
Peptimetric: Quantifying and
Visualizing Differences in Peptidomic
Data
Erik Hartman1*, Simon Mahdavi1, Sven Kjellström2 and Artur Schmidtchen1,3,4

1Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden, 2Division of Mass
Spectrometry, Department of Clinical Sciences, Lund University, Lund, Sweden, 3Dermatology Skåne University Hospital, Lund,
Sweden, 4Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of
Copenhagen, Copenhagen, Denmark

Finding new sustainable means of diagnosing and treating diseases is one of the most
pressing issues of our time. In recent years, several endogenous peptides have been found
to be both excellent biomarkers for many diseases and to possess important physiological
roles which may be utilized in treatments. The detection of peptides has been facilitated by
the rapid development of biological mass spectrometry and now the combination of fast
and sensitive high resolution MS instruments and stable nano HP-LC equipment
sequences thousands of peptides in one single experiment. In most research
conducted with these advanced systems, proteolytically cleaved proteins are analyzed
and the specific peptides are identified by software dedicated for protein quantification
using different proteomics workflows. Analysis of endogenous peptides with peptidomics
workflows also benefit from the novel sensitive and advanced instrumentation, however,
the generated peptidomic data is vast and subsequently laborious to visualize and
examine, creating a bottleneck in the analysis. Therefore, we have created Peptimetric,
an application designed to allow researchers to investigate and discover differences
between peptidomic samples. Peptimetric allows the user to dynamically and
interactively investigate the proteins, peptides, and some general characteristics of
multiple samples, and is available as a web application at https://peptimetric.
herokuapp.com. To illustrate the utility of Peptimetric, we’ve applied it to a peptidomic
dataset of 15 urine samples from diabetic patients and corresponding data from healthy
subjects.
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1 INTRODUCTION

Although peptides have been studied since the beginning of the 20th century, the practice of
analyzing the complete peptidome of large cohorts of samples has only recently been actualized by
the advancement of biological mass spectrometers, tandem-mass spectrometry techniques (MS/MS)
and computational algorithms [Schrader et al. (2013)]. These new techniques allow for large
screening of endogenous bioactive molecules with great physiological implications which
ultimately may give rise to effective and sustainable pharmaceuticals and diagnostic tools [Lai
et al. (2014)]. New and more advanced mass spectrometers generate progressively more data as
they’re able to identify more peptides and perform searches faster [Timp and Timp (2020)]. Large
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sets of peptidomic data are difficult to comprehend and visualize
without advanced and dedicated programs, and there is therefore
a great need for tools which enable researchers with modest
experience in programming and visualization skills to analyze
their samples.

The nature of peptidomic data makes it highly compatible
with computational algorithms and there are already many
software programs such as MsViz, PepServe and CLaSS which
utilize this fact to map post translational identifications, screen
for antimicrobial peptides, and map the feature space of
peptidomic datasets respectively [Martin-Campos et al. (2017);
Das et al. (2021); Alexandridou et al. (2011)]. In addition to these
softwares there are several packages, mostly for R, with similar
aims, such as seqinR and Pviz [Preston et al. (2020); Sauteraud
et al. (2021)]. These tools have their purposes, however, to our
knowledge, close to no programs exists which aim to visualize the
peptide coverage of complete peptidomes interactively and with
easy access. One useful tool for visualization of multiple
peptidomic samples is Peptigram [Manguy et al. (2017)],
created by Manguy et al. Peptigram allows for easy peptide
visualization using an internet based framework, and connects
with various resources such as Pfam [Mistry et al. (2021)] and
ProViz [Jehl et al. (2016)] to create a comprehensive map of the
peptidome of multiple samples. However, as with every tool, there
are some limitations to Peptigram, especially when it comes to
pre-processing, quantitative comparisons between sample groups
and interactive sample exploration.

The process of producing MS/MS data in data dependent
mode is stochastic and results in variation between samples.
Additionally, variation is added by sampling techniques used
prior to the liquid chromatography tandem-mass spectrometry
(LC-MS/MS) analysis which leads to biases between samples.
These biases are of extreme importance if one tries to find
biomarkers, quantify patterns or statistically determine
correlations. Therefore, peptidomic data regularly require pre-
processing where normalization techniques and cutoffs are
introduced, so that inter-sample biases are minimized and
peptides of low abundance or certainty are removed from the
dataset [Klont et al. (2019)].

