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Abstract

The information encoded in cortical circuit dynamics is fleeting, changing from moment to

moment as new input arrives and ongoing intracortical interactions progress. A combination

of deterministic and stochastic biophysical mechanisms governs how cortical dynamics at

one moment evolve from cortical dynamics in recently preceding moments. Such temporal

continuity of cortical dynamics is fundamental to many aspects of cortex function but is not

well understood. Here we study temporal continuity by attempting to predict cortical popula-

tion dynamics (multisite local field potential) based on its own recent history in somatosen-

sory cortex of anesthetized rats and in a computational network-level model. We found that

the intrinsic predictability of cortical dynamics was dependent on multiple factors including

cortical state, synaptic inhibition, and how far into the future the prediction extends. By

pharmacologically tuning synaptic inhibition, we obtained a continuum of cortical states with

asynchronous population activity at one extreme and stronger, spatially extended synchrony

at the other extreme. Intermediate between these extremes we observed evidence for a

special regime of population dynamics called criticality. Predictability of the near future

(10–100 ms) increased as the cortical state was tuned from asynchronous to synchronous.

Predictability of the more distant future (>1 s) was generally poor, but, surprisingly, was

higher for asynchronous states compared to synchronous states. These experimental

results were confirmed in a computational network model of spiking excitatory and inhibitory

neurons. Our findings demonstrate that determinism and predictability of network dynamics

depend on cortical state and the time-scale of the dynamics.

Introduction

Concepts like “train of thought” or “stream of consciousness” evoke a picture of ongoing brain

function in which thoughts at one moment are inextricably linked with those of the recent

past. The neural underpinnings of such temporal continuity of brain activity are largely

unknown. At a basic physiological level, it is clear that the action potentials at one moment are

caused, in part, by those occurring in the recent past, and those in turn, from earlier neural

activity. However, the synaptic interactions that mediate such temporal evolution of neural

activity can be strongly modulated, resulting in qualitatively diverse states of neural dynamics,
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depending on behavioral or pharmacological factors [1,2]. For instance, changes in levels of

arousal [3–6], body motility [3], sleep [7], anesthesia [6,8–10], and the balance of excitation

and inhibition [11] can incur dramatic changes in dynamics in cerebral cortex. In this context,

it stands to reason that, the temporal continuity of neural activity should depend on the corti-

cal state. To test this hypothesis, we measured how well cortical population activity can be

predicted based on its own recent history. We interpret the degree of predictability as a quanti-

tative proxy for the degree of temporal continuity. We experimentally measured ongoing pop-

ulation neural activity in the cortex (multi-site local field potential) and in a computational

model network of spiking excitatory and inhibitory neurons. We measured predictability

across a continuum of different cortical states incurred, in part, by tuning synaptic inhibition.

The continuum of states ranged from asynchronous, weakly correlated activity to strongly

fluctuating, synchronous activity. Confirmed by our experiments and our model, we found

that predictability does indeed exhibit a complex dependence on cortical state. For short term

predictions (<50 ms) asynchronous cortical states were less predictable than synchronous

states. Surprisingly, the reverse was true for longer term predictions (> 1s)–the synchronous

state was less predictable than the asynchronous state. However, all long term predictions were

rather poor. Together, our experimental and computational results suggest that temporal con-

tinuity of ongoing cortical activity can be dramatically altered by tuning inhibitory synaptic

interactions or by other means of tuning the cortical state.

Results

We studied temporal continuity and predictability of neuronal network dynamics in experi-

ments and in a computational model. In experiments, we recorded multi-unit activity (MUA)

and local field potential (LFP) in somatosensory cortex of anesthetized male rats using

32-channel micro-electrode arrays (Fig 1). Our model consisted of 2952 spiking neurons– 80%

excitatory, 20% inhibitory—placed on a two-dimensional grid with spatially localized connec-

tivity. The model neuron dynamics were simulated using established computationally efficient

methods [12]. Model spiking activity was compared with experiment MUA. Experimental

measurements of LFP were compared with the average membrane potential of groups of

model neurons (32 groups, akin to the 32 electrodes in experiments, each group was com-

prised of 81 neurons in a 9 x 9 grid). In the following results, we will first describe how we

imposed changes in cortical state and how we quantitatively assessed such changes. Second,

we will describe how we measure predictability and how predictability depends on cortical

state.

