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Abstract: The basal levels of extracellular Zn2+ are in the range of low nanomolar concentrations and
less attention has been paid to Zn2+, compared to Ca2+, for synaptic activity. However, extracellular
Zn2+ is necessary for synaptic activity. The basal levels of extracellular zinc are age-dependently
increased in the rat hippocampus, implying that the basal levels of extracellular Zn2+ are also
increased age-dependently and that extracellular Zn2+ dynamics are linked with age-related cognitive
function and dysfunction. In the hippocampus, the influx of extracellular Zn2+ into postsynaptic
neurons, which is often linked with Zn2+ release from neuron terminals, is critical for cognitive
activity via long-term potentiation (LTP). In contrast, the excess influx of extracellular Zn2+ into
postsynaptic neurons induces cognitive decline. Interestingly, the excess influx of extracellular
Zn2+ more readily occurs in aged dentate granule cells and intracellular Zn2+-buffering, which is
assessed with ZnAF-2DA, is weakened in the aged dentate granule cells. Characteristics (easiness)
of extracellular Zn2+ influx seem to be linked with the weakened intracellular Zn2+-buffering in the
aged dentate gyrus. This paper deals with the impact of synaptic Zn2+ signaling on cognition and its
decline in comparison with synaptic Ca2+ signaling.

Keywords: Zn2+ signaling; hippocampus; memory; Ca2+ signaling; perforant pathway; dentate
granule cell

1. Introduction

Cognitive activity has been closely linked to strengthening and weakening synaptic connections
between neurons that is synaptic plasticity such as long-term potentiation (LTP) and long-term depression
(LTD). The hippocampal formation, which spans the posterior-to-anterior extent of the base of the temporal
lobes, plays a key role in learning, memory, and recognition of novelty [1]. In its transverse axis,
the hippocampal formation consists of the entorhinal cortex, the dentate gyrus, the CA3 and the CA1
subfields, and the subiculum. The entorhinal cortex functions as the gateway into the hippocampal
formation [2]. The entorhinal cortex layer II projects to dentate granule cells via the perforant pathway,
and dentate granule cells project to CA3 pyramidal cells via the mossy fibers. CA3 pyramidal cells
interconnect with other CA3 neurons and project to CA1 pyramidal cells via the Shaffer collaterals. Finally,
CA1 pyramidal cells connect to the subiculum. The entorhinal cortex layer II also projects to CA3 pyramidal
cells, and the entorhinal cortex layer III also projects to CA1 pyramidal cells and the subiculum [3].

In the process of changes in synaptic structure for memory formation, glutamatergic neurons
play a key role in the main neural circuit of the hippocampal formation. Research on synaptic
plasticity opens a window for the molecular mechanisms of memory. Changes in both presynaptic
and postsynaptic strength have been implicated in the mechanisms of LTP and LTD, and attention
has been paid to changes in postsynaptic glutamate receptor density [4]. Intracellular Ca2+ signaling
via the network of signaling molecules controls the glutamate receptor density and induces synaptic
signals, as is observed in learning situations [5], followed by cognitive performance and memory.
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For N-methyl-D-aspartate (NMDA)-receptor-dependent plasticity, the influx of extracellular Ca2+

into postsynaptic neurons through NMDA receptors plays a key role [6]. However, glutamate receptor
activation by excess of extracellular glutamate, which is known as glutamate excitotoxicity [7,8], leads
to a final common pathway for neuronal death and is linked with pathophysiological processes of
neurological disorders [9,10]. CA1 pyramidal cells are the most vulnerable to neurodegeneration in the
hippocampus after stroke/ischemia [11–13]. A well-known fact is that extracellular Ca2+ influx into
postsynaptic neurons, in addition to Ca2+ release from the calcium stores results in neuronal death.

