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A Network of Splice Isoforms for 
the Mouse
Hong-Dong Li1,2, Rajasree Menon1, Ridvan Eksi1, Aysam Guerler1, Yang Zhang1, 
Gilbert S. Omenn1,2,3 & Yuanfang Guan1,3,4

The laboratory mouse is the primary mammalian species used for studying alternative splicing events. 
Recent studies have generated computational models to predict functions for splice isoforms in the 
mouse. However, the functional relationship network, describing the probability of splice isoforms 
participating in the same biological process or pathway, has not yet been studied in the mouse. Here 
we describe a rich genome-wide resource of mouse networks at the isoform level, which was generated 
using a unique framework that was originally developed to infer isoform functions. This network was 
built through integrating heterogeneous genomic and protein data, including RNA-seq, exon array, 
protein docking and pseudo-amino acid composition. Through simulation and cross-validation studies, 
we demonstrated the accuracy of the algorithm in predicting isoform-level functional relationships. We 
showed that this network enables the users to reveal functional differences of the isoforms of the same 
gene, as illustrated by literature evidence with Anxa6 (annexin a6) as an example. We expect this work 
will become a useful resource for the mouse genetics community to understand gene functions. The 
network is publicly available at: http://guanlab.ccmb.med.umich.edu/isoformnetwork.

Genes fulfill their functions by interacting with each other through complex biological networks of proteins. 
Gene functions or networks can be studied both experimentally and computationally. A key approach to system-
atically model gene interactions is to establish functional relationship networks1–5, which present the probability 
of two proteins working in the same biological process. Our previous work has generated gene-level functional 
relationship networks for the mouse3,6,7, which have been used by the mouse genetics community to guide the dis-
covery of disease-associated genes. For example, the recent discovery of Hydin (axonemal central pair apparatus 
protein) as a novel thermal pain gene8 was guided by our networks developed for the mouse. Multiple methods 
have been proposed to predict gene/protein functions. For example, a computational approach predicts protein 
functions through integrating domain features, domain interaction and domain co-existence information9.This 
approach was shown to improve both prediction accuracies and annotation reliability9. A method to mine pro-
tein surface pocket similarity networks predicted  Gene Ontology (GO) functions with high accuracies10. These 
efforts have been focused on gene-level integration. As for isoform-level studies, an interesting method called 
SpliceNet was proposed to identify isoform-specific co-expression networks11. Applying this method to normal 
and non-small cell cancer samples, network rewiring was identified exemplified by the networks centered around 
BCL-X and EGFR11. In other recent work, an isoform-isoform interaction database was developed as a resource 
for studying protein-protein interactions (PPI) at the isoform level through integrating RNA-seq, domain and PPI 
data12. Through integrating many RNA-seq datasets, a computational approach was proposed to study splicing 
modules and to predict isoform functions13. Using the multiple-instance based label propagation approach, func-
tional annotation of human isoforms was conducted in a genome-wide manner14. These studies represent impor-
tant advancement towards isoform-level understanding of gene functions. Functional networks are an important 
approach for understanding gene functions, but remain mostly unexplored. Such functional networks providing 
higher resolution, at the splice isoform level are essential to understand disease mechanisms15,16.

The pipeline developed for gene-level networks cannot be readily extended to establishing networks at the 
isoform level due to two major obstacles. First, most of the traditional functional genomic data, such as most 
microarray expression and physical interactions, are routinely recorded or analyzed at the gene level, and thus 
do not directly provide isoform-level features. Fortunately, recent development of computational approaches 
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and experimental technologies has provided multiple types of genomic data sources at the isoform level, includ-
ing RNA-seq17–20. We also included the computationally predicted isoform-isoform docking scores21 previously 
developed by co-authors of this work, which achieved the top performance in the CASP (Critical Assessment 
of protein Structure Prediction) benchmark study. The availability of these data provided a solution to the first 
obstacle.

The second challenge facing isoform-level network modeling remains: we do not have a large set of func-
tionally related isoform pairs to serve as the gold standard for evaluating and integrating large-scale genomic 
data. Of interest, recent studies have analyzed protein-protein interactions at the isoform level22,23, providing 
high-resolution protein interaction data. But the resulting data size is not sufficient to be used as a gold standard 
to build a genome-wide isoform network. Both biological functions24 and pathways25–29 are conventionally docu-
mented at the gene level rather than at the isoform level, preventing any classical method developed for building 
gene-level networks from being directly applied to splice isoforms.

