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Abstract: The recent developments in asymmetric A3 (aldehyde–alkyne–amine) coupling has been
summarized in this review. Several interesting modifications of the ligands enabled the highly
enantioselective synthesis of chiral propargylamines, which are further used in the construction of
nitrogen-containing chiral building blocks.
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1. Introduction

Multicomponent reactions (MCRs), defined as one-pot processes in which three or more accessible
starting materials are incorporated into a single product without isolating the intermediates, have
gained importance in academia and industry [1–4]. Multicomponent reactions provide numbers
of valuable conceptual and synthetic advantages such as sustainability, operational simplicity, and
high convergence. For these reasons, there is no doubt that MCRs are important cornerstones in
the diversity-oriented synthesis and combinatorial synthesis compared with stepwise sequential
approaches towards complex and important moleculars. By virtue of its inherent advantages,
multicomponent reactions have been extensively applied to the total synthesis of complex moleculars
and the creation of chemical libraries of drug-like compound [5–7]. The past decades have also
witnessed a rapid development of asymmetric multicomponent reactions (AMCRs) which can serve as
a versatile approach to prepare complex optically pure molecules from simple and readily available
achiral substrates.

Over the past several decades, asymmetric multicomponent processes, including the powerful
asymmetric A3 (aldehyde–alkyne–amine) coupling reactions, have garnered a lot of attention (Figure 1).
With this strategy the optically active propargylic amines can be achieved, which are important building
blocks for the synthesis of various nitrogen containing compounds, biologically active materials [8],
and natural products [9]. Topics on A3-coupling have been reviewed previously but predate recent
important advances [10–12]. Especially, a comprehensive review about asymmetric A3-coupling
(AA3-coupling) has not been reported. The aim of this review is to summarize and discuss recent
development in the field of AA3-coupling since the first AA3-coupling was achieved by Li in 2002 [13].
This article will be divided in two sections based on properties of amines.
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Figure 1. Asymmetric A3-coupling reaction. 

2. AA3 –Coupling Derived from Primary Amine 

The proposed mechanism for A3-coupling involves C-H activation by late transition metals. 
These metals are well known to form π-metal-complex with terminal alkynes, thereby making the 
alkyne proton more acidic for further abstraction. After the C-H bond is activated, the presented 
amines in the reaction media as the weak base could deprotonate the terminal alkynes and generate 
the desired organometallic alkynyl nucleophile. The imine or iminium ion reacts with the metal 
acetylide, resulting in the formation of the propargylamines with concomitant regeneration of the 
metal catalyst for another reaction cycle (Figure 2). In this process, the use of chiral ligands often 
produces excellent stereoselectivity. 
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Figure 2. Generalized mechanism of A3-coupling with primary amines. 

The catalytic enantioselective synthesis of propargylamines is derived from primary amines 
and aldehydes commonly involved in imines as intermediates, and utilizes copper(I)/pybox ligands 
as the catalytic system. The first asymmetric three-component coupling of primary amines, 
aromatic aldehydes and aryl alkynes was described by Li in 2002 (Figure 3) [13,14]. The reactions 
were carried out in organic solvent as well as in aqueous media by utilizing CuOTf as the catalyst. 
The efficiency of several box (L1 and L2) and pybox (L3–L5) ligands was explored. Finally, the 
optimal reaction condition was obtained with CuOTf–L5, leading to the corresponding propargylic 
amines in up to 93% yields and 80–96% ee albeit in low reactivity (2–4 days, Figure 3, Equation 1). 
This catalytic system could also be extended to aliphatic alkynes to afford the corresponding 
propargylic amines (Figure 3, Equation 2). Unfortunately, however, the enantioselectivity of these 
reactions is lower, probably due to the less steric hindrance of the alkyl-substituted alkynes. 
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2. AA3 –Coupling Derived from Primary Amine

The proposed mechanism for A3-coupling involves C-H activation by late transition metals.
These metals are well known to form π-metal-complex with terminal alkynes, thereby making the
alkyne proton more acidic for further abstraction. After the C-H bond is activated, the presented
amines in the reaction media as the weak base could deprotonate the terminal alkynes and generate
the desired organometallic alkynyl nucleophile. The imine or iminium ion reacts with the metal
acetylide, resulting in the formation of the propargylamines with concomitant regeneration of the
metal catalyst for another reaction cycle (Figure 2). In this process, the use of chiral ligands often
produces excellent stereoselectivity.
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Figure 2. Generalized mechanism of A3-coupling with primary amines.