On the other hand, extracellular glutamate signaling also induces cellular transients in Zn2+

concentration, i.e., intracellular Zn2+ signaling, which is required for synaptic plasticity [14,15] and
may have crosstalk to intracellular Ca2+ signaling via calcium channels [16,17]. On the basis of the
subsequent evidence that glutamate-induced neuronal death is due to extracellular Zn2+ influx into
postsynaptic neurons, which is dynamically linked with Zn2+ release from zincergic neurons, a subclass
of glutamatergic neurons that concentrate zinc in the presynaptic vesicles [18–22], this paper deals
with the impact of synaptic Zn2+ signaling on cognitive function and dysfunction in comparison
with synaptic Ca2+ signaling. While the hydrated Ca2+ ion is the major species in intracellular Ca2+

signaling, this is not the case in intracellular Zn2+ signaling because the Zn2+ ion has much higher
affinities for donors of ligands [23]. The Zn2+ ion is different from the Ca2+ and Mg2+ ions because it
forms much stronger complexes with water and various anions and ligands. These characteristics are
important for its synaptic functions.

2. Physiology of Brain Zn2+

Divalent cations such as Ca2+ and Mg2+ are involved in synaptic neurotransmission [24]. Among
divalent cations, Ca2+ concentration is the highest in brain parenchyma cells and is approximately
1.2 mM in the cerebrospinal fluid (CSF) and brain extracellular fluid in the adult rats (Figure 1) [25].
Approximately 2 mM Ca2+ is added to artificial cerebrospinal fluid (ACSF) based on essentiality of
intracellular Ca2+ signaling in neurons and glial cells [26,27]. However, excess influx of extracellular
Ca2+ into neurons is linked with the pathophysiological process of neurodegeneration [28–30].

Figure 1. Zn2+-mediated cognitive decline via rapid influx of extracellular Zn2+. Estimated basal
concentration of extracellular Zn2+ is ~10 nM in the adult brain. When the basal concentration of
extracellular Zn2+ reaches 100 nM in the adult brain, it induces cognitive decline. In contrast, even if the
basal concentration of extracellular Zn2+ reaches 100 nM in the aged brain, it does not induce cognitive
decline, suggesting that the basal concentration of extracellular Zn2+ is ~100 nM in the aged brain.
Extracellular Zn2+-mediated cognitive decline is induced by glutamateric synapse excitation, in which
intracellular Zn2+ may reach 1~10 nM. The synapses are non-zincergic. CC: Ca2+-permeable channels.
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Zinc concentration in the CSF is in the range of 150–380 nM [31–33]. It is estimated that the
basal (static) concentration of extracellular Zn2+ is approximately 10 nM in the brain of the adult rats
(Figure 1) [34]. A small part of extracellular zinc is free ion (Zn2+) in the brain under the basal condition.
To research synaptic function, much less attention has been paid to the essentiality of Zn2+ in brain
extracellular fluid. ACSF, i.e., brain extracellular medium, without Zn2+ has been used for in vitro and
in vivo experiments. It is likely that not only neuronal excitation but also LTP is modified in brain
slices immersed in ACSF without Zn2+, in which original neurophysiology might be modified [35,36].
Clarifying the action of extracellular Zn2+ in the range of physiological concentrations is important to
precisely understand synaptic function. Furthermore, such clarification is also important to understand
the bidirectional action of Zn2+ under physiological and pathological conditions. It is recognized that
low nanomolar concentrations of Zn2+ are more physiological than micromolar concentrations of Zn2+,
which are widely used and often neurotoxic.

Spontaneous presynaptic activity assessed with FM4-64, an indicator of presynaptic activity
(exocytosis), in the stratum lucidum where mossy fibers are contained is significantly suppressed in
brain slices from young rats immersed in ACSF containing 10 nM Zn2+, but not in ACSF containing
10 nM Cu2+ or 10 nM Fe3+, indicating that hippocampal presynaptic activity is enhanced in brain slices
prepared with ACSF without Zn2+ [36]. Suh et al. [37] report that acute brain slice preparations are
poorly suitable to research the role of endogenous Zn2+ released from zincergic neurons. Vesicular
Zn2+ levels are decreased in the process of slice preparation, and in vitro Zn2+ release is reduced to
approximately 25% of in vivo Zn2+ release. While physiological concentration of extracellular Zn2+

is low nanomolar in young rat brain, it may be elevated along with aging (Figure 1), based on the
age-related increase in extracellular zinc concentration in the hippocampus [38].

