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Abstract

Background: Uncertainties surrounding the 2019 novel coronavirus (COVID-19) remain a major global health
challenge and requires attention. Researchers and medical experts have made remarkable efforts to reduce the
number of cases and prevent future outbreaks through vaccines and other measures. However, there is little evidence
on how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection entropy can be applied in predicting
the possible number of infections and deaths. In addition, more studies on how the COVID-19 infection density
contributes to the rise in infections are needed. This study demonstrates how the SARS-COV-2 daily infection entropy
can be applied in predicting the number of infections within a given period. In addition, the infection density within a
given population attributes to an increase in the number of COVID-19 cases and, consequently, the new variants.

Results: Using the COVID-19 initial data reported by Johns Hopkins University, World Health Organization (WHO) and
Global Initiative on Sharing All Influenza Data (GISAID), the result shows that the original SAR-COV-2 strain has R0<1
with an initial infection growth rate entropy of 9.11 bits for the United States (U.S.). At close proximity, the average
infection time for an infected individual to infect others within a susceptible population is approximately 7 minutes.
Assuming no vaccines were available, in the U.S., the number of infections could range between 41,220,199 and
82,440,398 in late March 2022 with approximately, 1,211,036 deaths. However, with the available vaccines, nearly 48
Million COVID-19 cases and 706, 437 deaths have been prevented.

Conclusion: The proposed technique will contribute to the ongoing investigation of the COVID-19 pandemic and a
blueprint to address the uncertainties surrounding the pandemic.
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Introduction
The COVID-19 outbreak has remained a universal health
concern that requires urgent attention. Notably, Scien-
tists have pointed out that COVID-19 is the newest
coronavirus species with public health emergency [1–3].
Although several studies have been carried out aimed
to provide useful information regarding the coronavirus
pandemic [4–7], studies are still ongoing to uncover the
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root cause of the pandemic as well as solutions to address
the outbreak. In December 2019, there were clusters
of pneumonia cases in China. Later, investigations dis-
covered that an unknown virus caused such clusters of
pneumonia [8, 9]. The unknown virus is currently called
the 2019 novel coronavirus. Coronaviruses are a large
group of viruses that consist of core genetic materials sur-
rounded by specific protein spikes [10, 11]. Despite their
unique nature, there are different types of coronaviruses
that cause respiratory symptoms. These symptoms may
range from the common cold to pneumonia, as in China’s
case, where it was first identified. These symptoms may
be mild in most cases, whereas some cases are severe.
For instance, fever, cough, and shortness of breath may
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be signs of mild symptoms. On the other hand, pneumo-
nia, kidney failure, and death characterize severe cases.
However, some kinds of coronaviruses are responsible
for severe cases, such as severe acute respiratory syn-
drome coronavirus (SARS-CoV), first discovered in China
in 2002–2003 [12–14]. Another type of coronavirus that
can also cause severe health damage is the Middle East
respiratory syndrome-related coronavirus (MERS-CoV),
identified in the Kingdom of Saudi Arabia in 2012 [15, 16].
Despite the symptoms of MERS-CoV, which include

sore throat, headache, fever, mild cough, tiredness, runny
nose and diarrhea, its transmission among humans
appears to be less harmful [17]. SARS-CoV-2 is charac-
terized by more contagious variants [18–21]. In terms of
structure, the S proteins of SARS-CoV and SARS-CoV-2
are similar [22, 23]. In terms of R0, a daily reproduction
number of 2.68 was reported by Wu et al. for SARS-CoV-
2 [22], equivalent to the reports by both the WHO and
the Chinese Center for Disease Control [24, 25]. A pre-
vious study reported an actual R0 value between 2.0 and
2.5 for SARS-CoV-2, which remains disputed [26]. How-
ever, the disputed R0 values for SARS-CoV-2 are lower
than the 1.7 and 1.9 R0 for SARS and R0 <1 for MERS,
respectively, [26]. In addition, the R0 values for SARS-
CoV-2 have been estimated to range between 2.24 and
3.58 [27], while another study reported a range between
2.0 and 5.0 for SARS [28]. Similarly, certain predictive
models have suggested R0 values of 3.8 (95% CI, 3.6–4.0)
[29] and 3.11 (95% CI, 2.39–4.13) for SARS-CoV-2 [30].
For SARS, the R0 was estimated to be approximately 3.0 if
adequate control measures were not in place [31]. A high
value of 5.8 (confidence interval: 4.7–7.3) for SARS-CoV-2
was reported for the U.S., and a range between 3.6 and 6.1
was reported for some countries in Europe [32]. Notably, a
group of researchers reported a higher R0 value of 6.47 for
SARS-CoV-2 [33]. These high values of R0 indicate that
the SARS-CoV-2 virus has the ability to rapidly mutate
and spread [2, 34].
Notably, COVID-19 poses a health threat and an eco-

nomic threat across the globe [35]. Obviously, the gross
domestic product (GDP) of almost all the affected coun-
tries has dropped tremendously, and as such, goods and
services are affected along the supply chains. Besides, mil-
lions of schools from kindergarten to institutions of higher
learning remain closed. Millions of both private and pub-
lic companies, as well as their respective employers and
employees, are under lockdown. Consequently, millions of
workers have lost their jobs as a result of this pandemic.
Notwithstanding the remarkable achievements of the

existing studies on providing useful information regard-
ing the COVID-19 pandemic, the following gaps exist in
the literature: (1) how the daily infection density attributes
to increase in number of cases, (2) how daily infection
entropy can be applied in predicting the number of cases

and deaths and (3) the average time it may take for an
infected individual to infect a susceptible population in
close proximity.
Therefore, more studies are needed to support medical