The catalytic enantioselective synthesis of propargylamines is derived from primary amines and
aldehydes commonly involved in imines as intermediates, and utilizes copper(I)/pybox ligands as
the catalytic system. The first asymmetric three-component coupling of primary amines, aromatic
aldehydes and aryl alkynes was described by Li in 2002 (Figure 3) [13,14]. The reactions were carried
out in organic solvent as well as in aqueous media by utilizing CuOTf as the catalyst. The efficiency
of several box (L1 and L2) and pybox (L3–L5) ligands was explored. Finally, the optimal reaction
condition was obtained with CuOTf–L5, leading to the corresponding propargylic amines in up to 93%
yields and 80–96% ee albeit in low reactivity (2–4 days, Figure 3, Equation (1)). This catalytic system
could also be extended to aliphatic alkynes to afford the corresponding propargylic amines (Figure 3,
Equation (2)). Unfortunately, however, the enantioselectivity of these reactions is lower, probably due
to the less steric hindrance of the alkyl-substituted alkynes.
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Figure 3. Enantioselective three-component reaction with box and pybox ligands. 

A great number of further pioneering contributions were made by the group of Singh, who 
improved the efficiency of these coupling reactions with a more suitable ligand [15]. They 
introduced a gem disubstitution at C-5 position of the oxazoline rings (Figure 4, L6 and L7). The 
outcome of the experiment clearly indicated that the copper(I) complex of i-Pr-pybox-diPh L7 had a 
drastic effect in enhancing the ee and reducing the reaction time (12–48 h). The one-pot reaction 
with aniline provided the corresponding product with excellent yield (98%) and enantiomeric 
excess (96%). The scope of the anilines was also extended to p-methoxyphenyl (PMP) amines, which 
could be oxidatively removed (Figure 4, Equation 2) [16,17]. However, the three-component 
reaction with alkyl-substituted alkynes remains unsolved, affording propargylic amines with lower 
ee (84–87%) compared to aryl-substituted alkynes (Figure 4, Equation 2). 
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from naturally occurring α-amino acids by their earlier reported procedures [18–21]. As shown in 
Table 1, the substituent at C-4 chiral center of the oxazoline core had a great influence on the results 
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A great number of further pioneering contributions were made by the group of Singh, who
improved the efficiency of these coupling reactions with a more suitable ligand [15]. They introduced
a gem disubstitution at C-5 position of the oxazoline rings (Figure 4, L6 and L7). The outcome of the
experiment clearly indicated that the copper(I) complex of i-Pr-pybox-diPh L7 had a drastic effect in
enhancing the ee and reducing the reaction time (12–48 h). The one-pot reaction with aniline provided
the corresponding product with excellent yield (98%) and enantiomeric excess (96%). The scope of the
anilines was also extended to p-methoxyphenyl (PMP) amines, which could be oxidatively removed
(Figure 4, Equation (2)) [16,17]. However, the three-component reaction with alkyl-substituted alkynes
remains unsolved, affording propargylic amines with lower ee (84–87%) compared to aryl-substituted
alkynes (Figure 4, Equation (2)).
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Encouraged by these results, a variety of gem-disubstitued pybox-diPh ligands were prepared
from naturally occurring α-amino acids by their earlier reported procedures [18–21]. As shown
in Table 1, the substituent at C-4 chiral center of the oxazoline core had a great influence on the
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results [22]. Both ligands L7 and L8 were superior to all other ligands in stereocontrol. Pleasingly, the
enantioselectivity was slightly increased by changing i-Pr group to s-Bu group (Table 1, entry 2 vs. 1).

Table 1. Scope of different pybox on AA3-coupling.
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Entry Pybox Time Yield a (%) ee (%)

1 i-Pr-pybox-diPh (L7) 16 h 98 90
2 s-Bu-pybox-diPh (L8) 18 h 97 93
3 i-Bu-pybox-diPh (L9) 4 days 56 63
4 t-Bu-pybox-diPh (L10) 22 h 90 68
5 Bn-pybox-diPh (L11) 5 days 45 64
6 Me-pybox-diPh (L12) 4 days 51 53
7 Ph-pybox-diPh (L13) 28 h 96 75(S) b

a All the reactions were performed under an argon atmosphere and yields were reported as isolated yield.
b (R,R)–Ligand was used.