In this paper, we used a Bayesian network-based multiple-instance learning (MIL) algorithm to solve this 
problem. MIL formulates a gene pair as a bag of multiple isoform pairs of potentially different probabilities to be 
functionally related, in analogy to a gene considered as a bag of isoforms of different functions15,30–32. Our work 
is focused on constructing isoform-level functional relationship networks (FRN) for the mouse, which signif-
icantly differs from previous studies11,12 in terms of both computational approaches and research content. The 
SpliceNet focused on building isoform-level coexpression networks using large dimensional trace and identifying 
differential networks between control and cancer samples11. The IIIDB work12 used a gold standard of physical 
interaction data from the IntAct database33, and built logistic regression models to predict human isoform-level 
physical interaction networks. Using the proposed approach, we have built an isoform-level network for the 
mouse through heterogeneous data integration and validated it through both cross-validation and literature 
evidence31,34.

Methods
A multiple-instance learning algorithm for predicting isoform networks.  The key challenge facing 
isoform-level network modeling is the lack of ground-truth functionally related isoform pairs. To solve this prob-
lem, following our recent work in predicting isoform functions15,30, we assume that: (i) of a functionally related 
gene pair (a positive bag), at least one of its isoform pairs (the instances) must be functionally related (Fig. 1A); 
(ii) for an unrelated gene pair (a negative bag), none of its isoform pairs can be functionally related (Fig. 1B). 
Then, the aim is to identify the truly functionally related isoform pairs (“witnesses”) of the positive bags (Fig. 1). 
Under these two assumptions, the isoform network prediction is formulated as a MIL problem.

MIL can embed any base learner, such as support vector machines (SVM)35–37 and Bayesian network clas-
sifiers7,38. Because genomic datasets are characterized by large scale, heterogeneity, and missing data, the 

Figure 1.  Formulating the isoform-level network prediction into a multiple instance learning (MIL) 
problem. (A) Illustration of a functionally related gene pair (a positive bag), gene I with 3 isoforms and gene 
II with 2 isoforms. Among these, two isoform pairs are functionally related (solid red line), while the other 
four isoform pairs have no functional relationship (dashed light blue line). (B) Illustration of a functionally 
unrelated gene pair (a negative bag), gene III with 2 isoforms and gene IV with 2 isoforms. None of the isoform 
pairs between gene III and IV is functionally related. (C) In the traditional gene-level network prediction, a 
classification model is built to distinguish positive pairs from negative pairs. (D) In the isoform-level network 
prediction using MIL, gene pairs are considered as ‘bags’, each containing one or several isoform pairs, called 
‘instances’. A positive bag must have at least one of its instances (isoform pairs) being functionally related, 
which are called ‘witnesses’ (pairs in red). All instances (isoform pairs) in a negative bag must be functionally 
unrelated. MIL gives predictions at both bag and instance level.
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state-of-the-art naïve Bayesian network was chosen as the base learner of MIL since it has been proven promising 
for data integration in the functional genomics field39–43. An extended version of naïve Bayesian networks is to 
incorporate conditional dependencies among features into the network model, which was shown to be a powerful 
approach in predicting eukaryotic transcriptional cooperativity, a type of functional networks between tran-
scriptional factors44. One limitation of previously developed MIL algorithms is that they treat all isoform pairs 
or randomly choose one isoform pair in a positive bag as the witnesses in the initial iteration, which is very likely 
to introduce false positives30,35. To overcome this issue, we developed a single-instance bag MIL (SIB-MIL) algo-
rithm which achieved the best performance in this context compared to the previous methods (Supplementary 
Figure S1). The algorithm is detailed in the following.

Without loss of generality, the ith gene pair containing m isoform pairs is denoted by =Xi  {xi1, xi2⋯xim} with 
xij, j =  1, 2 …  m denoting the jth isoform pair of the ith gene pair. We assign the class label of the ith gene pair, 
denoted as yi, based on the hypotheses that for a positive gene pair, at least one of its isoform pairs is functionally 
related; if a gene pair is negative, none of its isoform pairs should be functionally related, which can be mathemat-
ically expressed as follows:
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where yi indicates the label of the jth isoform pairs of the ith gene pair. We refer to those positive instances (func-
tionally related isoform pairs) of a positive bag (positive gene pair) as the witnesses. The MIL algorithm consists 
of three steps:

(1)	 Initialization: because there is no existing isoform-level gold standard, a set of isoform pairs in positive gene 
pair bags needs to be selected as witnesses to build an initial model. Motivated by the fact that the isoform 
pair in single-instance positive gene pair bags must be positive, all the instances in such bags are labeled as 
Class 1 (functionally related). All instances in negative bags are labeled as Class 0 (functionally unrelated). In 
doing so, unlike the algorithms in35, no false positives will be introduced in this step.