expert investigations as well as in their decision-making
processes to uncover novel preventive measures to com-
plement the available vaccines for the 2019 novel coron-
avirus. Hence, to better understand and characterize the
initial behaviour of the virus, the current study aggregates
the number of the initial reported COVID-19 cases before
the emergence of the new variants and the correspond-
ing numbers of deaths for March 2020 in the U.S. Based
on the relevant data obtained, there is an indication that
the daily infection entropy can be applied in predicting
the likelihood of infection at a given period. In addition,
there is a relationship between the daily infection density
and the time of infection. The study therefore hypothesize
that, with the emergence of the new variants, average time
of infection in close proximity is <7 minutes.
Finally, using the initial COVID-19 dataset in the U.S.,

this study shows how SARS-CoV-2 infection entropy can
be applied in predicting the possible number of infections
and deaths within a given population. Such an approach
can be applicable to other disease outbreaks.

Materials andmethods
In this section, we present the measures applied to evalu-
ate the current study. First, infection density (β) is defined
as the ratio of the number of infections at constant pop-
ulation. In this study, the unit of measurement for β is
number per population. Infection acceleration is defined
as the change in daily infection velocity (υi) over time.
Note, the infection acceleration, gain in virus momentum,
rate of infection, and increase in the number of infections
represent the same measure. These measures indicate the
change in behavior of the original SARS-COV-2 virus
strain that may result in transmissible new variants. Other
metrics include: entropy applied to determine the uncer-
tainties in infections and deaths. The entropy is measured
in bits [36].
In Fig. 1, susceptible S, refers to the population who

may be vulnerable to infection, infections (infected) I, are
those who are infected by COVID-19, the recovered R is
referred to those who with no symptom as a result of vac-
cines, antibodies or immune as well as those who may
have died as a result of COVID-19. Considering the Sus-
ceptible Infections and Recovered (SIR) Model, we make
the following assumptions:

1. A constant population with an increasing the number
of infections.

2. Rate of infection in terms of infection acceleration
influences the number of infections within a given
population.
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Fig. 1 SIR Model with infection density. Here β represents the infection density, υ0 represents the initial infection velocity and y0 represents the
initial phase (position) of infection

3. Increase in the number of infections is due to the rate
of daily spread β .

4. The rate of daily spread and the infection density
over a period depends on the rate at which the
susceptible population is exposed to the virus and,
consequently, gets infected. Hence, the rate of daily
spread is equivalent to daily infection density.

5. A given population can easily be infected at close
proximity with an infected individual.

The variables within the SIR model can be represented
mathematically [37–39] as follows:
For the susceptible we have:

dS
dt

= −αSI (1)

where
S = the susceptible,
I = infected,
α = daily reproduction rate and t = time
Assuming a decreasing number of susceptible at constant
population, as S transits to I due to the rate of infections,
the value of S decreases over time. Hence the value of α

will remain (-ve) which shows a decrease in the number
of susceptible [37–39].

For the infected we have:
dI
dt

= αSI − βI (2)

where
S = the susceptible,
I = infected,

α = daily reproduction rate,
β = the rate of daily spread ≡ daily infection density and
t = time
Assuming an increase in the number of infections due

to high contact rate. Hence the value of αSI remains (+ve).
However, if the ratio of daily reproduction rate and the

rate of daily spread is greater than 1, (i.e., α
β

>1), there is
every possibility that the infection will rapidly spread. On
the other hand, if α

β
<1, there could be spread with no

exponential growth [37–39].
For the recovered we have:
dR
dt

= βI (3)

This indicates that those who have recovered from the
infection due to antibodies or vaccines and may not
be reinfected or even those who died. These values are
excluded from the infection over time. Hence the −βI in
dI
dt is regained as +βI as presented in Equation 3.
where
I = infected,
R = recovered,
β = the rate of daily spread ≡ daily infection density and
t = time

Computation of α, β and R0
Note, the daily reproduction rate is computed using the
expression

α = No. of infections − No. of deaths
population size

× 100

α
β

= R0,which represents the basic reproduction num-
ber or the basic reproductive ratio, can be assumed to
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be the expected number of cases resulting from a sin-
gle infection within a population where all individuals are
susceptible. A higher value of R0 means that the infec-
tion would be easily transmitted. R0<1 means that the
new cases will decrease over time, and ultimately, the out-
break will end on its own. R0=1 means the cases may be
stable over time, whereas R0>1 indicates the virus may
be autonomous, mutate into new variants, rapidly spread,
and requires stringent and efficient control measures.
Looking back in March 2020, the virus’s initial behav-

ior shows how the infections will be over time with a high
value of R0. Indicating a significant increase in positivity
rate and new infection clusters, consequently increasing
hospitalizations and deaths.
This implies that the daily infection density character-

izes the daily reproduction rate of the SARS-CoV-2 virus.
Hence,

f (number of infections) ⇒ β

The β is influenced by the number of infections within
the population, which typically depends on the rate of
infections. The rate of infection in this context represents
the acceleration of infection. At a constant population,
an increase in infection rate will lead to an increase in
infection density. Consequently, if the rate (acceleration of
infection) decreases, it will lead to a decrease in infection
density and a decrease in the rate of daily spread.
Thus,

f (infection acceleration) ⇒ number of infections

The above expression implies that the increase in the
number of infections is a function of infection accelera-
tion; hence, increasing the β .
Therefore,

f (infection acceleration) ⇒ β

The infection acceleration is defined as the change in
infection velocity over the change in time as follows:

infection acceleration= change in infection velocity (υi)

time
(4)

At a constant population, the amount of infections and
β within a population change as a result of infection
acceleration. Thus,

β = number of infections
const. population

≡ f (infection acceleration)

const. population
(5)