Furthermore, scientific hypothesis testing generally consists of
groups of samples, where a difference or correlation of an
observed phenomenon is quantified and its statistical
significance determined. This is especially true of medical and
biological trials, as many studies compare positive samples to a
negative control group. Additionally, the nature of peptidomic
data is highly dependent on the connection between precursor
protein and the resulting peptides. To explore these relationships
effectively a high level of interactiveness is required, where one
can easily switch between investigating the identified specific
endogenous peptides and the sequence coverage from the
corresponding proteins.

In previous work, computation in combination with tools such
as Peptigram was utilized to explore the presence of biomarkers
and endogenous antimicrobial peptides in infected wounds,
further showcasing the applicability and usefulness of
algorithms on peptidomic data [Hartman et al. (2021)]. In this
paper, we have continued to explore and develop algorithms

allowing for massive screening and visualization of peptides in
large cohorts of samples. Ultimately, we’ve created Peptimetric,
an open-source web based application for highly interactive
group comparisons and sample exploration of peptidomic
data, available at http://peptimetric.herokuapp.com.
Peptimetric allows the user to pre-process their data using
different types of normalization and cutoffs to remove biases
which are introduced in sample preparation and subsequent LC-
MS/MS analysis. Thereafter it provides a dynamic graphical
interface where the user may investigate their sample groups
on a protein and peptide level to search for peptides of interest.
Furthermore, the generated figures and tables are readily available
to download for publications or further exploration. Peptimetric
is freely available as an open GitHub repository (https://github.
com/ErikHartman/peptimetric) under an MIT license.

2 METHODS

2.1 Implementation
Peptimetric is implemented as a web application making it
accessible through a web browser without the need for
package or software-installations at (https://peptimetric.
herokuapp.com/). The application is hosted by the cloud
service Heroku [Heroku (2021)]. The front end of the
application is developed in Python 3.8.8 using the Dash library
[version 1.2.0, Plotly (2021)] in combination with Bootstrap
components. Peptimetric is therefore compatible with the
following web browsers: Chrome, Opera, Microsoft Edge and
Firefox and Safari. The complete repository, including the data
files and requirements, are available at GitHub (https://github.
com/ErikHartman/Peptimetric) and is freely available under an
MIT license. The repository may be cloned to run Peptimetric
locally.

2.2 Input Files
Peptimetric is used to visualize and dynamically explore the
differences between the peptidomes of groups of samples.
Therefore, at least one data-file, in a. csv (comma separated
values) format, per group is required to use the application.
However, for statistical analysis, a minimum of three files per
group is required. The files need to include four columns for the
peptide sequence, intensity (or other abundance metric), spectral
count (or other abundance metric) and a protein precursor id
(UniProt id). To accommodate for different raw data processing
softwares, such as PEAKS, the names in table 1 (including
capitalization variations) are accepted for the columns:

All input files are stored on the Heroku server during the
session. A local copy of proteomes fetched from UniProt

TABLE 1 | Allowed column names for the input files.

Peptide sequence Peptide, Sequence

Precursor protein ID Accession, Protein, UniProt ID
Intensity Area, Intensity
Spectral count SpC, Spectral count, #Feature
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TrEMBL in April of 2021 is used to get the FASTA sequences and
UniProt mnemonic protein identifier (e.g. HBA_HUMAN) for
the submitted precursor proteins [Consortium (2020)]. The local
database consists of a subset of proteomes which were chosen due
to their prevalence in biological and peptidomic studies (see table
2 to view the species currently available in Peptimetric).
Additional proteomes are easily added, and we urge
researchers to contact us if they wish to analyze samples from
other species. The local proteome database will be updated if
requested by users.

2.3 Data Processing
The first step of data manipulation performed by Peptimetric is to
take the 10th logarithm (log10) of all intensity values. This is
commonly performed to diminish the exponential nature of MS
intensities and to later provide appropriate quantification for
proteins and peptides as Gaussian (normal) distribution is
assumed [Dufresne et al. (2017)]. If one has already taken the
logarithm of their values, or wishes to leave the intensity values
unaltered, a checkbox in the normalization popup is to be
checked before uploading the files.

Biases are often introduced during sample preparation LC-
MS/MS analysis [Klont et al. (2019); Geyer et al. (2019)]. Some of
these biases may be dealt with when processing the raw files,
however, they may go undetected or one may choose to leave the
samples unaltered to perform post-processing normalization.
Additionally, peptidomic data may include peptides and
proteins with low abundance or certainty which may not be
appropriate to include in peptidomic analyses. Therefore,
Peptimetric includes ways to normalize the input data, as well
as to discard sets of the data based on cutoffs.