In both the experiments and the model, we manipulated inhibitory synapses to change the

dynamical state of the neuronal population. In experiments, inhibition was manipulated

pharmacologically with GABAA agonist muscimol or antagonist bicuculline. Moreover, in

experiments, the dynamical state exhibited changes without direct experimental control, as

observed in previous studies of urethane anesthetized animals [13,14]. Our data analysis

accounts for both the spontaneously occurring shifts in state and the pharmacologically

induced shifts, as we describe further below. In both the experiment and the model, we found

that enhanced inhibition resulted in asynchronous, low rate population activity, while reduced

inhibition typically resulted in large bursts of correlated activity (Fig 1).

We quantitatively assessed changes in the dynamical state of the network based on the prev-

alence of different spatiotemporal scales of population activity. More specifically, we analyzed

distributions of ‘avalanche’ sizes. An avalanche is a period of elevated population activity,

which we defined based on MUA spike count time series for the entire population, as other in

recent studies [15–17]. In brief, an avalanche is defined as an excursion above a threshold level
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of spiking. The size of an avalanche is defined as the total number of spikes that occur during

this period of above-threshold activity. Distributions of avalanche sizes reveal how often large

avalanches occur relative to small avalanches, thus assessing the prevalence of different spatio-

temporal scales of population activity (Fig 2a and 2d).

A convenient parameter to index the continuum of observed cortical states, called κ, was

developed in previous studies of neuronal avalanches [15,18,19]. Based on cumulative proba-

bility distributions (Fig 2b and 2e) κ quantifies how an observed avalanche size distribution

deviates from a -1.5 power law. When κ was less than 1, large avalanches were rare and the size

distribution was close to exponential in form. When κ was greater than 1, large avalanches

were dominant, typically exhibiting a bimodal distribution of sizes. Intermediate between

these extremes, avalanches occurred with diverse sizes and the size distribution had a form

close to a power law with exponent -1.5. By definition, a perfect match to -1.5 power law corre-

sponds to κ = 1. Importantly, κ allows quantitative comparison of experimental and model

results, because κ is readily obtained from both.

To determine how the temporal continuity of cortical population dynamics depends on

cortical state changes, i.e. changes in κ, we next computed the predictability of population

dynamics. We computed predictions of many short periods of ongoing activity and averaged

them to assess the overall predictability Q of a given recording. The first step in computing a

Fig 1. Tuning inhibition to alter the cortical state. For both our experiment (a-c) and our model (d-f), we studied a range of cortical states

characterized at one extreme by asynchronous firing and low amplitude LFP (a, d) and at the other extreme by firing synchrony and large

amplitude LFP (c, f). These extremes were typically observed when inhibition was increased or decreased, respectively. In between the

extremes, population spiking was more varied and LFP was moderate in amplitude (b,e). The shown model examples were computed with

IC = -75 (increased inhibition), IC = -28.5 (normal), and IC = -7.5 (reduced inhibition).

https://doi.org/10.1371/journal.pone.0173658.g001
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prediction was to fit an autoregressive model to a short duration TF of local field potential

(LFP) recorded from 32 electrodes (Fig 3a), similar to other recent studies [9,20]. After fitting

the autoregressive model, it was used to predict LFP during a short time window TP immedi-

ately following the fitting time window (Fig 3a). An autoregressive model is meant to handle

continuous variables, and thus, is a natural choice for assessing predictability of LFP. Although

an autoregressive model is a linear model, and cortical dynamics are certainly nonlinear, it is

expected that, over sufficiently short times, nonlinear dynamics can be well approximated by a

linear model. Indeed, our predictions were often quite high in quality for short time periods