The β , which depends on the infection acceleration at a
contact population, can be expressed as shown in Eqs. (6)
and (7):

β = f (infection acceleration)

const. population
(6)

β = change in infection velocity (υi)

time
(7)

υi = β × time (8)

where β = daily infection density and vi = change in
infection velocity.
By integrating the υi over time, we obtain∫

υidt =
∫

βdt (9)

β

∫
dt = βt + c (10)

The initial υi before the outbreak equal to zero (i.e.,υi
= 0). Therefore, replacing c with this initial infection
velocity, we have

β

∫
dt = βt + (υi = 0) (11)

To determine the stage of infection in terms of its posi-
tion (yi) within the susceptible population over time, we
apply the velocity relationship [40], expressed as

υ = change in position(yi)
time(t)

(12)

where v = infection velocity.
Hence, to obtain the target infection stage yi with

respect to t, we integrate accordingly yi with respect to t,
we have

yi(t) =
∫

υdt (13)

Under the assumption that (υ = υi), by integrating the
infection velocity over time, similar to Equation (9), yields∫

υdt =
∫

βt + υ0dt (14)

As we hope to determine the infection stage in terms of
the position within a population, there is also a need to
estimate the time these infections occur. From Equation
(14) above, going further, we can determine t of infection
as ∫

βt + υ0dt =
∫

βtdt +
∫

υ0dt (15)

= β

∫
tdt +

∫
υ0dt (16)

= β

(
1
2
t2

)
+ υ0t + c (17)

Here, c which represents the initial infection stage
before the outbreak is equal to zero (i.e., c = yi = 0). In
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addition, at this early stage, the amount of infections as
well as the infection velocity are both equal to zero.

yi(t) = β

(
1
2
t2

)
+ υ0t + (yi = 0) (18)

Hence, if υ = υi, we can now rewrite the above Equation
as;

yi(t) = β

(
1
2
t2

)
+ (υi = 0)t + (yi = 0) (19)

yi(t) = β

(
1
2
t2

)
(20)

To estimate the infection time (i.e., the average time it
take for an infected individual to transmit the virus daily to
a susceptible population at proximity), from the resulting
Equation (19), we have

t =
√
2yi
β

(21)

where yi represents the stage of daily infection within the
population, t represents infection time and β is the daily
infection density.

Entropy
As applied in the current study, entropy can be referred
to as the quantity of information uncertainties acquired
from the information source measured in bits [36]. As the
amount of uncertainties surrounding COVID-19 infec-
tion varies, the concept of entropy is applied to assess the
initial daily infection uncertainties.
Thus, the entropy of an information source s on the daily

infection growth rate (IGR) can be denoted by IGR(s). To
determine IGR(s), we apply

IGR(s) =
n∑

i=1
pi log2

(
1
pi

)
(22)

We can rewrite the above equation as

IGR(s) = p1 log2
(

1
p1

)
+ ... pn log2

(
1
pn

)
(23)

where pi represents the probability outcome for daily
infection with respect to the uncertainties surround-
ing the information source, IGR(s) is the daily infection
growth rate and n is the number of sources of information.

Justification for choice of model
Despite remarkable achievements in the fight against the
virus, there are still unknown factors surrounding the
COVID-19 pandemic. However, the simplicity of our pro-
posed model reveals how important it is to consider all
possible parameters that might be responsible for the
increase in the number of COVID-19 cases, consequently,
the new variants. In addition, it shows how the daily infec-
tion density can be modeled via the SIR model as well

as an easy to replicate approach. Notably, the current
study does not involve any human or animal subjects. This
study relied on the COVID-19 data reported by JohnHop-
kins University [41], the World Health Organization [42]
and the Global Initiative on Sharing All Influenza Data
[43]. These datasets did not indicate the number of hos-
pitalized persons or quarantined individuals but rather a
generalized number of cases and deaths, respectively.

Data collection
The datasets applied in the current study are presented in
Table 1. This study utilizes the initial COVID-19 records
as reported by John Hopkins University [41], WHO [42]
and GISAID [43]. Table 1 presents the number of initially
reported cases with respect to the original strain of SARS-
CoV-2 virus in the U.S.

Accumulated number of infections Icu
The accumulated number of infections represents the
possible number of COVID-19 cases over a given period
(weeks or months) with respect to the average infec-
tion entropy. The accumulated number of infections is
calculated as follows:

Icu(lowerlimit) = Nti(m ∗
( n∑

i=1
pi log2

(
1
pi

))
(24)

Icu(upperlimit) = Nti(m ∗
( n∑

i=1
pi log2

(
1
pi

))
∗ (2) (25)

where
Icu = the accumulated number of infections over a given
period,
Nti = the total number of infected cases at a given period,
m = number of months and pi represents the probability
outcome for daily infection with respect to the uncertain-
ties surrounding the information source.

For example, if the total number of infections in the U.S.,
as of March 31, 2020, is 188,530 cases. To estimate the
lower limit of possible number of infections in late March
2022(24 months apart), using Equation (24), we have:

Icu(lower limit) = 188530(24(9.11)) = 41, 220, 199

To estimate the upper limit of infections using Equation
(25), we have:

Icu(upper limit) = 188530(24(9.11)) ∗ 2 = 82, 440, 398

This number means that in late March 2022, the pos-
sible number of infections in the U.S., may be within the
range of 41,220,199 and 82,440,398 but can be reduced
if the necessary preventive guidelines are followed. Thus,
the difference between the upper limit of infection and
the possible number of cases prior to vaccine roll-out (i.e.,
82,440,398 - 34,350,166 = 48,090,232). This means that
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Table 1 Numbers of reported COVID-19 cases and the corresponding numbers of deaths for March 2020 in the U.S. Here IGR represents
the infection growth rate, DGR represents death growth rate, and β represents the infection density measured in (num/reported cases)