Normalization of the data from MS or MS/MS can be
performed in multiple ways, however, Peptimetric
accommodates for two ways of normalization: either by
normalizing on the samples’ global values [Griffin et al.
(2010); Nusinow et al. (2020)) or by normalizing on a
housekeeping protein (Karpievitch et al. (2012)]. When
normalizing by global values, each value in the given sample is
divided by the sum of all values in the sample. This results in the
centering of sample values around a common value
(i.e., normalizing them), however, all values are reduced as a
consequence. To reinstate the values to their original scale, all

samples are multiplied by the average sample value, see
Equation 1.

Global : Ni �
∑

m
j�1Sj
m

× pi
∑

n
i�1pi

(1)

where:
N normalized value.
S total sample value
m number of samples
p peptide value
n number of peptides in sample.
Normalization by a housekeeping protein is performed

similarly to the global normalization, however, instead of
using the total sum based on the complete sample, a
subsection containing peptides from the selected precursor
protein is used for normalization, see Equation 2.

Housekeeping : Ni �
∑

m
j�1Pj

m
× pi
∑

n
i�1pi

(2)

where:
N normalized value.
P total protein value
m number of samples
p peptide value
n number of peptides in protein.
The housekeeping protein may be defined by the user. If the

housekeeping protein is not present in a given sample, the
intensity and spectral count values in the sample are left
unaltered.

Cutoffs are used to remove proteins and/or peptides below
given thresholds and are applied to peptides and proteins
separately. Peptides may be discarded based on intensity,
spectral count and for being retention time (RT) and/or
collision cross section (CCS) outliers. Outliers are defined to
be situated three standard deviations from the mean value as is
common practice when assuming a Gaussian distribution (the
procedure is often denoted as the three sigma rule or 68-95-99.7-
rule). Protein cutoffs may thereafter be applied to remove
proteins with cumulative intensities or spectral counts below a
given threshold. Additionally, a cutoff may be applied to remove
proteins with few peptides. Note that protein cutoffs are applied
after peptide cutoffs. Therefore, proteins which contain many
peptides of low abundance will be removed if the peptide cutoffs
are applied appropriately.

2.4 Experimental Data
To illustrate the utility and typical usage of Peptimetric, a dataset
generated from a study by Van et al. (2020), describing
peptidomic analysis of urine, was fetched from an online
repository. The study profiles the urinary peptides from 15
patients with type-1-diabetes (D) and uses corresponding data
from non-diabetic (ND) subjects for comparison. This study is
well suited for analysis using Peptimetric as it contains groups of
samples and uses a discovery peptidomics approach.
Additionally, the study collected data from a relatively large
population and conducted thorough qualitative and

TABLE 2 | The species currently available in the Peptimetric database, alongside
the number of proteins and UniProt proteome identifier (UPID).

Species Number of proteins Proteome identifier

Homo sapiens (Human) 77,027 UP000005640
Sus scrofa (Pig) 49,792 UP000008227
Rattus norvegicus (Rat) 29,936 UP000002494
Cricetulus griseus (Hamster) 23,885 UP000001075
Mus musculus (Mouse) 55,470 UP000000589
Danio rerio (Zebra fish) 46,849 UP000000437
Drosophila melanogaster 22,114 UP000000803
Caenorhabditis elegans 26,625 UP000001940
Candida albicans 6,035 UP000000559
Escherichia coli 4,273 UP000000318
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quantitative analyses. Details about study population, the sample
generation and preparation are described further in Van et al.
(2020).

The raw files were retrieved from ProteomeXchange
Consortium via the PRIDE partner repository with the dataset
identifier PXD012210 [Protomecentral (2021)]. Van et al. (2020)
usedMaxQuant (version 1.5.3.28) to analyze the raw files whereas
PEAKS Xpro was used in this study. Similar settings were applied
for the search, using a maximum of two modifications per
peptide, allowing the same modifications (methionine and
proline oxidation, N-terminal acetylation). After the database
search the identified peptides were filtered with a cut off using 1%
FDR and a minimum of two peptides per protein. In total, 6,559
and 9,024 unique peptides were identified in the samples from
non-diabetics and type-1-diabetics respectively. Comparatively,
the search conducted by Van et al. (2020) resulted in fewer
peptides, finding 5,011 and 5,708 unique peptides for the
respective groups. The complete files are uploaded to the
GitHub repository, as well as to the Peptimetric server, and
the data may be investigated by any user by clicking “Load
Example Files”.