(Figs 3c,3e and 4). However, we do not know a priori what duration is sufficiently short for

such a linear approximation to be accurate. Indeed, as we will show below, the efficacy of such

linear modeling can depend sensitively on changes in cortical state. Rather than pick a single

time period TP, we studied a range of time windows TP from 50 ms to 2 s. We also examined a

range of fitting time window durations TF from 0.8 to 2 s. As expected, shorter times were

much more predictable than longer times, i.e. prediction quality Q was highest for short TP; Q

Fig 2. Parameterizing the cortical state based on avalanche distributions. For both the experiment (a-c) and the model (d-f), we

indexed the continuum of observed cortical states based on the prevalence of different spatiotemporal scales of activity. a) Each line shows

one probability density distribution of avalanches obtained from one 20 min experimental recording of ongoing activity (shifted vertically to

facilitate comparison of the distribution shapes). Both vertical and horizontal axes are logarithmic. Vertical scale bar indicates 5 orders of

magnitude. The colored dot beside each distribution indicates the experimental drug condition (black—no-drug; blue—muscimol; pink—

bicuculline 20 μM). A subset of all experiments is shown. Line color indicates the κ value, which measures deviation from a power-law

distribution with exponent -1.5 (black dashed line). When large bursts of population activity are dominant κ>1 and when large bursts are

absent κ<1. b) The probability distributions shown in panel (a) are shown here as cumulative distributions. Color indicates κ, which is defined

as the mean of 10 differences (equally spaced across the horizontal axis) between the measured distributions and the reference power-law

distribution (black dashed). One distribution for each experiment is shown. c) Shown are the upper and lower quartiles, median, and range

(box bottom, top, midline, and error bars, respectively) of κ values for each drug condition. Note that decreasing or increasing inhibition

systematically increases or decreases κ, respectively. d-f) The model results closely parallel the experimental findings. In the model, we

treat the pharmacological changes by directly tuning the strength of inhibitory connections (IC). Tuning IC in the model resulted in a family of

avalanche size distributions similar to those observed in the experiments.

https://doi.org/10.1371/journal.pone.0173658.g002
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also depended on TF, but not as strongly as it depended on TP (Fig 4). We also note that the

prediction is more effective in restricted frequency bands, compared to broadband LFP (Fig

4), generally slow frequencies (1–5 Hz) were most accurately predicted. Moreover, the time

resolution of the data (i.e. the sample rate) can also significantly influence predictability (Fig

4). Generally, we found that predictability depended on TP, TF, frequency band, and time reso-

lution in a similar way for the experiment (Fig 4a) and the model (Fig 4b).

Finally, we determined how predictability depends on the cortical state, i.e. how Q depends

on κ for broadband LFP (1–100 Hz) both in the experiment and the model (Fig 5). In our

experiments, we found that for short time predictions (small TP), Q rises gradually as κ is

increased from 0.7 to near 1 and then increases more sharply for κ>1. For longer time predic-

tions (large TP), we were surprised to find precisely the opposite trend; Q falls gradually as κ is

increased from 0.7 to near 1 and then decreases more rapidly for κ>1. However, all predic-

tions for large Tp were rather poor. More quantitatively, we found that for 50 ms< TP < 75

ms, Q and κ were correlated with Spearman’s ρ = 0.44 (p< 10−4).