3. Impact of Synaptic Zn2+ Dynamics on Cognition

Extracellular Ca2+ concentration is not affected by neuronal excitation. In contrast, extracellular
Zn2+ concentration is dynamically increased by zincergic excitation, but not by non-zincergic excitation.
In any case, extracellular dynamics of Ca2+ and Zn2+ is critically linked with their intracellular
dynamics. The basal concentration of intracellular (cytosol) Ca2+ is 10–100 nM, while that of
intracellular Zn2+ is extremely low and estimated to be less than 1 nM (Figure 1) [39,40]. While
intracellular Ca2+ serves as a signaling factor for plastic changes at synapses, intracellular Zn2+ is
increased for not only signaling for plastic changes during learning and cognitive activity but also
plastic changes in synapse structure [41,42]. The optimal range of intracellular Zn2+ increased during
learning and cognitive activity, which is dynamically linked with Zn2+ release at zincergic synapses,
remains to be clarified. Even at non-zincergic synapses, postsynaptic intracellular Zn2+ may reach
~1 nM and the increase originates in internal stores/proteins unlike the neurotoxic increase via
extracellular Zn2+ influx as described below.

LTP at zincergic mossy fiber-CA3 pyramidal cell synapses is induced by the presynaptic
mechanism, in which glutamate release is persistently increased. Mossy fiber LTP induction critically
depends on the rise in presynaptic Ca2+ [43–45], which activates the calcium-calmodulin-sensitive
adenyl cyclase I [46]. Zn2+ released from mossy fibers is immediately retaken up into
presynaptic terminals through Ca2+ channels and activates a Src family kinase, which promotes
tropomyosin-related kinase B (TrkB) activation. The activation leads to the phosphorylation and
activation of phospholipase Cγ1, followed by calcium-calmodulin-sensitive adenyl cyclase I activation.
Zn2+ increases presynaptic glutamate release, while it inhibits postsynaptic mechanism of mossy fiber
LTP via Zn2+ influx [47,48].

LTP at the Schaffer collateral/commissural-CA1 pyramidal cell synapses depends on the
postsynaptic activation of NMDA receptors [49]. NMDA receptor activation increases postsynaptic
Ca2+ concentration, which leads to LTP and LTD. NMDA receptors consist of multiple subclasses [50]
and the subtypes have different sensitivities to Zn2+, an endogenous blocker [51–54]. ZnAF-2DA
is a useful tool to evaluate the direct involvement of Zn2+ in cognitive function. ZnAF-2DA,
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a membrane-permeable Zn2+ indicator, is taken up into neurons through the plasma membrane
and is hydrolyzed by esterase in the cytosol, resulting in the production of ZnAF-2, which cannot
permeate the plasma membrane [55,56]. When ZnAF-2DA is locally injected into the hippocampal
CA1, intracellular ZnAF-2 is detected only in the injected area in the CA1 and can block cellular
transients in Zn2+ concentration (Kd, 2.7 nM for Zn2+). The concurrent evaluations of in vivo LTP and
learning behavior in separated experiments using ZnAF-2DA answer whether the in vivo LTP via
intracellular Zn2+ signaling is linked with learning behavior. The influx of extracellular Zn2+ into CA1
pyramidal cells, which is linked with Zn2+ release form the zincergic Schaffer collateral, is required
for object recognition memory via in vivo Schaffer collateral LTP [57]. Glutamatergic input to CA1
pyramidal cells via the medial perforant pathway (the temporoammonic pathway) from the entorhinal
cortex facilitates memory consolidation [58] and is required for temporal association memory [59]
and spatial working memory [60]. Although the medial perforant pathway from the entorhinal
cortex, is non-zincergic [61], intracellular Zn2+ signaling, which originates in internal stores/proteins,
is required for LTP at medial perforant pathway-CA1 pyramidal cell synapses [62]. It is likely that
intracellular Zn2+ signaling in CA1 pyramidal cells is also involved in cognitive function via in vivo
perforant pathway LTP.

The lateral and medial entorhinal cortices are connected with the dentate gyrus. The lateral
and the medial perforant pathways, which originate in the lateral and the medial entorhinal cortices,
respectively, comprise physiologically distinct inputs to the dentate gyrus. The lateral perforant
pathway transmits nonspatial information, while the medial perforant pathway transmits spatial
information [63]. In regard to LTP at medial perforant pathway-dentate granule cell synapses,
calmodulin-dependent protein kinase II α (α-CaMKII)/brain-derived neurotrophic factor (BDNF)
signaling pathway plays a key role for LTP induction. Zinc deficiency-induced cognitive and synaptic
impairments are linked with disruption of α-CaMKII/BDNF signaling pathway [64]. In dentate
granule cells, intracellular Zn2+ signaling originates in internal stores/proteins and is necessary for
object and space recognition memory via medial perforant pathway LTP [65,66]. In postsynaptic
neurons innervated by non-zincergic medial perforant pathway, glutamate receptor activation triggers
off Zn2+ release from internal stores/proteins that remain to be clarified.