The complete workflow is described in Figure 1 below. In
summary, the workflow follows the common paradigm in visual
analytics: analyse first - show the important - zoom, filter and
analyse further - details on demand [Schneiderman (1996) Keim
et al. (2008)]. Firstly, an overview is rendered, where all proteins
are visualized. One may zoom and filter this overview, and
thereafter select a protein to subsequently present a view of
the peptide coverage within that protein. Lastly, one may

generate figures to showcase some general characteristics of
the peptides within the selected protein or for the complete
peptidome. The iterative back-and-forth between the protein
view and detailed peptide view and general characteristics, in
combination with filtering and normalization, mimics the sense-
making loop which is paramount in understanding and
visualization [Wijk (2005)].

3 RESULT

After submitting input files into each group, the files are
concatenated and matched against the local database to
retrieve the FASTA sequences and UniProt mnemonic
identifiers. If a submitted UniProt id is not found in the
database, the peptides belonging to the precursor protein will
be discarded from the dataset.

3.1 Protein View
After uploading the files and applying potential normalization
and cutoffs, it is possible to generate a protein graph which
showcases all the precursor proteins present in the samples in the
format of a scatter plot, see Figure 2A. The protein graph allows
the user to visualize the abundance of the proteins based on one of
the following metrics: sum of intensities, mean of intensities, sum
of the spectral counts, and mean of the spectral counts. The
means are calculated by taking the mean of the abundance metric
of all the peptides in each protein, whereas the sum is calculated
by taking the sum of the abundance metric of all the peptides in

FIGURE 1 | An overview of the workflow performed in this study. The raw files, deposited by Van et al. (2020), were fetched from ProteomeXchange Consortium via
the PRIDE partner repository, and searched against a human proteome database using PEAKS Xpro. In Peptimetric, the input files are matched against a local proteome
database which was fetched from UniProt. Normalization and cutoffs are applied to the dataset. The data is visualized in a protein view, which in turn may be used to
generate a peptide view. An overview of some general characteristics may also be generated for either the complete proteome or the selected protein.
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each protein, for each individual sample. Thereafter, the resulting
values are averaged across the samples. This results in a value for
each group, which is plotted as X- and Y-coordinates in the
scatter plot. Alongside with the abundance metric chosen by the
user the protein graph also provides another two dimensions of
visualizing differences between the sample groups, namely: the
number of peptides derived from each precursor protein, which
correlates to the dot size, and the absolute value of the difference
between the chosen abundance metric between the groups, which
is proportional to the color. The color scale used is a standard
diverging scale provided by Plotly (RdYlGn). Since the protein
abundance for each group is plotted along the X- and Y-axis, the
diagonal represents the point of equal abundance between the
groups. Furthermore, the standard deviation of the abundance
metric is off by default but can be displayed in the protein graph.

The protein graph may be manipulated in multiple ways. All
graphs created in Peptimetric are generated with Plotly’s
graphing tools, which provides the user with a built-in
modebar containing tools for e.g., downloading the plots.
Hovering over a protein in the protein graph displays the
metrics for that specific protein. Simultaneously, hovering over
a protein will produce a sample graph (see Figures 2B,C),

containing the abundance metric for each individual sample
for the protein.

All proteins present in the samples are summarized in a
protein table (see table 3). The protein table contains the
UniProt mnemonic protein identifier, UniProt id, number of
peptides, abundance metric value, the standard deviation and the
p-value (although the p-value is only shown if the given protein is
present in three or more samples in each group) for the given
abundance metric between the two groups. The table may be
filtered with regular expression syntax, e.g.: >, ≤, ≥, � (for more
see https://dash.plotly.com/datatable/filtering).

The user is also able to search for all proteins present in the
samples, that have not been removed by any potential cutoffs.
Searching for, clicking on, or selecting a protein in the table
highlights it in the protein graph, making it possible to create a
peptide graph for the highlighted protein.