To better understand the sources and significance of this relationship, we did a control

analysis based on phase shuffling LFP before computing Q. Phase shuffling was performed

Fig 3. Measuring predictability of multisite LFP. a) We fit an autoregressive model to a period of recorded

data of duration Tf. This fit is based on all 32 channels, even though only one channel is shown here. We

predict a period of duration Tp following the fitting time window. The prediction (blue) is compared with the true

measured data (red) to assess the efficacy of the prediction Q. Shown are examples of a poor prediction from

the experiment (b), a good prediction from the experiment (c), a poor prediction from the model (d) and a good

prediction from the model (e).

https://doi.org/10.1371/journal.pone.0173658.g003
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independently for each electrode, thus destroying inter-electrode correlations, but preserving

the basic character of fluctuation on each electrode. These control Q values (dashed lines in

Fig 5a) were insignificantly correlated with κ (ρ = 0.16, p<0.2), for 50 ms< TP < 75 ms. At

longer timescales, 1 s < TP < 2 s, real Q and κ were strongly anticorrelated (ρ = -0.59,

p< 10−7), while control Q was uncorrelated (ρ = -0.22, p< 0.1). For intermediate timescales,

100 ms< TP < 150 ms, real Q and κ were correlated (ρ = 0.30, p< 0.01), while control Q was

uncorrelated with κ for this TP range (ρ = 0.004, p< 0.9). For 200 ms< TP < 300 ms, neither

the real Q nor control Q was correlated with κ. The fact that phase shuffling the LFP before

computing predictions destroyed the trends in Q vs κ for short and long time scales indicates

that these trends cannot be explained by considering basic single-electrode properties of LFP

fluctuations (amplitude, power spectrum, autocorrelation) across different cortical states.

Indeed, phase shuffling preserves these properties at the single-electrode level. Moreover, since

our phase shuffling control destroys inter-electrode correlations, inter-electrode interactions

must play a role in determining state-dependence of predictability, rather than simpler predic-

tion based on an electrode’s own history.

These data demonstrate that the highly synchronous state with κ>1 is relatively difficult to

predict at long times, but quite predictable at short times. This variability in predictability

across timescales is less dramatic for asynchronous cortical states with κ<1. Moreover, the

mean predictability across timescales is highest in the synchronous state and lowest in the

asynchronous state. A balance is found for intermediate states with κ~1; the mean predictabil-

ity is not too low, and the variability in predictability is not too high. These experimental

results were in good agreement with our model results, but the model allowed us to extend the

range of κ values to higher values. For these extremely synchronous states, the model revealed

a drop in predictability for the highest κ values (κ>1.3) even for short time predictions.

Fig 4. Predictability depends on time scales. Here we show how predictability Q (color) depends on the fitting time Tf, the prediction time

Tp, time resolution of the recording TRES, and frequency band of filtering. The example experiment (a) is from a no-drug recording with κ =

0.99. The example model dataset (b) was simulated with IC = -30 and κ = 0.95. We find good agreement between the experiment and

model. Predictions are more sensitive to changes in TP than TF. Low frequencies are more predictable than high frequencies for small TP,

while the opposite is true for longer TP.

https://doi.org/10.1371/journal.pone.0173658.g004
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Discussion

Here we measured multisite ongoing population activity in anesthetized rat somatosensory

cortex. We showed that LFP can be predicted for short periods based on its own history using

a simple autoregressive model, but that the efficacy of prediction depended sensitively on the

cortical state and how far into the future the prediction was attempted. Based on distributions

of population activation events, called neuronal avalanches, we parameterized a continuum of

cortical states ranging from asynchronous, weakly correlated activity to large-scale synchro-

nous activity. We found that near future (~10–100 ms) predictability is lower for the weakly

correlated end of the continuum compared to synchronous states. This trend reverses for lon-

ger term predictions (~1 s); the synchronous state was less predictable than the asynchronous

state. We observed a similar continuum of states and relationship between predictability and

state in a network model of spiking neurons.

Previous studies have also addressed the predictability of ongoing cortical dynamics

[14,21,22], usually with a goal of explaining trial-to-trial variability in response to sensory

input. Our results suggest that such trial-to-trial variability may also depend on network state.

We leave this interesting question open for future studies.