With the optimal ligand L8, the enantioselectivity of the reactions with PMPNH2 and aliphatic
alkynes was also improved, probably due to increased steric hindrance at β-position of the ligand
(Figure 5). However, aliphatic aldehyde was not tolerated in this catalyst system.
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Based on the experimental investigations, Singh and co-workers proposed a transition-state model
to explain the stereochemical outcome of reaction (Figure 6). It is believed that the ‘N’ of the imine
prefers to chelate with the Cu–complex in a manner where there are three stabilizing π-interactions;
two C-H···π and one π···π. The aryl group on the sp2 carbon of the imine could orient itself in a manner
that it is orthogonal and parallel to the phenyl rings in the oxazoline core, respectively. Thus, the
transition state becomes highly organized. The steric effect also plays an important role in the reaction.
As shown in Figure 6, the Re-face of the aldimine is shielded by the β-alkyl group on the chiral carbon
atom of the left oxazoline ring. Therefore, the alkynylide attacks from the Si-face predominantly to
afford the corresponding R-propargylamine.
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In 2008, Boysen’s group developed a new pybox ligand derived from naturally occurring
precursors [23–25]. Starting from D-glucosamine, the ligand glucopybox L14 (Figure 7) could be
prepared in four steps. Then the copper(I) complex of L14 was evaluated in asymmetric A3 coupling
reactions. The reaction of benzaldehyde and aniline in presence of phenylacetylene was efficiently
catalyzed to afford the adduct in 69% yield and excellent 99% ee. For a broad application of the reaction,
silylacetylene was used leading to the silylated propargylamines, which could be deprotected to yield
terminal alkynes that are very attractive substrates to subsequence transformations. In Boysen’s work,
the enantiomeric excess for the reaction with silylacetylene was improved to 90%, which was the
best result compared to the previous work. Although the reactivity of the catalyst system need to be
further improved, the carbohydrate-based pybox ligand showed great promise as an alternative to
conventional pybox ligands due to the inexpensive raw materials.
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Although the protocols reported by Li, Singh and Boysen provided direct accesses to a range
of optically active propargylamines, all of them possess several substrate scope limitations and the
three-component reaction with aliphatic alkynes remains unsolved. This problem was identified by
Nakamura and co-workers [26–31]. In 2008, they developed a chiral Cu(II)-bis(imidazoline) complexes
as highly tunable chiral catalysts [32]. In the presence of pybim L15, a wide range of alkyl-substituted
alkynes was suitable substrates for the reaction, with excellent enantioselectivity observed in most cases
(Figure 8). Alkyl aldehyde could also participate in the reaction to afford the secondary propargylic
amine in 81% ee albeit in low reactivity (108 h, 39% yield).
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In 2009, the substrate scope of the aldehydes was extended to ethyl glyoxylate by Shao and
Chan [33]. Moreover, the resulted β,γ-alkynyl α-amino acid derivatives were versatile synthetic
intermediates [34,35], which enabled facile transformations into a range of unnatural amino acids. The



Molecules 2019, 24, 1216 6 of 18

combination of Cu(I) triflate and pybox L16 was chosen to provide the desired product in good yields
and 61–74% ee (Figure 9). The protocol was applicable to both aliphatic and aromatic alkynes.
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The reactivity of the same reaction could be improved in the catalyst system developed by
Singh [22]. The yields were improved to 79–97%, when a complex of Cu(OTf)2-L8 in toluene was used.
However, the reaction could only afford the β,γ-alkynyl α-amino acid ethyl esters in poor to moderate
ee (20–56%, Figure 10).
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In 2017, Zhou and colleague reported a tandem AA3-coupling-carboxylative cyclization to
produce chiral oxazolidinones containing an exocyclic double bond [36]. The reactions were typically
performed with phenylacetylene, aromatic aldehydes and anilines employing Cu(OTf)2/L17 to provide
the propargylamines (Figure 11). The sequential carboxylative cyclization was catalyzed by AgOBz
with a CO2 pressure of 1.0 MPa. The one-pot reaction afforded the corresponding chiral oxazolidinones
in good yields (up to 98%) and high enantioselectivities (90–96% ee).
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3. AA3–Coupling Derived from Secondary Amine

When secondary rather than primary amines were employed in the AA3-coupling reactions,
the nature of the reaction changed dramatically. In general, the A3-coupling with secondary amines
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is relatively more reactive, since the iminium ions derived from secondary amines are much more
electrophilic than the (neutral) imine counterparts (Figure 12). Again, copper(I) complexes are the
most extensively utilized catalysts in this area. However, the reactions with secondary amines require
the use of another type of P,N-ligand.
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Figure 12. Asymmetric A3-couplings with secondary amines.