3.2 Peptide View
Once a protein is selected in the protein view, a peptide view may
be generated to view the peptides of the selected protein. Doing so
results in a peptide graph alongside a peptide table. The peptide
graph follows a visualization convention where the peptides are

FIGURE2 | Protein view. (A) Scatter plot containing all the proteins present in the samples. The size of the dots corresponds to the number of peptides derived from
the precursor protein. The color corresponds to the distance from the line of equal abundance, i.e., the difference in abundance metric between the two groups. (B)
Hovering over the insulin precursor protein results in the presented sample graph. Peptides are only present in non-diabetics. (C) Hovering over uromodulin generates
the presented sample graphs. Uromodulin is varyingly present in both groups.

TABLE 3 | Protein table. The table contains the top five most abundant proteins in both groups.

Protein UniProt id Peptides ND Peptides D Intensity ND ± SD Intensity D ± SD

ALBU_HUMAN P02768 3,134 2,051 131.46 ± 249.49 168.08 ± 231.32
HBA_HUMAN P69905 2,690 752 68.78 ± 197.96 134.78 ± 511.65
K2C6A_HUMAN P02538 1,110 1,605 60.40 ± 187.98 50.20 ± 119.98
SPRR3_HUMAN Q9UBC9 695 1,302 59.83 ± 161.34 44.62 ± 112.55
UROM_HUMAN P07911 489 263 50.09 ± 50.61 57.62 ± 48.66
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mapped onto the complete protein sequence as barcharts. To
allow for easy visualization and quantification of peptide
abundance and coverage, the color of the bars is proportional
to the number of overlapping peptides at each amino acid
position, whereas the height of the bars is proportional to the
used abundance metric, see Figure 3. The discrete color scale
applied to the bars is a subset derived from the “algae” color scale
provided by Plotly. Similarly to the protein view, spectral count
and intensity are available abundance metrics, and the user may
easily switch between the two.

There are two options for graphically representing the
peptidome of the input files: either as individual samples, or
by averaging each group. If viewing each individual sample, the
samples are stacked, whereas when viewing the group average, the
intensity at each position is averaged. To guide the user to
interesting regions of difference, a line corresponding to the
difference of the height at each position is plotted.
Additionally, a horizontal line representing the weight, i.e. the

sum of the chosen abundance metric. All the components in the
graph are displayed as individual traces, and may be hidden/
shown.

A table showing the peptides in the samples is situated
adjacent to the peptide graph. The table shows the peptide
amino acid sequence, the start and end position of the
sequence, as well as the group mean, standard deviation and
p-value of the chosen abundance metric (see table 4). If a peptide
isn’t present in three or more samples in both groups, the p-value
will not be calculated and −1 is presented. The table is filterable
and sortable in a similar manner as the protein table. Each
sequence in the table is selectable and doing so highlights the
peptide region in the peptide graph.

3.3 General Characteristics
The dynamics of the peptidome are largely due to enzymatic
activity, resulting in variations in peptide length and amino acid
profile of the peptides N- and C-terminals. Therefore, Peptimetric

FIGURE 3 | Peptide view of insulin precursor protein (INS_HUMAN) and uromodulin (UROM_HUMAN). (A) The C-peptide (57–87) from the insulin precursor protein
is present in group 1 (non-diabetic). (B) There are two distinct regions present in uromodulin. The second region (430–460) contains the peptides UMOD1-UMOD7 and
was documented by Van et al. [Van et al. (2020)].

TABLE 4 | Peptide table for uromodulin (UROM_HUMAN). The table contains the five most abundant peptides in both groups.

Peptide Start End Intensity ND ± SD Intensity D ± SD

SGSVIDQSRVLNLGPITRKGVQ 588 610 4.68 ± 14.16 0.59 ± 2.30
VGGTGMFTVRM 449 460 2.39 ± 5.31 2.11 ± 5.70
SGSVIDQSRVLNLGPITRK 588 607 2.24 ± 6.00 0.18 ± 0.71
VGGTGMFTVRMA 449 461 1.95 ± 5.17 2.18 ± 5.09
LQPMVSALNIR 438 449 1.62 ± 4.42 2.14 ± 5.70

Frontiers in Bioinformatics | www.frontiersin.org August 2021 | Volume 1 | Article 7224666

Hartman et al. Peptimetric: Visualizing Peptidomic Data

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


includes three relevant general characteristics, which may be
applied to either the peptides in the entire proteome or in the
chosen protein. These include: a histogram over peptide length, a
bar chart showing peptide overlap between the groups, and pie
charts displaying the amino acid profile, see Figure 4.