We parameterized the continuum of observed cortical states using κ, which measures how

the avalanche size distribution deviates from a power law with exponent -1.5, as in previous

Fig 5. Time-dependent reversal of predictability vs. cortical state. a) For short-term predictions (TP = 10–100 ms, purple),

mean predictability rises as the cortical state is tuned from asynchronous to synchronous, i.e. for increasing κ. For longer-term

predictions (TP = 1–2 s, red), this trend reverses; low κ is more predictable than high κ. Each curve summarizes data from all

experiments (n = 72). Solid lines indicate the median. Shaded region delineates quartiles. Dashed lines represent the mean

control data obtained by phase shuffling the LFP before computing predictions. Vertical axes are logarithmic. b) We observed the

same trend in the model for the experimentally observed range of states (0.8 > κ > 1.3). For more extremely synchronous states

(κ > 1.3) the model revealed a decline in predictability for all prediction durations. c) The model data predictability values are

shown versus inhibitory synapse strength IC. The <Q> values in this figure (all panels) represent an average of Q over all TF, all

TRES, and a range of TP for each dataset.

https://doi.org/10.1371/journal.pone.0173658.g005
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studies [11,15,17,19,23]. Such power law distributed avalanches are predicted to occur at the

critical point of a phase transition [24–26]. The hypothesis that cortical network dynamics can

be tuned through a phase transition has a long history with origins in statistical physics

research and, more recently, growing support from neuroscience experiments [19,27–31].

Near the ‘center’ of our observed continuum of cortical states, we found κ�1, i.e. avalanche

size distributions that were close to power law in form. This observation suggests that the con-

tinuum of cortical states we observed spans a critical phase transition, both in the experiment

and the model. In this context, our observations suggest that, for both short and long time

scales, criticality marks the tipping point between low to high predictability. However, which

way the predictability tips, toward high or low values, depends on the time scale of prediction.

Although many types of phase transitions can occur in different systems, all can be character-

ized as a transition between an ordered phase and a disordered phase. In the context of our

findings, the disordered phase corresponds to the asynchronous, low kappa end of the cortical

state continuum. The ordered phase corresponds to the synchronous, high kappa end of the

continuum. From this point of view, it is perhaps not surprising that the ordered phase is

more predictable than the disordered phase, as we see for the short term predictions. However,

the drop in predictability in the ordered phase for longer time scales is more surprising.

One limitation of our work is that the continuum of cortical states was observed in anesthe-

tized animals. Thus, it remains for future experiments to test whether a similar continuum of

cortical states and corresponding predictability exists during wakefulness. This possibility is

plausible, because previous studies have demonstrated behaviorally relevant changes in κ. For

example, EEG recordings in humans suggest that sleep deprivation can elevate κ [32], while

increased attention to a reaction time task can decrease κ [33]. Another study has shown that

as a mouse awakens following pentobarbital anesthesia, κ decreases from values typically >1

to values closer to 1 as the arousal increases [19]. In this context, our results predict that the

extremes of predictability, either high or low, are avoided in the awake state. We anticipate

that future experiments will provide answers to these interesting questions.

Materials and methods

Electrophysiology

All procedures were carried out in accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health and approved by Uni-

versity of Arkansas Institutional Animal Care and Use Committee (protocol #12025). We

studied adult male rats (n = 12, 328±54 g; Rattus Norvegicus, Sprague-Dawley outbred, Harlan

Laboratories, TX, USA). Anesthesia was induced with isoflurane inhalation and maintained

with urethane (1.5 g/kg body weight (bw) dissolved in saline, intraperitoneal injection (ip)).

Dexamethasone (2 mg/kg bw, ip) and atropine sulphate (0.4 mg/kg bw, ip) were administered

before performing a 2 mm x 2 mm craniotomy over barrel cortex (1 to 3 mm posterior from

bregma, 5 to 7 mm lateral from midline).