March No. of Reported
Cases

Difference
in the No. of
Cases

IGR No. of
Deaths

Difference
in the No.
of Deaths

DGR Entropy of
IGR & DGR
(bits)

Infection
Density
(β)

R0

1 75 7 0.1 1 0 0 0.12 2.28e-7 0.985

2 100 25 0.33 6 5 5 -11.2 3.04e-7 0.936

3 124 24 0.24 9 3 0.5 0.79 3.76e-7 0.928

4 158 34 0.27 11 2 0.22 0.65 4.80e-7 0.929

5 221 63 0.4 12 1 0.09 0.59 6.71e-7 0.945

6 319 98 0.44 15 3 0.25 0.75 9.68e-7 0.953

7 435 116 0.36 19 4 0.27 0.78 1.32e-6 0.957

8 541 106 0.24 22 3 0.16 0.51 1.64e-6 0.961

9 704 163 0.3 26 4 0.18 0.55 2.14e-6 0.962

10 994 290 0.41 30 4 0.15 0.67 3.02e-6 0.969

11 1,301 307 0.31 38 8 0.27 0.68 3.95e-6 0.971

12 1,630 329 0.25 41 3 0.08 0.41 4.95e-6 0.974

13 2,183 553 0.34 48 7 0.17 0.61 6.63e-6 0.977

14 2,770 587 0.27 57 9 0.19 0.56 8.41e-6 0.979

15 3,613 843 0.3 69 12 0.21 0.64 1.09e-5 0.987

16 4,596 983 0.27 87 18 0.26 0.71 1.39e-5 0.985

17 6,344 1,748 0.38 110 23 0.26 0.78 1.93e-5 0.980

18 9,197 2,853 0.45 150 40 0.36 0.90 2.79e-5 0.984

19 13,779 4,582 0.5 206 56 0.37 0.93 4.18e-5 0.986

20 19,367 5,588 0.41 255 49 0.24 0.74 5.88e-5 0.987

21 24,192 4,825 0.25 301 46 0.18 0.50 7.34e-5 0.988

22 33,592 9,400 0.39 414 113 0.38 0.83 1.02e-4 0.987

23 43,781 10,189 0.3 555 141 0.34 0.73 1.33e-4 0.986

24 54,856 11,075 0.25 780 225 0.41 0.73 1.67e-4 0.983

25 68,211 13,355 0.24 1027 247 0.32 0.69 2.07e-4 0.985

26 85,435 17,224 0.25 1295 268 0.26 0.64 2.59e-4 0.986

27 104,126 18,691 0.22 1695 400 0.31 0.63 3.16e-4 0.984

28 123,578 19,452 0.19 2220 525 0.31 0.54 3.75e-4 0.982

29 143,491 19,913 0.16 2583 363 0.16 0.44 4.36e-4 0.981

30 163,788 20,297 0.14 3141 558 0.26 0.59 4.97e-4 0.981

31 188,530 (Nti) 24,742 0.15 4053 (Ntd) 912 0.29 0.56 5.72e-4 0.978∑ = 9.11
∑ =
12.45

∑ = 8.05

nearly 48 Million Americans have been prevented from
COVID-19 infections and hospitalization since the vac-
cine rolled out. Note (34,350,166 is the upper limit of the
predicted number of infections prior to the vaccines roll
out in February 2021, 10 months apart).

COVID-19 average death growth rate
The average death growth rate represents the uncertain-
ties in the number of deaths over a specified period. This
metric allows us to keep track of the rate of deaths as a

result of COVID-19 over time. The average death growth
rate will also help us estimate the possible number of
future COVID-19 death in the U.S.

Accumulated number of deaths Dcu

The accumulated number of deaths represents the possi-
ble number of COVID-19 deaths cases over a given period
(weeks or months) with respect to the average death
entropy. The accumulated number of deaths is calculated
as follows:
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Dcu = Ntd(m ∗
( n∑

i=1
pi log2

(
1
pi

))
(26)

where
Dcu = accumulated number of deaths at given period,
Ntd = the total number of deaths at a given period,
m = number of months and pi represents the prob-

ability outcome for daily infection with respect to the
uncertainties surrounding the information source.
For example, if the number of deaths in the U.S., as of

March 31, 2020, is 4053 deaths. To predict the possible
number of deaths in late March 2022, using Eq. (26), we
have:

Dcu = 4053(24(12.45)) = 1, 211, 036

This means with no vaccines available, in late March
2022, at least 1,211,036 deaths may be reported in the
U.S., alone. However, with the available vaccines, nearly
706,437 deaths have been prevented.
Note, (504, 599 is the predicted number of deaths prior

to the vaccines roll out in February 2021).

Results
The current study shows that gain in momentum of
COVID-19 is influenced by the number of infections
within a given population, consequently resulting in a
higher daily R0. At constant population, again in the
momentum of infection will result in a gain in infection
density. Therefore, if the growth in momentum decreases,
it will result in a lower infection density and a decrease in
the ratio of daily reproduction rate and the rate of daily
spread, respectively.
Notably, the exponential increase in the number of

infections on a daily basis in March 2020, is character-
ized by high ratio of daily reproduction rate and the
rate of daily spread R0 ≥ 0.9 and R0 <1 for the original
SAR-COV-2 virus strain. However,
On the average infection and death growth rates, IGR

achieved an entropy of 9.11 bits, whereas DGR achieved
an entropy of 12.45 bits, as presented in Table 1. These
uncertainties in terms of information entropy are the
determinants for future forecasts on the possible number
of infections and deaths. Thus, assuming no vaccines
were available, in the U.S., the number of infections
could range between 41,220,199 and 82,440,398, in
late March 2022, with approximately, 1,211,036 deaths.
However, with vaccine roll-out, approximately 48 mil-
lion COVID-19 cases and 706,437 deaths have been
prevented. Furthermore, the current study shows that it
takes approximately 7 minutes on average for an infected
individual to infect others within a susceptible population
in close proximity. Hence, from the initial characteristics
of the SAR-CoV-2 virus, a single person with COVID-19

can infect approximately 9 people within 1 hour and 216
people in a single day in the U.S.

