disequilibrium of single candidate genes is displayed using HaploView 4.2 (https:
//www.broadinstitute.org/haploview/haploview, accessed on 26 June 2021).

3. Results and Discussion

According to the classification of the habitat large geographical plate (11 redefined
regions) of breeds (Figure 2A, Table S2), the phylogenetic relationship of all European
individuals revealed large-scale exchange of genetic material. However, a large genetic
divergence exists between the DP and WB populations in Europe.

https://github.com/BGI-shenzhen/VCF2Dis
https://github.com/BGI-shenzhen/VCF2Dis
https://itol.embl.de/
http://vcftools.sourceforge.net/
http://vcftools.sourceforge.net/
https://www.broadinstitute.org/haploview/haploview
https://www.broadinstitute.org/haploview/haploview
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Figure 2. Population genetic network and PCA of European WBs and DPs. (A) Classification of
the habitat large geographical plate of European WBs and DPs. Each color represents the domestic
and WB population in a different area, including WestDP, NorthDP, SouthDP, MiddleDP, EastDP,
NorthWB, WestWB, E&SWB, SouthWB, MiddleWB, EastWB, DP and WB, which was divided by
regions; (B) PCA of the 60K SNP data set: based on all the available data (1098), divided into seven
species by region; (C) Principal component analysis of the 60K SNPs data set: based on the European
WB data divided by six regions.

All WBs formed a tight cluster, including several DPs from southern, middle, and
western Europe. Several WBs from middle Europe have a close relationship with almost
all groups of wild populations geographically located in Europe. Consistent results were
reproduced and verified by PCA (Figure 2B) by using the spatial distribution of European
WB (Figure 2C). Thus, middle European WB have important heredity contributions to the
phylogeny of the entire European WBs. Almost all the maternal lines in northern Europe
originated from varieties obtained by domestication in the south of middle Europe [30]
This assumption supports that central Europe may have been a center for early European
pig domestication [31].

Human activities have greatly restricted the habitat boundary of WBs, leading to
the well-defined genetic structure classification of WBs [32]. The local gene structure of
European WBs may have been artificially altered by severe (or non-random) exploitation for
hunting purposes and captive breeding of animals, among other behaviors [33]. However,
the number of European WBs has been increasing rapidly because of the lack of large
natural enemies and reduced hunting. This condition has caused a conflict between WB
and human society as a result of the intensified resource occupation of large-size population
and eventual forced migration of WBs [34,35]. As early as the 16th century, considering
the expansion of WBs, crossbreeding between wild and DPs often occurred [36]. This
phenomenon not only explains the close relation between a certain proportion of middle
European DPs and WBs, but also implies that the high genetic diversity within middle
European WB might have been caused by the extensive exchange of heredity material in WB
migration. Studies support that middle European WBs have a great genetic contribution to
European WBs [32,37–39].

Based on the results of the GWSA (Figure 3), 43 windows were obtained from the
interaction of the top 10% windows of both parameters (FST > 0.2052, Tajima’s D > 4.4681).
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Furthermore, 64 overlapping candidate genes (e.g., ALDH1A3, CSNK2A2, SMARCA2, and
PARP1) were identified from the 43 interacted windows. In addition, the results show
that 22 of 64 genes were enriched in 63 known multiple biological functional signal path-
ways (Table S5), such as inositol phosphate metabolism, nuclear factor-kappa B signaling
pathway, vascular smooth muscle contraction, and the Wnt signaling pathway. High fre-
quencies of pathways were classified into metabolism (28.57%), diseases (19.04%), and
environmental information processing (15.87%).

Figure 3. Genome-wide selection scan for SNPs in European WB and DP by using pairwise fixation
index (FST) and Tajima’s D. (A) Manhattan map of FST between groups; (B) Manhattan map of
Tajima’s D between groups; (C) Result of genetic linkage of KIF5C by linkage disequilibrium.