For the synthesis of tertiary propargylic amines, the first asymmetric three-component coupling
was described by Knochel in 2003. The reactions between secondary amines, aldehydes and alkynes
were performed in toluene with CuBr and chiral (2-phosphino-1-naphthyl) isoquinoline (Quinap)
ligand L18 (Figure 13) [37,38]. Both dibenzyl and diallylamines were successfully utilized to afford the
optically active propargylamines with high yields and enantioselectivities in most cases. It was found
that the employment of aliphatic aldehydes resulted in better enantioselectivities (82–96% ee) than
that with aromatic aldehydes (32–78% ee). The alkyne can bear either an aryl substituent or an alkyl
substituent. Pleasingly, the highest enantioselectivities were obtained with trimethylsilylacetylene
(92–96% ee). According to the strong positive nonlinear effect and the crystal structure of the
[CuBr{(R)-quinap}]2 complex [39,40], it is believed that a dimeric Cu-Quinap complex is the catalytically
active species. On the basis of these investigations, a plausible mechanism was suggested by the
authors (Figure 13).
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To evaluate the synthetic potential of this catalyst system, Knochel’s group performed a more
profound investigation of their asymmetric A3-coupling procedure with trimethylsilylacetylene. The
trimethylsilyl group was easily removed by treatment of the silylated propargylamines with Bu4NF
in THF, leading to the corresponding terminal propargylic amines without a loss of enantiopurity
(Figure 14) [41,42].
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Further transformations of the terminal alkynes to various functionalized derivatives were also
examined (Figure 15) [41]. First, the alkynyllithium reagents, derived from n-butyllithium and the
terminal propargylic amines 1, could react with a series of electrophilic reagents (Figure 15). For
example, the reaction of the alkynyllithium with ethyl chloroformate provided the chiral alkynyl
ester 2 in 95% yield and 88% ee. The deuteration of the alkynyllithium with D2O provided the
monodeuterated alkyne 3 in 98% yield and >95% deuterium incorporation. Similarly, the alkylation
and allylation of the alkynyllithium with pentyl iodide and allyl iodide furnished the corresponding
chiral propargylamines 4 and 5 in 95% and 94% yield, respectively. The Sonogashira cross-coupling of
the terminal propargylic amines with ethyl 4-iodobenzoate afforded the corresponding phenylacetylene
derivative 6 in 87% yield and 90% ee.

Molecules 2019, 24, x FOR PEER REVIEW 9 of 19 

ester 2 in 95% yield and 88% ee. The deuteration of the alkynyllithium with D2O provided the 
monodeuterated alkyne 3 in 98% yield and >95% deuterium incorporation. Similarly, the alkylation 
and allylation of the alkynyllithium with pentyl iodide and allyl iodide furnished the 
corresponding chiral propargylamines 4 and 5 in 95% and 94% yield, respectively. The Sonogashira 
cross-coupling of the terminal propargylic amines with ethyl 4-iodobenzoate afforded the 
corresponding phenylacetylene derivative 6 in 87% yield and 90% ee. 

 

Figure 15. Functionalization of the terminal alkynes. 

Since the catalyst is not soluble in pentane, the Cu(I)-Quinap complex could be recovered by 
simple filtration and used in up to three times [41]. The results showed that the coupling reaction 
could be performed with the same catalyst without significant loss in enantioselectivity and with 
only a slight drop in yield (Table 2). 

Table 2. Catalyst recycling on the AA3-coupling. 

 

Run Yield (%) a ee (%) b 

1 99 98 

2 87 97 

3 89 98 
a Isolated yield. b Enantiomeric excess determined by HPLC using Chiracel OD-H column (n-heptane: i-PrOH). 

Manipulations of the product also offer opportunities to generate other heterocycles [43,44]. 
For instance, the terminal alkynes could be efficiently converted, through click reaction [45,46], into 

Figure 15. Functionalization of the terminal alkynes.