Discussion
In this study, we demonstrated how the daily reproduction
number of SARS-CoV-2 virus can be determined through
the infection density within a given susceptible popula-
tion. In addition, the current study also shows how the
information entropy obtained during the early phase of
the outbreak in the U.S., can be applied as determinants
for predicting the number of infections and deaths. While
numerous underlying but unknown factors surrounding
the spread of COVID-19 still exist [44], these unknown
factors may also avert the reliability of existing models
in predicting and monitoring COVID-19 [45–48]. As a
result, the SARS-CoV-2 virus continues to gain momen-
tum with high stakes on human lives. Hence, it will be
necessary to formulate models that can access the gain in
momentum of the SARS-CoV-2 virus, which enables its
ability to spread, resulting in multiple new variants [49–
52].
As the need for early detection of COVID-19 infec-

tions arises, certain predictive models can be helpful in
identifying potential cases [53]. For instance, a logis-
tic model was used to predict the total number of
infections to be 4 million during the outbreak in the
U.S., [54]. Some of the existing models include but
are not limited to the susceptible-infectious-susceptible
(SIS) model, the susceptible-infected-recovered-deceased
(SIRD) model alongside the SIR model, the infectious dis-
ease dynamics model and the time-dependent dynamic
model previously applied in predicting the outcome of
COVID-19 [44, 55–58]. An infectious disease dynamic
model (SEIR) model was applied to model and predict
the number of COVID-19 cases in Wuhan, China [57].
The results of that study indicate unstable values of
daily reproduction rates, which may lead to a continuous
increase in cases in Wuhan if public health intervention is
not implemented.
A time-dependent dynamic model has been applied as a

measure of public health intervention enhancement strat-
egy through self-isolation [58]. The results obtained using
the time-dependent dynamic model indicated that the
daily reproduction rate of coronavirus has fallen below
1. However, the virus will continue to spread within the
susceptible population [58]. On the possible time to trans-
mit the virus from an infected person to a susceptible
population, a study further reported that it might take
approximately 10 mins for an infected person to produce
6,000 particles of aerosol [51]. These particles may be
potentially harmful and may not be seen easily with the
human eye [59].
A Markovian stochastic framework has been proposed

to analyze both the reproductive ratio and the entropy
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of COVID-19. These results indicated a significant but
steady difference in the COVID-19 reproduction ratio and
entropy, respectively, with a clear indication of the uncer-
tainties surrounding the pandemic [60, 61]. It is therefore
important to note that information entropy can be use-
ful in differentiating between severe and mild COVID-19
patients [62–64].
However, a variation in daily reproduction ratio may

vary from one location to another based on certain param-
eters, such as the stage of the outbreak (i.e., the rate of
infection) [28]. Therefore, it is important to determine
the value of the daily reproduction number at every stage
of infection [28]. One of the factors responsible for the
rapid transmission of COVID-19 is the daily reproduc-
tion number. However, it may be challenging to accurately
determine the daily reproduction number [65, 66].
A compartmental mathematical model was formulated

to predict the evolution of the virus in Cameroon and to
analyze the reported cases in Brazil [67, 68]. The results
achieved using these compartmental mathematical mod-
els indicated that the dynamics of COVID-19 disease are
influenced by variations in the value of R0.
During the early phase of the pandemic, the basic

reproduction ratio was estimated to range between 4.02
to 1.51 and 4.22 ±1.69 for the U.S., and some parts of
Europe, respectively, indicating a variation in the daily
reproduction ratio [69, 70]. This variation in R0 is charac-
terized by the uncertainties surrounding the COVID-19
pandemic [26]. Hence, there is an indication that the R0
for SARS-CoV-2 is higher than the R0 for both SARS and
MERS. As indicated earlier, previous study reported a
range between 1.7 and 1.9 as the value of R0 for SARS
and R0 <1 for MERS while the R0 for SARS-CoV-2 ranges
between 2.0 and 2.5 [26].
This study also recognized some other approaches

applied in uncovering useful information regarding the
pandemic. For example, a study aims to properly iden-
tify critical information in an unprecedented situation
such as this outbreak via a natural language processing
approach to classify COVID-19-related information [71].
Such an approach enabled the extraction of certain pre-
dictor variables that can be used in predicting the amount
of reposted information regarding COVID-19 on social
media [71]. Similarly, a simplemodel constructed from the
rate of social media posts can be used as a reliable predic-
tion model when analyzing the uncertainties surrounding
the pandemic [72]. Hence, accurate predictionmodels can
be useful tools to model the outbreak of the pandemic as
well as in diagnosis prediction [73, 74]. As the fight against
the SAR-CoV-2 virus continues, more studies are needed
to uncover useful information hidden as a result of the
uncertainties surrounding the pandemic.
Despite noteworthy achievements of the existing mod-

els, there is a need to indicate how SARS-CoV-2 infection

entropy can be applied in predicting the possible number
of infections and deaths. In addition, how infection den-
sity within a given population contributes to an increase
in the number of cases as well as the average time it may
take for an infected individual to infect a susceptible pop-
ulation in close proximity. Therefore, the current study is
carried out to fill the gap identified above.