Extracellular voltage was recorded using 32-channel microelectrode arrays (8 shanks, 4

electrodes/shank, 200 μm inter-electrode distance, 400 μm inter-shank distance, A468-5mm-

200–400-177-A32, NeuroNexus, MI, USA). Insertion depth was 650 μm, centered 2 mm poste-

rior from bregma and 6 mm lateral from midline. Voltages were measured with respect to an

Ag/AgCl ground pellet placed in the saline-soaked gel foams, which protect the exposed tissue

surrounding the insertion site. Voltages were digitized with 30 kHz sample rate (Cereplex

+ Cerebus, Blackrock Microsystems, UT, USA). Recordings were filtered between 300 and

3000 Hz and thresholded at -3 SD to detect multi-unit activity (MUA).

State-dependent cortical predictability
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Pharmacology

Six 20 min recordings were conducted with each rat. First, three recordings were performed

with no direct manipulation of inhibition (n = 36, indirect effects may be imposed by anes-

thetics [34] and atropine sulfate). Then, three recordings were performed with a drug topi-

cally applied via gel foam pieces soaked in saline mixed with drug. Three drug conditions

were studied (one condition per rat): 1) 20 μM muscimol (6 rats, 18 recordings), 2) 20 μM

bicuculline methiodide (3 rats, 9 experiments), 3) 40 μM bicuculline methiodide (3 rats, 9

experiments).

Avalanche definition

We define an avalanche based on the spike count time series c(t) of MUA recorded on all elec-

trodes, counting spikes in consecutive 15 ms time bins. An avalanche begins at ti when c(ti)

exceeds a threshold. The avalanche ends at tf when c(tf) drops back below the threshold. The

threshold is defined for each recording as the time average of c(t). The avalanche size s is

defined as the total number of spikes occurring between ti and tf, s ¼
Xf

n¼i
cðtnÞ. Our

approach for defining avalanches contrasts with many previous experimental studies of neuro-

nal avalanches, which were mostly based on local field potential. Here we sought to define ava-

lanches based on spiking activity for two reasons. First, spike activity is easier to interpret than

local field potential. Second, most theoretical and model studies of neuronal avalanches are

based on spikes. A few other experimental studies have considered spike avalanches, but

defined the start and stop of avalanches as time periods with no spiking [35,36]. In our view,

this previous definition is inherently limited, because it does not scale well with increasing

numbers of measured neurons and does not account for the fact that some neurons fire at

extremely high rates. More specifically, if sufficiently many neurons are measured, periods

with no spiking will become arbitrarily short. The definition of an avalanche should not be

limited in this way. Moreover, it may be the case that the cortex operates in a regime with

inherently self-sustained ceaseless dynamics, as studied recently in the context of avalanches

[16]. In this case, it does not make sense to define avalanches based on quiet periods with no

spiking, because such quiet periods do not exist. As tools for measuring large populations of

neurons become more prevalent, it is likely that a well-sampled population of neurons in real

cortex will also be devoid of meaningful silent periods.

κ parameter

Deviation from the reference power-law (-1.5 exponent) was quantified with κ, which is a pre-

viously developed non-parametric measure with similarities to a Kolmogorov-Smirnov statis-

tic [17,19,23]; κ equals 1 plus the sum of 10 differences between the observed avalanche size

distribution (recast as a cumulative distribution) and a perfect power-law with exponent -1.5

(in cumulative form). The differences were computed at 10 sizes logarithmically spaced

between the minimum and maximum observed avalanche sizes.

Computational model

Our model consisted of 2952 spiking neurons– 80% excitatory, 20% inhibitory—placed on a

72 x 36 grid (the 2:1 aspect ratio matched the geometry of the experimental electrode arrays).