(2)	 The loop:
(2.1) Model building: using the current witness set and the negative isoform pairs, we build a Bayesian 

network classifier that will be used to re-assign a probability score to all instances in the original training 
set.

(2.2) Witness updating: For each positive bag, reselect the instance with the maximum probability score as 
the “witness” and label it as Class 1. For each negative bag, only the highest scored instance was chosen 
and labeled as Class 0; the reason is that a classifier is expected to perform well if it can correctly classify 
the most difficult examples.

(3)	 Stop criteria and final predictions: The iteration is stopped when cross-validation performance does not 
change any more. The final classifier, built at the instance (isoform pair) level, will be used to predict the 
isoform network. Each isoform pair will be assigned with a probability to be functionally related. At the gene-
pair bag level, the score of each bag is defined as the maximum of all scores of its instances.

We used a Bayesian network classifier, as previously described in the work7,41,45,46 as the base learner. Assuming 
that each isoform pair is characterized by an n-dimensional feature vector (E1, E2, …  En), the probability with 
which an isoform pair belongs to the positive class can be calculated using the Bayesian formula7,47:

= | … =
= ∏ ==P y E E E

P y P E y
C

( 1 , )
( 1) ( 1)

(2)n
i
n

i
1 1

1

where P(y =  1) is the prior probability for an isoform pair to be positive, P(Ei|y =  1), i =  1, 2, … , n, is the probabil-
ity of the ith feature value, conditioned that the isoform pair is functionally related, and C is a constant normal-
ization factor.

Isoform-level genomic data processing and gold standard construction.  We have pro-
cessed 65 heterogeneous datasets, including RNA-seq data, exon array, pseudo-amino acid composition and 
isoform-docking data. For the isoform docking data, the docking score between a protein pair is used as the 
feature data. For the other three types of datasets, we calculated the correlation between each isoform pair and 
used it as the feature input. Details for processing these four types of data into pairwise features are described in 
Supplementary Text S1. The data integrated in this work are listed in Supplementary Table S1. These four types of 
feature datasets together provide a largely comprehensive characterization of isoform pairs.

In our study, a gene is assumed to carry a function if it is annotated to a biological process or a pathway. Two 
genes are assumed to have a functional relationship if they are co-annotated to the same biological process or 
pathway. We constructed a gene-level gold standard of functionally related pairs using the Gene Ontology (GO)24, 
KEGG25, and BioCyc27 databases; 675, 124 positive gene pairs were obtained in total (Supplementary Text S1). 
Functionally related and unrelated gene pairs are called positives and negatives, respectively. Consistent with 
previous work in this field7,38, negative gene pairs are generated randomly.
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Results
Simulation study shows accurate prediction of functional relationships at the isoform 
level.  We first tested the performance of this algorithm using simulated data under different scenarios 
(Supplementary Text 2). Two parameters were tested in the simulation study: (1) the discriminativeness of the 
input data, measured by the mean difference (MD, see Fig. 2A–C),) of the values between the population of func-
tionally related isoform pairs and the population of functionally unrelated isoform pairs and (2) the multi-iso-
form gene ratio (MGR), defined as the ratio of multi-isoform genes to the total number of genes (Supplementary 
Text 2). Though studies have shown that around 95% of multi-exon genes have isoforms48, we tested MGR values 
of 0.2, 0.3 and 0.5 for the reason that the NCBI RefSeq gene build used in this study (version 37.2) contains only 
high quality isoforms and therefore has many fewer annotated transcripts compared with the alternative. Ensembl 
gene model. The GTF file downloaded from the cufflinks website has only 3505 multi-isoform genes and 22287 
single isoform genes, giving a MGR only 13.5%. For each simulation, we randomly partitioned gene pairs into dis-
joint training and test set, respectively. We repeated the partitioning 20 times and thus tested this method on 20 
randomly generated test sets. For each partition, we built a Bayesian classifier model and predicted a probabilistic 
functional relationship score for each isoform pair.