Conclusion and future work
The available COVID-19 vaccines have saved so many
lives in the U.S., and beyond. However, several health con-
cerns and uncertainties that have arisen in the wake of
the COVID-19 pandemic have yet to be fully resolved.
This study presented certain estimation models to deter-
mine the possible number of COVID-19 cases and deaths
before and after vaccine roll-out in the U.S. The proposed
approach shows that a high daily reproduction number for
SARS-CoV-2 virus is characterized by an increase in the
infection density of the original variant.
This study also shows that COVID-19 infection density

can be derived via the Susceptible Infection and Recov-
ered (SIR)model andmay be applicable to other infectious
diseases such as HIV. The initial behaviour of the SARS-
COV-2 virus indicates a high R0. Such information can be
useful in monitoring the behaviour of the virus within a
given period as well as in predicting possible future vari-
ants. On the projections of the pandemic in late March
2022, using the initial SAR-CoV-2 information entropy of
both infection and death growth rates as the determinants
for future forecasts. Assuming no vaccines available in the
U.S., the current study projects that the number of infec-
tions could range between 41,220,199 and 82,440,398,
with approximately 1,211,036 deaths.
Furthermore, the current study shows that it takes

approximately 7 minutes on average for an infected indi-
vidual to infect others within a susceptible population in
close proximity. Hence, from the initial characteristics of
the SAR-CoV-2 virus, this study reports that a single per-
son with COVID-19 can infect approximately 9 people
within 1 hour. Consequently, infecting about 216 people
in a single day.
The proposed approach can enable other researchers

to investigate other unknown factors responsible for the
rapid spread of COVID-19, resulting in the emergence of
new variants. This study therefore, hypothesize that the
new variants (Delta and Omicron) may have a higher daily
reproduction number with less daily infection entropy,
consequently, spread faster and contagious.

Abbreviations
COVID-19: 2019 novel coronavirus; SARS-CoV-2: Severe acute respiratory
syndrome coronavirus 2; WHO: World Health Organization; GISAID: Global
Initiative on Sharing All Influenza Data; U.S.: United States; SARS-CoV: Severe
acute respiratory syndrome coronavirus; MERS-CoV: Middle East respiratory
syndrome coronavirus; GDP: Gross domestic product; SIR: Susceptible
Infections and Recovered; IGR: Infection growth rate; SIS: Susceptible-



Ebubeogu et al. Globalization and Health           (2022) 18:37 Page 9 of 10

infectious-susceptible; SIRD: Susceptible- infected-recovered-deceased; SARS:
Severe Acute Respiratory Syndrome; MERS: Middle East Respiratory Syndrome;
HIV: Human immunodeficiency virus

Acknowledgements
The authors would like to thank the anonymous reviewers for their time and
thoughtful comments while reviewing our manuscript.

Authors’ contributions
Ebubeogu Amarachukwu Felix and Paulinus Ofem design the research and
the proposed method, Chemberline Ekene Ozigbu, Azizi Seixas and Khouloud
Maswadi performed data curation, data preprocessing and formal analysis,
respectively. Donaldson F. Conserve secured the funding, supervision and
corrections. Ebubeogu Amarachukwu Felix and Paulinus Ofem drafted the
manuscript, and all co-authors reviewed the manuscript. The authors read and
approved the final manuscript.

Funding
Not applicable.

Availability of data andmaterials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Software Engineering, University of Malaya, 50603 Kuala
Lumpur, Malaysia. 2Department of Health Services Policy and Management,
Arnold School of Public, Health, 29208 Columbia, SC, United States.
3Department of Prevention and Community Health, Milken Institute School of
Public Health, The George Washington University, 20052 Washington, United
States. 4Department of Psychiatry and Behavioral Sciences, The University of
Miami Miller School of Medicine, 33136 Miami, FL, United States. 5Department
of Software Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
6Department of Management Information Systems, Jazan University, 45142
Jazan, Saudi Arabia.

Received: 3 January 2022 Accepted: 3 March 2022

References
1. Adalja AA, Toner E, Inglesby TV. Priorities for the us health community

responding to covid-19. Jama. 2020;323(14):1343–4.
2. Wu D, Wu T, Liu Q, Yang Z. The sars-cov-2 outbreak: what we know. Int J

Infect Dis. 2020;94:44–8.
3. Hu C, Liu Z, Jiang Y, Shi O, Zhang X, Xu K, Suo C, Wang Q, Song Y, Yu

K. Early prediction of mortality risk among patients with severe COVID- 19,
using machine learning. Intl J Epidemiol. 2020;49(6):1918–29.

4. Gee J, Marquez P, Su J, Calvert GM, Liu R, Myers T, Nair N, Martin S,
Clark T, Markowitz L, et al. First month of covid-19 vaccine safety
monitoring—united states, december 14, 2020–january 13, 2021. Morb
Mortal Wkly Rep. 2021;70(8):283.

5. Ye Q, Zhou J, Wu H, et al. Using information technology to manage the
covid-19 pandemic: development of a technical framework based on
practical experience in china. JMIR Med Inf. 2020;8(6):19515.

6. Kumar A, Gupta PK, Srivastava A. A review of modern technologies for
tackling covid-19 pandemic. Diabetes Metab Syndr Clin Res Rev.
2020;14(4):569–73.

7. Ting DSW, Carin L, Dzau V, Wong TY. Digital technology and covid-19.
Nat Med. 2020;26(4):459–61.

8. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, Fan Y, Zheng C.
Radiological findings from 81 patients with covid-19 pneumonia in
wuhan, china: a descriptive study. Lancet Infect Dis. 2020;20(4):425–34.