Each neuron was modeled with two coupled differential equations which were derived from

State-dependent cortical predictability
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the Hodgkin—Huxley equations by Izhikevich [12],

dvi

dt
¼ 0:04v2

i þ 5vi þ 140 � ui þ Ii

dui

dt
¼ aðbvi � uiÞ;

where vi represents the membrane potential of neuron i and ui represents the ‘recovery’ vari-

able of neuron i. The parameter a represents a time scale of recovery and b couples the mem-

brane potential and recovery potential. For all excitatory neurons, a = 0.02 and b = 0.2. For

inhibitory neurons a and b are drawn from uniform distributions on [0.02, 0.1] and [0.2, 0.25],

respectively. When the membrane potential vi exceeds 30, the neuron fires. Upon firing, vi is

reset to -65 and ui is incremented to ui + d, where d is 2 for all inhibitory neurons and drawn

from a uniform distribution on [2, 8] for excitatory neurons. We use the numerical techniques

developed by Izhikevich [12] to simulate these dynamics.

The input Ii to neuron i is comprised of random external input η and input due to presyn-

aptic firing of the other neurons in the model,

IiðtÞ ¼ ZiðtÞ þ
XN

j¼ 1
Sijxjðt � 1Þ;

Where η is drawn from a uniform distribution with mean 3 and unity standard deviation.

Here xj(t) is a binary variable equal to one when neuron j fires and zero otherwise. The synapse

from neuron j to neuron i is represented by the connection matrix element Sij. The S matrix

was constructed in three steps. First, for excitatory presynaptic neurons, Sij is drawn from a

normal distribution with mean 8.4 and standard deviation 1.5. Second, for inhibitory presyn-

aptic neurons, Sij is drawn from a normal distribution with mean IC and standard deviation

1.5. To model the experimental pharmacological manipulation of inhibitory interactions we

studied 30 different values of IC linearly spaced between -75 and 0. Finally, long-range connec-

tions were attenuated, by multiplying all Sij by a distance dependent factor e� d2
ij=d2

o , where

d0 = 2.24 and dij is the distance between neuron i and neuron j. For each IC, the model was run

for 500000 time steps (500 s, considering 1 time step to be 1 ms).

Model LFP

To derive an LFP-like variable from our model dynamics we divided the 2D grid into 32 equal

groups (each 9 x 9 in model grid space) meant to represent the 32 electrode channels in our

experiments. To obtain the LFP for each group, we computed the average vi across all neurons

within the group, in line with experiments that show a close relationship between membrane

potential fluctuations and LFP [37]. We clipped spikes before this averaging process. Finally,

we filtered the model LFP just as we did with the experimental data.

Auto regressive model fitting and prediction

We use a first order autoregressive model to generate the predictions reported here. The

model specifies how each single LFP channel at time t, yi(t), is determined by all other LFP

channels at previous times

yiðtÞ ¼
Xn

j ¼ 1
Aijyjðt � 1Þ þ �ðtÞ;

where n is the number of LFP channels (32 in our experiments and model) and t is a discrete

variable advancing 1 per sample. A is a 32 x 32 matrix which specifies how each channel
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influences each other channel and 2 is a noise term. The matrix A and the noise 2 are deter-

mined by fitting this model to a short period Tf of recorded data. For the fitting procedure, we

used the algorithm developed by Neumaier and Schneider [38] and implemented with the

‘ARfit’ functions developed by Tapio Schneider for Matlab (Mathworks). After obtaining the

best fit A based on the period starting at time t and ending at time t+Tf, we then constructed a

prediction over a time period with duration Tp starting at time t+Tf+1. The prediction is con-

structed by iteratively applying the above equation starting with y(t + Tf + 1) as an initial con-

dition. We define the prediction quality Q = X/dX, where X is the L1 norm of the actual

measured data during the prediction time period

X ¼
XtþTf þTp

t¼ tþTfþ1
jyrealðtÞj

and dX is the L1 norm of the difference between the prediction and the read data

dX ¼
XtþTf þTp

t¼ tþTfþ1
jyrealðtÞ � ypredictedðtÞj:

Thus, Q less than or near 1 indicates a poor prediction while Q>>1 indicates a good

prediction.
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