We first investigated the influence of the discriminativeness of the input data on the predictive performance 
of this algorithm at the isoform pair level. We simulated that, for both positive and negative isoform pairs, the 
input feature values follow a normal distribution, with standard deviation equal to 1. Then, the mean difference 
(MD) values between the positives and the negatives can vary with the discriminativeness of the feature. With 
MGR fixed at 0.3, the prediction accuracies at the isoform pair level in terms of AUC with MD =  0.1, 0.2 and 0.3 
are shown in Fig. 2D–F. As expected, with increasing MD values the classification performance improved sig-
nificantly. The median AUC on the 20 test sets for MD =  0.1, 0.2, 0.3 are 0.659, 0.838 and 0.929, respectively. In 
addition, we also calculated the AUPRC (area under precision recall curve) and found that it also improves with 
increasing MD values (Fig. 2G–I). This observation suggests that this algorithm works well with input genomic 
data of very weak (MD =  0.1 or 0.2) discriminative power.

We further looked at how the predictive performance of this algorithm will change with the multi-isoform 
gene ratio. To this end, we fixed the value of the mean difference of input data to be 0.2. The prediction accuracy at 
the isoform level in terms of AUC at MGR =  0.2, 0.3 and 0.5 are 0.831, 0.838 and 0.827, respectively (Fig. 3A–C). 
This range of MGR is equivalent to the current MGR ratio in the RefSeq database. In addition, we also calculated 

Figure 2.  Isoform pair level predictive performances of multiple-instance learning on the simulated data 
at different values of mean difference of feature inputs between functional related (positives) and unrelated 
(negatives) isoform pairs. The multi-isoform ratio was fixed at 0.3. For both the positives and the negatives,  
the distribution of feature input was simulated with a normal distribution with standard deviation of 1.  
(A–C) shows the distribution of the feature inputs for the positives and the negatives, with mean 
difference =  0.1, 0.2 and 0.3 respectively. AUC and AUPRC are shown in (D–I).
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the AUPRC (Fig. 3D–F), which is much higher than the baseline AUC (approximately 0.05) since the proportion 
of simulated functionally related gene pairs is 0.05. Interestingly, we found that the performance gain of the con-
verged model over the model at the first iteration increases with the fraction of multi-isoform genes. These gains 
for MGR =  0.2, 0.3, 0.5 are 0.0019, 0.0030 and 0.0124 for AUC. Overall, this shows that this algorithm is robust 
against the percentage of multi-isoform genes among all genes, and will remain to be applicable when new alter-
natively spliced isoforms are identified and verified.

We also analyzed the effects of different combinations of MD and MGR values, and found that, for assigning 
isoform pair-level labels, this algorithm is robust to variations of the input data accuracy as well as the fraction of 
multi-isoform genes (Supplementary Figs S2–S4).

Modeling and validating the functional relationship network using single-isoform gene pairs 
as true gold standard.  The RefSeq gene build (version 37.2) was used in our study to build the isoform 
network for the mouse because it is validated and of high quality. First, we evaluated the performance of each type 
of feature data through 5-fold cross validation. The results in terms of AUC are presented in Table 1 (also Fig. S5).  
The AUC of all these features range from 0.521 to 0.612 with protein docking data ranking the highest. The reason 
why docking is most discriminating may be that it directly models protein binding, unlike expression features 
which captures only co-expression/co-regulation properties. The integrated network achieves the best perfor-
mance, supporting expected power of integrated data analysis. The gold standard contains a large proportion of 
genes containing only a single isoform. Gene pairs formed by such single-isoform genes are therefore equal to 
isoform-level gold standard and therefore can be used for evaluating the performance of isoform networks.

To more reliably assess the performance on the real mouse data, only the experimentally validated (evidence 
codes: EXP, IMP, IPI, IGI, IEP and IDA) gene annotation in Gene Ontology (79,562 pairs) combined with those 
from KEGG and BioCyc pathways (106,276 positive pairs in total) were used for computational validation. We 

Figure 3.  Isoform pair level predictive performance on the simulated data at different multi-isoform gene 
ratios (MGR). The mean difference of the input features between functional related and unrelated isoform pairs 
was fixed at 0.2 (see Fig. 2B). The MGR in A/D, B/E and C/F are 0.2, 0.3 and 0.5, respectively.