Hippocampal neurogenesis always produces dentate granule cells, in which NMDA
receptor-dependent synaptic plasticity is involved in learning and memory [67,68]. Zn2+ is
concentrated in the dentate gyrus of the hippocampus [69] and is required for neurogenesis process [70].
In human neuronal precursor cells, zinc deficiency induces apoptosis via mitochondrial p53- and
caspase-dependent pathways [71], suggesting that dynamic Zn2+ transport to neuronal precursor cells
is critical for learning and memory via hippocampal neurogenesis [72].

4. Impact of Synaptic Zn2+ Dynamics on Cognitive Decline

Aging has progressive pathophysiological features and is linked with altered cell metabolism,
damaged nucleic acid, oxidative stress, and deposition of abnormal forms of proteins. Aging also
is characterized by cognitive decline, neuronal loss, and vulnerability to neurological disorders [73]
and may be often related with altered Zn2+ homeostasis in the brain [74,75]. Hippocampal zinc
concentration is decreased in aging, which decreases zinc transporter-3 (ZnT3) protein. ZnT3 controls
synaptic vesicular Zn2+ levels. Zn2+ release from zincergic neuron terminals, which dynamically
modifies the basal concentration of extracellular Zn2+, is decreased in aging [74], while the basal
concentration of extracellular Zn2+ may be increased [38], probably as a compensatory mechanism.
A negative modulation of extracellular glutamate signaling by extracellular Zn2+ may be involved in
cognitive function.

Metal chaperones i.e., clioquinol and PBT2, prevent normal age-related cognitive decline [76,77],
suggest that metal chaperones are effective for preventing Zn2+-mediated cognitive decline that is
observed in aging and disease. The hippocampus is vulnerable to Zn2+ neurotoxicity [78] and the
dentate gyrus is the most vulnerable to aging process [2,79]. Although the vulnerability to aging is
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poorly understood, it is possible that synaptic Zn2+ dynamics is involved in the vulnerability. New
granule cells are continuously produced in the subgranular zone of the dentate gyrus (Figure 2) and
the decreased rate of hippocampal neurogenesis is involved in age-related cognitive decline [80].
Neurogenesis-related apoptosis, which seems to be increased along with aging, always occurs in
the dentate gyrus. In the subgranular zone, the apoptosis locally increases extracellular K+ and
the increase is due to the efflux of intracellular K+ (approximately 140 mM) by disruption of the
plasma membrane. The increase in extracellular K+ may excite granule cells and pyramidal basket
cells, which exist nearby in the dentate gyrus, and disturbs intracellular dynamics of Ca2+ and Zn2+

(Figure 2). As a matter of fact, both memory acquisition via LTP induction and memory retention via
LTP maintenance are impaired after local injection of high K+ into the dentate gyrus [81–83] or the
CA1 [84]. The impairments are due to an increase in intracellular Zn2+, but not that in intracellular
Ca2+, because the impairments are rescued with CaEDTA, which forms membrane-impermeable
ZnEDTA in the extracellular compartment and inhibits the influx of extracellular Zn2+, but not that
in extracellular Ca2+ [82]. The evidence indicates Zn2+-mediated cognitive decline via transient Zn2+

accumulation in dentate granule cells (Figure 1) and CA1 pyramidal cells.
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Figure 2. Neuronal depolarization via neurogenesis-related apoptosis. Neurogenesis-related apoptosis
increases extracellular K+ concentration ([K+]o), which is due to the efflux of intracellular K+ as shown
by red arrows, in the dentate granule cell layer and can lead dentate granule cells to depolarization,
followed by extracellular Zn2+ influx-mediated cognitive decline. The blue arrow shows the process of
neurogenesis and red up-arrows show the process of apoptosis and efflux of intracellular K+. [K+]i:
intracellular K+ concentration.