The length distribution is created by weighting each peptide
with the value of the specific abundance metric, and thereafter
counting the number of peptides with each length. Therefore, if
spectral count is chosen as the abundance metric, a peptide with
the spectral count value of 10 will contribute twice as much to the
length distribution as a peptide with a spectral count value of 5.

The amino acid profiles contain pie charts showing the
distribution of amino acids for the complete amino acid
sequence, the first amino acid (N-terminal) and the last amino
acid (C-terminal), as can be seen in Figure 4C. The abundance of
an amino acid is calculated in the same ways as in the length
distribution, as described above. The color scheme for the pie

charts is created based on the polarity and acidity of the amino
acids and was chosen to accommodate for color blindness
[Alberts et al. (2015)].

3.4 Exploring the Dataset
Investigating the data yielded an overview of the most abundant
proteins in the samples. After normalizing on global values (not
applying any cutoffs) and using the sum of intensities as the
abundance metric, the most abundant proteins were albumin,
hemoglobin alpha, uromodulin, small proline-rich protein 3
(SPRR3) and keratin type II cytoskeletal 6A, which is in line
with the results from Van et al. [Van et al. (2020)]. Additionally,
apolipoprotein A1 and alpha-1-antitrypsin (A1AT) were
noticeably more abundant in the diabetic samples, whereas
insulin precursor protein is only present in non-diabetic
samples (see Figure 2A). It is worth to note that the samples
vary a lot, and no difference was statistically significant on the

FIGURE 4 | General characteristics of the complete peptidomes. (A) The length distribution of peptides, weighted by the abundance metric. (B) Venn bars,
showing the overlap of the peptidomes. (C) Amino acid profile, showing the amino acid prevalence for the complete sequence, as well as the first and last amino acid.
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protein level. Similar conclusions were drawn with all different
abundance metrics.

Van et al. (2020) used a combination of discovery and targeted
peptidomics workflows, alongside specific selection strategies to
finally distinguish 7 C-terminal peptides (UMOD1-UMOD7,
most significantly SGSVIDQSRVLNLGPITRK, 588–606) from
uromodulin as biomarkers for type-1-diabetes. When
investigating the dataset, many peptides derived from this
region were indeed identified (alongside the region 430–460),
and differential expressions between the two groups were
observed, see Figure 3. As mentioned above insulin precursor
protein was not found in the samples taken from the patients with
type-1 diabetes. Investigating insulin precursor protein in the
peptide view showcases that all peptides are derived from the
region 57–87, which corresponds to the well documented
C-peptide [Wahren et al. (2000)]. Although there was only
modest overlap between the peptidomes of the groups (∼
30%), there were no apparent differences regarding peptide
length or amino acid profile between the groups (see Figure 4).

3.5 Limitations
As mentioned, Peptimetric uses a local database fetched from
UniProt to process the input data to reduce loading times. This
results in the disadvantage of limiting the number of species
accessible for analysis as well as not having the latest version of
the UniProt database.

Herokus servers only allow for a limited computation time to
each process (30 s), and processes which surpass the limit are
aborted. This may occur if the user tries to input several large files
with a slow internet connection. If this process is aborted, the user
will not be able to analyze the data, and no partly uploaded data is
stored on the server. If this occurs, concatenating some of the files
manually is recommended, since this will reduce processing time.

Despite these limitations, Peptimetric serves as an interactive
platform for fast and user-friendly exploration of MS/MS data and
for detailed investigations and visualizations of complex data sets.

4 CONCLUSION

Peptimetric allows researchers to effectively and dynamically
process, investigate and explore their peptidomic data. These
traits are highly sought after in a landscape where the throughput
of data is ever growing and where computational algorithms play
an increasingly important role. By implementing an interface
where the user easily gets an overview of both the proteome and
peptidome of a sample, we have created a tool with high
applicability to various peptidomic projects. To illustrate the

utility of Peptimetric, we applied it to a dataset generated by
Van et al. (Van et al. (2020)), where the urinary peptidomes of
type-1-diabetics were studied.

We envision Peptimetric being used to complement other
softwares, such as Peptigram, in the early stages of peptidomic
data analysis, where overview, exploration and quantification
play important roles in the identification of precursor proteins
and peptides of interest. Thereafter, one may export the data
retrieved from Peptimetric for further analysis of e.g., post
translational modifications, enzyme cut sites, screenings for
bioactive peptides or for customized statistical analyses. This
methodology applies to a variety of possible studies as
peptidomics has relevance in basic research and clinical studies.
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