Data RNA-seq Exon array Pseudo-AAC Protein-docking Integrated

AUC 0.535 ±  0.0137 0.521 ±  0.0083 0.575 ±  0.0004 0.612 ±  0.0013 0.624 ±  0.0001

Table 1.  Comparison of 5-fold cross-validated prediction for each type of feature data and the integrated 
network.
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randomly generated 5 disjoint training and test sets for cross-validation, and showed the predictive performances 
of single-isoform gene pairs in Fig. 4A. The results from single-isoform gene pairs (true gold standard) are highly 
accurate with AUC being 0.656 ±  0.002, demonstrating that the proposed SIB-MIL method works very well 
also with experimental data. In addition, for multi-isoform gene pairs, we assigned each gene pair a score as 
the maximum probability of all its isoform pairs (since the isoform-level information is not available–unlike 
the simulation studies), under the assumption that co-functionality of a gene pair must be carried out by at 
least one of its isoform pairs. Gene-level prediction results are also provided in Fig. 4B, which are similar to 
that of single-isoform pairs. In addition, we also tested the performance of alternative validation methods using 
pre-filtered feature subsets (Fig. S6). These results are also accurate.

We further validated the predictions with a set of experimentally verified isoform-isoform interaction data 
provided in the Corominas data23. This dataset is recent, and it is the largest isoform-level, experimentally val-
idated interaction dataset that has been generated. In this study, the authors tested a set of multi-isoform genes 
against a set of isoforms for interactions. As a result, for each interacting gene pair, one of the isoform pairs may 
be interacting, while others are not. The uniqueness of this dataset allows us to directly test whether we will be 
able to differentiate the isoform pairs that are truly interacting, against the isoform pairs that come from the same 
gene pair but are not interacting. Based on the supplementary materials of this paper, we obtained a total number 
of 629 isoform pairs that have interactions. Of the 629 pairs, 614 are between genes. These 614 pairs are used as 
positives. The remaining 15 pairs are interactions between the same isoforms and are excluded from this analysis. 
Next, we identified the gene pairs that contain these 614 isoform pairs. These gene pairs contained 1304 isoform 
pairs in total. This means that 690 isoform pairs are not identified as interacting in this experiment. These 690 iso-
form pairs are used as negatives. This set allows us to test whether we can differentiate which isoforms are actually 
interacting, against the isoform pairs coming from the same gene pair but not interacting. This is a desired and 
unique function of the algorithm described in this study.

We found that our predictions are accurate with excellent precision for the top predictions (Fig. 5). The preci-
sion, obtained at the isoform level, is comparable to those of our previous studies obtained at the gene level6,7,45. 
This validates that even for the same gene pair, this method is now capable of differentiating the isoform pairs 
that are truly interacting, versus the ones that are not. This is a capability that is new to this method, and would be 
valuable to the mouse genetics community.

We have built a genome-wide isoform-level network for the mouse by integrating the isoform-level genomic 
features and the gene-level gold standard functionally related gene pairs. We also shuffled the gold standard and 

Figure 4.  Predictive performance for the mouse functional relationship network based on 5-fold cross 
validation. Results are shown for single-isoform gene pairs (A) and multi-isoform gene pairs (B), separately. 
Precision-recall curves for single-isoform gene pairs are presented in (C).

Figure 5.  Experimental testing of the predictions using the validated isoform level protein-protein 
interaction data from Corominas, R. et al. Nat Commun, 2014 (Ref. 23). 
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computed a random network whose isoform pair scores are closely normally distributed with mean 0.050 and 
standard deviation 0.023. Based on this randomization control, a score > 0.119 (3 standard deviation away) in the 
network would be likely non-random.

We next evaluated the accuracy of the newly predicted highest scored isoform pairs (not recorded in GO, 
KEGG or BioCyc) against public databases, including protein-protein interactions49–55, MSigDB gene sets56 and 
Reactome pathways29 (Table 2). These databases provide a rich resource to test the performance of novel pre-
dictions. For multi-isoform gene pairs, we assigned the maximal probability of all its isoform pairs to each gene 
pair. We identified a list of 680, 624 gene pairs with probability >0.95, representing a set of functionally highly 
related gene pairs that were newly predicted. We found that 36.0% of top predicted gene pairs (244,957 gene pairs) 
were supported by co-annotation to the same biological process/pathway or having physical/genetic interactions, 
which is significant (p <  0.000001), compared to 7.0% of randomly generated gene pairs. This result further sup-
ports the high precision of the proposed network prediction model.