Six genes, namely ALDH1A3, COQ6, ENTPD5, IDH2, PISD, and PIP5K1B, were en-
riched in a series of metabolism-related pathways. These selected genes are related to
amino acid metabolism and degradation of foreign substances. ALDH1A3 and ENTPD5
can promote glucose metabolism [40] and regulation of phosphate levels in the body, re-
spectively [41]. In addition, IDH2 and TCA (tricarboxylic acid cycle) are closely related,
while IDH2 inhibitors (AGI-6780) can substantially reduce the activity of the TCA and
ATP levels [42]. The dimer formed by IDH2 and IDH1 can catalyze the reversible NADP+-
dependent oxidative decarboxylation of isocitrate to α-KG [43]. The addition of α-KG to
pig diets can remarkably reduce the apparent digestibility of calcium and phosphorus [44].
Thus, DPs have evolved to have more powerful feeding and digestion capabilities with dif-
ferent feeding methods and food types compared with WBs in the long-term domestication
process.

Seven genes (e.g., ALDH1A3, CSNK2A2, DNAH11, SMARCA2, SS18, TNR, and PIP5K1B)
have been identified as immune-related in processes such as the formation of cancer, bacterial
infections, and viral infections. ALDH1A3 plays an important role in the metastasis of pan-
creatic cancer [40] and the pathogenesis of prostate cancer [45]. In particular, ALDHA3 can
be used as a metabolic target for cancer diagnosis and treatment [46]. CSNK2A2 is associated
with systemic lupus erythematosus (SLE) in previous studies [47]. SLE, as a representative
disease of over-immunity, shows the important role of CSNK2A2 in the immune system. In
addition, WBs are widely considered to have good disease resistance and immunity because
of the long-term symbiosis with pathogens, such as African swine fever [48] and influenza
A [49]. Thus, the results of this study are important for the further understanding of the
genetic basis of the differences in immunity and disease resistance between WBs and DPs.

SMARCA2 plays an important role in porcine cleavage cells [50]. Notably, SMARCA2
and SMARCA4 alternately occupy the catalytic sites of the SWI/SNF chromatin remodeling,
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completely change the transcription of Sm2, and affect embryonic development [50]. The
litter size of WBs is generally lower than that of DPs. For example, only 6.3 corpus luteum
per ovulation period were observed in Polish WBs, and the average litter size is 5.9 [51]. By
contrast, during the 1980s in France, the average litter size of domestic sows was between
15 and 25 per year [52]. Therefore, SMARCA2 is related to litter size and is domesticated
from WBs to DP.

Obviously, DPs and WBs have great differences in terms of temperament. The genome
of the DP is strongly selected for loci affecting behavioral and morphological correlates. [53]
Damage to piglets by sows is a common barbaric behavior [54–57]. Savagery has also been
observed in farmed WB sows, and Baxter et al. found that in strains selected for high
piglet survival (as a selective trait), WB breeds from outdoor breeding are highly aggressive
when bred indoors [58]. In DPs, they maintain dominance and control over food through
various repeated fighting behaviors [59]. The heritability of aggressive behavior at mixing
ranges from 0 to 0.44 in weaners, growers, replacement gilts, and mature sows [60–64]. In
the study, multiple pathways and related genes related to emotions, such as KIF5C, are
mainly present in neuronal cells [65]. KIF5C can transport signals to the nerve terminal
in a speed of ~1 µm/s [66]. Especially, the phosphorylation of KIF5 as the precursor of
KIF5C generally increases, and this phenomenon is associated with the organelle transport
increase in axons [67]. In the present study, we discovered that the SNPs from the KIF5C
coding region of DPs showed a tighter linkage than that of WB populations (Figure 3B).
In addition, COQ6 is associated with nephrotic syndrome, sensorineural hearing loss,
and neurotrophy [68]. WBs are highly vigilant against hunting from natural enemy and
humans, whereas DPs benefit from human activities and do not exhibit a strong antagonism.
Coincidentally, changes have been observed in animal temperament caused by selection
pressure during domestication [69]. Therefore, KIF5 and COQ6 genes may be related to the
high vigilance and social sensitivity of WBs.

4. Conclusions

Our research results showed that the domestication of pig is a hidden heredity black
box, rather than representing the simple requirement from human social development.
The large number of genes related to adaptability, metabolism, and emotional sensitivity
discovered in this study will help us understand the most important genetic basis in animal
domestication.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12081037/s1, Table S1: All of the 1098 individuals’ breeds
and quantities, Table S2: The information of all European pigs dataset, Table S3: Top 10% weighted
results of Fst., Table S4: Top 10% results of Tajima’D., Table S5: The results of KEGG.
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