9. Wei X-S, Wang X-R, Zhang J-C, Yang W-B, Ma W-L, Yang B-H, Jiang N-C,
Gao Z-C, Shi H-Z, Zhou Q. A cluster of health care workers with covid-19
pneumonia caused by sars-cov-2. J Microbiol Immunol Infect. 2021;54(1):
54–60.

10. Alazawy A, Arshad S-S, Bejo M-H, Omar A-R, Tengku Ibrahim T-A, Sharif
S, Bande F, Awang-Isa K. Ultrastructure of felis catus whole fetus (fcwf-4)
cell culture following infection with feline coronavirus. J Electron Microsc.
2011;60(4):275–82.

11. Hwa K-Y, Lin WM, Hou Y-I, Yeh T-M. Molecular mimicry between sars
coronavirus spike protein and human protein. In: 2007 Frontiers in the
Convergence of Bioscience and Information Technologies. IEEE; 2007. p.
294–8.

12. Peiris J, Lai S, Poon L, Guan Y, Yam L, Lim W, Nicholls J, Yee W, Yan W,
Cheung M, et al. Coronavirus as a possible cause of severe acute
respiratory syndrome. Lancet. 2003;361(9366):1319–25.

13. Xiong X, Chua GT, Chi S, Kwan MYW, Wong WHS, Zhou A, Shek CC,
Tung KT, Qin H, Wong RS, et al. A comparison between chinese children
infected with coronavirus disease-2019 and with severe acute respiratory
syndrome 2003. J Pediatr. 2020;224:30–6.

14. Oxford J, Bossuyt S, Lambkin R. A new infectious disease challenge:
Urbani severe acute respiratory syndrome (sars) associated coronavirus.
Immunology. 2003;109(3):326.

15. Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR,
Gibson-Corley KN, Meyerholz DK, McCray Jr PB. Middle east respiratory
syndrome coronavirus causes multiple organ damage and lethal disease
in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis.
2016;213(5):712–22.

16. Chan JF-W, Lau SK-P, Woo PC-Y. The emerging novel middle east
respiratory syndrome coronavirus: the “knowns” and “unknowns”. J
Formos Med Assoc. 2013;112(7):372–81.

17. Elkholy AA, Grant R, Assiri A, Elhakim M, Malik MR, Van Kerkhove MD.
Mers-cov infection among healthcare workers and risk factors for death:
retrospective analysis of all laboratory-confirmed cases reported to who
from 2012 to 2 june 2018. J Infect Public Health. 2020;13(3):418–22.

18. Ullah A, Mabood N, Maqbool M, Khan L, Khan M, Ullah M. Sar-cov-2
infection, emerging new variants and the role of activation induced
cytidine deaminase (aid) in lasting immunity. Saudi Pharm J. 2021;29(10):
1181–4.

19. Mahase E. Covid-19: Hospital admission 50–70% less likely with omicron
than delta, but transmission a major concern: British Medical Journal
Publishing Group; 2021.

20. Farinholt T, Doddapaneni H, Qin X, Menon V, Meng Q, Metcalf G, Chao
H, Gingras M-C, Avadhanula V, Farinholt P, et al. Transmission event of
sars-cov-2 delta variant reveals multiple vaccine breakthrough infections.
BMC Med. 2021;19(1):1–6.

21. Mohapatra RK, Sarangi AK, Kandi V, Azam M, Tiwari R, Dhama K.
Omicron (b. 1.1. 529 variant of sars-cov-2); an emerging threat: current
global scenario. J Med Virol. 2021;2022:1–4.

22. Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, Dhama K,
Yatoo MI, Bonilla-Aldana DK, Rodriguez-Morales AJ, et al. Sars-cov-2,
sars-cov, and mers-cov: a comparative overview. Infez Med. 2020;28(2):
174–84.

23. Hassanzadeh K, Perez Pena H, Dragotto J, Buccarello L, Iorio F,
Pieraccini S, Sancini G, Feligioni M. Considerations around the sars-cov-2
spike protein with particular attention to covid-19 brain infection and
neurological symptoms. ACS Chem Neurosci. 2020;11(15):2361–9.

24. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KS, Lau EH,
Wong JY, et al. Early transmission dynamics in wuhan, china, of novel
coronavirus–infected pneumonia. New Engl J Med. 2020;382:1–9.

25. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential
domestic and international spread of the 2019-ncov outbreak originating
in wuhan, china: a modelling study. Lancet. 2020;395(10225):689–97.

26. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. Covid-19,
sars and mers: are they closely related?. Clin Microbiol Infect. 2020;26(6):
729–34.

27. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, Lou Y, Gao D, Yang L,
He D, et al. Preliminary estimation of the basic reproduction number of
novel coronavirus (2019-ncov) in china, from 2019 to 2020: A data-driven
analysis in the early phase of the outbreak. Int J Infect Dis. 2020;92:214–7.



Ebubeogu et al. Globalization and Health           (2022) 18:37 Page 10 of 10

28. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of
covid-19 is higher compared to sars coronavirus. J Travel Med. 2020;27:
1–4.

29. Read JM, Bridgen JR, Cummings DA, Ho A, Jewell CP. Novel coronavirus
2019-nCoV (COVID-19): early estimation of epidemiological parameters
and epidemic size estimates. Philosophical Trans R Soc B. 2021;376(1829):
20200265.

30. Read JM, Bridgen JR, Cummings DA, Ho A, Jewell CP. Novel coronavirus
2019-ncov (covid-19): early estimation of epidemiological parameters
and epidemic size estimates. Phil Trans R Soc B. 2021;376(1829):20200265.

31. Organization WH, et al. Consensus document on the epidemiology of
severe acute respiratory syndrome (sars). Technical report, World Health
Organization. 2003.