The isoform-level network provides a high-resolution view of functional relationships.  We 
found that this isoform-level functional relationship network for the mouse is capable of identifying differential 
functional relationships between isoform pairs belonging to the same gene pair. For example, the local gene-level 
network of Ptbp1 (pyrimidine tract binding protein 1, an element of the spliceosome machinery) describes the 
functional relationship between any two genes with a single probability value (Fig. 6A, left panel). In fact, many 
genes in this network have multiple isoforms. For example, both Ptbp1 and Banf1 have two alternatively spliced 
isoforms. The functional relationship between Ptbp1 and Banf1 in this isoform-level network can therefore be 
dissected into four functional linkages corresponding to four isoform pairs (Fig. 6A, right panel). Among the 
four isoform pairs, the functional relationship of the isoform pair [NM_008956.2, NM_011793.2] is predicted 
to be 0.999, whereas the probabilities of the other three isoform pairs are much lower − 0.233, 0.084, and 0.045, 
respectively.

Such disparities of connections between isoform pairs of the same gene pair are prevalent. To quantify such 
differences, we calculated the ratio of the maximum to the minimum of the predicted probability among all 
isoform pairs of a given gene pair, respectively. For example, this ratio for the Ptbp1 and Banf1 gene pair is calcu-
lated as 0.999/0.045 =  22.2, where 0.999 and 0.045 are the maximum and minimum score between this gene pair, 
respectively (Fig. 6A). From the whole isoform-level network of the mouse, we found that this ratio spans a wide 
range from 1.0 (no difference) to more than 3500 (3500 fold difference) (Fig. 6B). Notably, 25% of these gene pairs 
have a fold change value larger than 3.0, implying that a high proportion of the gene pairs are functionally highly 
differentiated at the isoform level. The significance of the wide ratio span was indicated using a random network 
built with shuffled gold standard (Fig. 6C). These results suggest that difference is prevalent across isoform pairs 
coming from the same gene pair and that this isoform network can reveal such variations.

The isoform-level network reveals functional diversity of different isoforms of the same 
gene.  It is known that proteins encoded by isoforms of the same gene can carry out different and even oppo-
site biological functions, such as pro-apoptotic versus anti-apoptotic actions of bclx-L vs bclx-S and of caspase 3  
(L vs S) and transcriptional activation versus transcriptional repression for odd-skipped 234. Investigating and 
revealing the functional diversity of the same gene achieved by alternative splicing is pivotal to biology. Because 
of its high resolution, this isoform network has the ability to reveal such functional diversity.

To systematically examine the functional diversity represented at the network level, for each of the 3427 val-
idated multi-isoform genes in the RefSeq database, we compared the networks (with the top 25 neighbors) of its 
isoforms and counted the number of shared functionally related neighbors (Supplementary Fig. S7). We found 
that the minimum, mean and maximum numbers of shared neighbors are 0, 4 and 24, respectively. These statis-
tics indicate that many isoforms of the same gene have different functional connections and may participate in 
different biological processes. Based on literature15,30,34,47, we collected a list of genes whose isoforms were shown 
to have different functions, and calculated for each gene the number of shared connections between isoform net-
works (Table 3). For example, Anxa6 has two alternatively spliced isoforms: NM_001110211.1 and NM_013472.4. 
Both isoforms have the same N- and C-termini, but the former encodes a shorter protein by six amino acids 
(525–530) due to the lack of an alternate in-frame exon compared to the latter. As an illustration, we identified the 
local networks of these two isoforms (Fig. 7). Their local networks share only 13 out of 25 neighboring isoforms, 
indicating a diverse functional relationship map of these two isoforms despite similar structures.