If the basal level of extracellular Zn2+ is increased age-dependently in the hippocampus
(Figure 1) [38], it is estimated that Zn2+-mediated cognitive decline more readily occurs in the aged
brain. High K+-induced increase in intracellular Zn2+ is facilitated in the aged dentate gyrus and leads
to attenuating both LTP induction and maintained LTP at medial perforant pathway-dentate granule
cell synapses of aged rats [38,83], suggesting that the influx of extracellular Zn2+ into dentate granule
cells more readily occurs in aged rats and is a cause of age-related cognitive decline via attenuation of
LTP. It is likely that neurogenesis-related apoptosis is involved in Zn2+-mediated cognitive decline.
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GluR2-lacking calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)
receptors are involved in Zn2+-mediated neurodegeneration in the hippocampal CA1 and
CA3 [18,85,86]. In the hippocampus, the levels of GluR1 and GluR2 mRNA are highest in the dentate
gyrus and the GluR1/GluR2 mRNA ratios are elevated along with aging [87]. The findings suggest
that Zn2+ influx through Ca2+-permeable AMPA receptors, which more readily occurs in the aged
dentate gyrus, plays a key role for cognitive decline [38,83]. Intracellular Zn2+ can reach approximately
10 nM via the rapid influx of extracellular Zn2+ (Figure 1) [34]. Both increases in extracellular Zn2+ and
Ca2+-permeable AMPA receptors contribute to Zn2+-mediated cognitive decline in aging.

Although intracellular Zn2+ level in the process of LTP maintenance is unknown, LTP maintenance
at medial perforant pathway-dentate granule cell synapses is affected by chelation of intracellular
Zn2+ with intracellular ZnAF-2 [66] and the aged dentate gyrus is more susceptible to the chelating
effect on LTP maintenance [83]. When ZnAF-2DA is used as an index of the capacity binding
intracellular Zn2+, interestingly, the capacity of intracellular ZnAF-2 for binding intracellular Zn2+ is
more rapidly lost in the aged dentate molecular layer where medial perforant pathway-dentate granule
cell synapses are contained than in the young dentate molecular layer, suggesting that intracellular
Zn2+-buffering is weakened in the dentate gyrus along with aging (Figure 3) [83]. Characteristics
(easiness) of extracellular Zn2+ influx may be linked with weakened intracellular Zn2+-buffering
in the aged dentate gyrus [28]. Although the actual state of intracellular Zn2+-buffering is poorly
understood, Ca2+-permeable channels, zinc transporters (ZIP and ZnT), zinc-binding proteins such as
metallothioneins, and Zn2+-containing internal stores are involved in the Zn2+-buffering system.
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Figure 3. Is intracellular Zn2+-buffering weakened in the dentate gyrus along with aging? In vivo
intracellular Zn2+-buffering is assessed in the dentate molecular layer where non-zincergic media
performant pathway (MPP)-dentate granule cell synapses are contained. Intracellular ZnAF-2, an index
of intracellular Zn2+-buffering capacity, can bind Zn2+ at young MPP synapse 2 h after ZnAF-2DA
injection into the dentate molecular layer, but not at aged MPP synapses. Capacity of intracellular
ZnAF-2 for binding intracellular Zn2+ is more rapidly lost in in aged dentate gyrus, probably due to
easiness of extracellular Zn2+ influx, suggesting a reduced capacity of intracellular Zn2+-buffering in
aged dentate gyrus. ZIP: Zrt/Irt-like proteins.
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5. Perspectives

Vulnerability to Ca2+ dysregulation has been observed in the process of brain aging [88–90].
It has been reported that Ca2+ dysregulation is not ubiquitous. The mechanisms of dysregulation
are observed in specific cell populations and areas in the brain. For example, L-type Ca2+ channels
is age-dependently increased in hippocampal pyramidal cells [91]. Age-dependent reduction in the
NMDA receptor function is observed in the hippocampus and the frontal cortex [92], suggesting
a compensatory mechanism to availability/restriction for intracellular Ca2+ signaling. Intracellular
Ca2+-buffering, which is involved in cognitive function, is weakened during brain aging [89].
In contrast, intracellular Zn2+-buffering is also dynamically involved in cognition and its decline.
However, the Zn2+-buffering system is more poorly understood than the Ca2+-buffering system,
and its clarification is required for understanding cognition and its decline.
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