32. Ke R, Romero-Severson E, Sanche S, Hengartner N. Estimating the
reproductive number r0 of sars-cov-2 in the united states and eight
european countries and implications for vaccination. J Theor Biol.
2021;517:110621.

33. Tang B, Wang X, Li Q, Bragazzi NL, Tang S, Xiao Y, Wu J. Estimation of
the transmission risk of the 2019-ncov and its implication for public
health interventions. J Clin Med. 2020;9(2):462.

34. Li Y-D, Chi W-Y, Su J-H, Ferrall L, Hung C-F, Wu T-C. Coronavirus vaccine
development: from sars and mers to covid-19. J Biomed Sci. 2020;27(1):
1–23.

35. Chakraborty I, Maity P. COVID-19 outbreak: Migration, effects on society,
global environment and prevention. Sci Total Environ. 2020;728:138882.

36. Felix EA, Lee SP. Predicting the number of defects in a new software
version. PloS ONE. 2020;15(3):0229131.

37. Dallas TA, Carlson CJ, Poisot T. Testing predictability of disease outbreaks
with a simple model of pathogen biogeography. R Soc Open Sci.
2019;6(11):190883.

38. De Groot M, Ogris N. Short-term forecasting of bark beetle outbreaks on
two economically important conifer tree species. For Ecol Manag.
2019;450:117495.

39. Kelly JD, Park J, Harrigan RJ, Hoff NA, Lee SD, Wannier R, Selo B, Mossoko
M, Njoloko B, Okitolonda-Wemakoy E, et al. Real-time predictions of the
2018–2019 ebola virus disease outbreak in the democratic republic of the
congo using hawkes point process models. Epidemics. 2019;28:100354.

40. Felix EA, Lee SP. Integrated approach to software defect prediction. IEEE
Access. 2017;5:21524–47.

41. Johns Hopkins University & Medicine. Coronavirus COVID-19 Global Cases
by the Center for Systems Science and Engineering (CSSE) at Johns
Hopkins University (JHU). 2020. https://www.coronavirus.jhu.edu/map.
html. Accessed 02 Apr 2020.

42. World Health Organization. Coronavirus Disease (COVID-19) Outbreak
Situation. 2020. https://www.who.int/emergencies/diseases/novel-
coronavirus-2019. Accessed 02 Apr 2020.

43. Gostin LO. hCoV-19 Tracking of Variants. 2020. https://www.gisaid.org/
hcov19-variants. Accessed 02 July 2020.

44. Pinter G, Felde I, Mosavi A, Ghamisi P, Gloaguen R. Covid-19 pandemic
prediction for hungary; a hybrid machine learning approach.
Mathematics. 2020;8(6):890.

45. Rypdal M, Sugihara G. Inter-outbreak stability reflects the size of the
susceptible pool and forecasts magnitudes of seasonal epidemics. Nat
Commun. 2019;10(1):1–8.

46. Scarpino SV, Petri G. On the predictability of infectious disease outbreaks.
Nat Commun. 2019;10(1):1–8.

47. Zhan Z, Dong W, Lu Y, Yang P, Wang Q, Jia P. Real-time forecasting of
hand-foot-and-mouth disease outbreaks using the integrating
compartment model and assimilation filtering. Sci Rep. 2019;9(1):1–9.

48. Luo J. Predictive monitoring of covid-19. SUTD Data-Driven Innov Lab.
2020;446:1–12.

49. Kannan SR, Spratt AN, Cohen AR, Naqvi SH, Chand HS, Quinn TP, Lorson
CL, Byrareddy SN, Singh K. Evolutionary analysis of the delta and delta
plus variants of the sars-cov-2 viruses. J Autoimmun. 2021;124:102715.

50. Del Rio C, Malani PN, Omer SB. Confronting the delta variant of
sars-cov-2, summer 2021. Jama. 2021;326(11):1001–1002.

51. Asadi S, Bouvier N, Wexler AS, Ristenpart WD. The coronavirus pandemic
and aerosols: Does COVID-19 transmit via expiratory particles? Taylor &
Francis; 2020.

52. Kupferschmidt K, Wadman M. Delta variant triggers new phase in the
pandemic: American Association for the Advancement of Science; 2021.

53. Poletto C, Scarpino SV, Volz EM. Applications of predictive modelling
early in the covid-19 epidemic. Lancet Dig Health. 2020;2(10):498–9.

54. Bhardwaj R. A predictive model for the evolution of covid-19. Trans Indian
Natl Acad Eng. 2020;5(2):133–40.

55. Miller JC. A note on the derivation of epidemic final sizes. Bull Math Biol.
2012;74(9):2125–41.

56. Miller JC. Mathematical models of sir disease spread with combined
non-sexual and sexual transmission routes. Inf Dis Model. 2017;2(1):35–55.

57. Wang H, Wang Z, Dong Y, Chang R, Xu C, Yu X, Zhang S, Tsamlag L,
Shang M, Huang J, et al. Phase-adjusted estimation of the number of
coronavirus disease 2019 cases in wuhan, china. Cell Discov. 2020;6(1):1–8.

58. Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu J. An updated estimation
of the risk of transmission of the novel coronavirus (2019-ncov). Infect Dis
Model. 2020;5:248–55.

59. Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart WD.
Aerosol emission and superemission during human speech increase with
voice loudness. Sci Rep. 2019;9(1):1–10.

60. Wang Z, Broccardo M, Mignan A, Sornette D. The dynamics of entropy
in the covid-19 outbreaks. Nonlinear Dyn. 2020;101(3):1847–69.

61. Bandt C. Entropy ratio and entropy concentration coefficient, with
application to the covid-19 pandemic. Entropy. 2020;22(11):1315.
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