Database Validated Random Fold change

Protein-Protein Interactions 350 26 ±  5 13.5

MSigDB gene sets 243447 4308 ±  199 5.7

Reactome pathways 24508 1430 ±  38 17

Total 244957 43246 ±  198 5.6

Table 2.   Validation results of the novel predictions of highly related gene pairs against pathway and 
interaction databases. The novel predictions (680,624 gene pairs with a predicted probability > 0.95) excluded 
those that were initially used in gold standard. The number of validated pairs is significant (p <  0.000001) based 
on 1000 times of randomly generated gene pairs. The protein-protein interaction data were collected from the 
MINT52, MIPS49, DIP58, IntAct55 and BioGRID51 database.
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Figure 6.  The isoform-level network reveals a high-resolution map of gene-gene co-functionality. (A) The 
left panel displays a traditional gene network of Ptpb1. The link between Ptbp1 and Banf1 can be dissected 
into 4 isoform-level linkages. (B) For each multi-isoform gene pair, we calculated the ratio of the maximum 
to minimum probability among all its isoform pairs as a measure of functional linkage diversity of different 
isoform pairs from the same gene pair. Shown here is the distribution of this ratio of 75, 512, 782 gene pairs. 25% 
of the gene pairs have a value larger than 3. (C) We also calculated the ratios of maximum to minimum score of 
multi-isoform gene pairs using a random network built with shuffled gold standard. The values fall into a short 
range from 0 to 1.60, suggesting the significance of functional diversity of different isoform pairs of a gene pair.

Gene Isoforms A Isoform B Nshare

Anxa6 NM_001110211.1 NM_013472.4 13

Cdkn2a NM_009877.2 NM_001040654.1 4

Calu NM_184053.2 NM_007594.3 11

Cflar NM_207653.3 NM_009805.4 10

Lmna NM_001111102.1 NM_019390.2 9

NM_001111102.1 NM_001002011.2 15

NM_019390.2 NM_001002011.2 9

Egfr NM_007912.4 NM_207655.2 7

Ptbp1 NM_008956.2 NM_001077363.1 1

Ola1 NM_025942.2 NM_030091.1 6

Mkl1 NM_153049.2 NM_001082536.1 3

Tufm NM_172745.3 NM_001163713.1 3

Table 3.  Example genes whose isoforms share no or few connections in their networks based on the 
predicted mouse isoform networks. Nshare is the number of shared connections out of the top 25 connections.
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To investigate the functional differences of the genes in the two local networks, we performed Gene Ontology 
(biological process terms) enrichment analysis using the top connected genes in each network (Supplementary 
Table S2). We found that, while sharing the same GO terms (such as GO:0006944 cellular membrane fusion and 
GO:0061025 membrane fusion), the two isoform networks are also enriched for genes annotated to different GO 
biological processes. The isoform network of NM_001110211.1 is enriched for genes associated to vesicle fusion 
(GO:0006906, p =  0.0096), organelle fusion (GO:0048284, p =  0.044), and amino acid activation (GO:0043038, 
p =  0.0262), whereas the isoform network of NM_013472.4 is enriched for genes related to regulation of cell shape 
(GO:0008360, p =  0.0135). These disparate enriched functions strongly support the functional diversity of the two 
isoforms of the Anxa6 gene. This computational modeling of the folding and conformation of the two isoforms 
shows a striking difference in likelihood of phosphorylation in the Thr-Pro-Ser (535–537 vs 529–531) sequence34. 
In addition, the alternative splice isoforms of the Anxa6 gene have been reported to have functional differences 
on catecholamine secretion57, which is consistent with this functional enrichment analysis related to the vesicle 
fusion and organelle fusion (Supplementary Table S2). These results suggest that this isoform-level network is 
able to reveal functional diversity of different isoforms of the same gene and could therefore become a promising 
tool for investigating gene functions at the isoform level. To facilitate new isoform function annotation based on 
this network, we included this enrichment analysis for all local networks of individual isoforms in our website.

Discussion
We have developed a novel Bayesian network-based multiple instance learning approach to probe functional 
relationships at the isoform level, thus being able to provide a higher resolution view compared to traditional 
gene-level networks. Determining functional connections between splice isoforms from the same gene is essen-
tial to functional genomics, which would help deepen our understanding of gene functions and functional rela-
tionships and may provide useful information on diseases caused by alternative splicing. It is widely understood 
that the topology of molecular pathways varies between transcripts or protein isoforms. The current work also 
has limitations since it represents a generic network without considering tissue-specific expression of isoforms 
across tissues or cell types. A major next step is to build tissue, cell-type, and  phenotype-specific networks 
for more refined understanding of functional relationships in a given context both for the mouse and for the 
extension of this strategy into human studies. As an example, isoform networks for normal brain and brain with 
Alzheimer’s disease (AD) would be of interest for understanding perturbed pathways or networks in AD and 
probably heterogeneous causes of AD. The established isoform network provides a first systematic attempt to 
convey isoform-level connection and functional relationships. We expect that isoform-level networks will find 
wide applications in genomic and biomedical applications, and that the current gene-centered network modeling 
approach will be expanded to a more refined isoform level.
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