Since the catalyst is not soluble in pentane, the Cu(I)-Quinap complex could be recovered by
simple filtration and used in up to three times [41]. The results showed that the coupling reaction
could be performed with the same catalyst without significant loss in enantioselectivity and with only
a slight drop in yield (Table 2).
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Table 2. Catalyst recycling on the AA3-coupling.
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a Isolated yield. b Enantiomeric excess determined by HPLC using Chiracel OD-H column (n-heptane: i-PrOH).

Manipulations of the product also offer opportunities to generate other heterocycles [43,44].
For instance, the terminal alkynes could be efficiently converted, through click reaction [45,46], into
useful chiral α-aminoalkyl-1,2,3-triazoles of type 7 in the presence of copper powder (Figure 16a). On
the other hand, the terminal alkynes could be acylated resulting in the formation of alkynones 8 in
excellent yield [47,48]. Then, treatment of 8 with amidine in refluxing acetonitrile afforded the chiral
aminopyrimidines of type 9 without a loss of enantiopurity (Figure 16b) [49–51]. Knochel et al. also
demonstrated a short enantioselective synthesis of (S)-(+)-coniine 12 (Figure 16c), which is a highly
toxic alkaloid inducing curare type paralysis [52–54]. Alkylation and protection of the terminal alkyne
10 with ethylene oxide and TIPSCl gave the propargylamines 11 in 70% yield. The deprotection of the
tertiary amine and reduction of the triple bond were readily achieved by hydrogenation in methanol.
Subsequent desilylation and intramolecular Mitsunobu reaction provided an enantioselective access to
(S)-(+)-coniine 12.
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In the course of their previous research, it was observed that the use of dibenzylamine is
essential to ensure high enantioselectivities. Considering deprotection of the propargylamines would
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extend their utility, it is highly desirable to deprotect the adduct under mild conditions and yield
the corresponding primary propargylamine selectively. However, removal of the benzyl group via
hydrogenolysis was accompanied by reduction of the triple-bond. Later, bis(phenallyl)amine was
successfully employed as the amine component to furnish bis(phenallyl)-protected propargylamines
(up to 96% ee) [55]. Then the allyl group was selectively removed through Pd(0)-catalyzed allylic
substitution with 1,3-dimethylbarbituric acid (DMBA), delivering the primary propargylamines in
good to high yields (Figure 17).Molecules 2019, 24, x FOR PEER REVIEW 11 of 19 
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Figure 17. Asymmetric A3-couplings and deprotection to primary amines.

As the enantioselectivity of the A3-coulping reactions was found to be highly dependent on the
amine component, the influence of further substituents in dibenzylamine was investigated by Knochel
and co-workers [56]. The utilization of bulkier secondary amine, (mesitylmethyl)benzylamine 13, led
to the formation of propargylamines 14 in excellent enantioselectivities (91–99% ee). Furthermore,
selective mono-deprotection of the propargylamines was achieved by hydrogenation affording the
secondary amine 15 in high yield (Figure 18).
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Figure 18. Asymmetric A3-couplings of bulky secondary amine.

A drawback of Knochel’s protocol is the use of Quinap, which is rather expensive and difficult
to prepare. In 2004, Carreira and co-workers creatively designed a new class of P,N-ligands L20 and
L21 (Pinap) [57]. They were conveniently resolved and prepared in four steps. Both diastereomeric
Pinap ligands could be obtained after separation by crystallization or silica gel chromatography. Then
the Pinap ligands were tested in Cu-catalyzed AA3-coupling reactions. As shown in Table 3, the
new ligand showed parallel reactivity to Quinap. Moreover, Carreira et al. observed that the Cu(I)
complexes of L20 and L21 catalyzed the formation of the propargylic amines in 90–99% ee, which is
superior to Quinap when alkyl aldehydes are used.
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Table 3. CuBr/Pinap-catalyzed AA3-coupling.
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Cu(I) complexes of L20 and L21 catalyzed the formation of the propargylic amines in 90–99% ee, 
which is superior to Quinap when alkyl aldehydes are used. 

Table 3. CuBr/Pinap-catalyzed AA3-coupling. 

 

R1 R2 Ligand Yield [%] Ee [%] Quinap [% ee] 

i-Pr Me3Si L20 84 98 (R) 92 

  L21 82 99 (S)  

R1 R2 Ligand Yield [%] Ee [%] Quinap [% ee]

i-Pr Me3Si L20 84 98 (R) 92
L21 82 99 (S)

i-Pr Ph L20 88 90 (R) 84
L21 82 95 (S)

i-Bu i-Bu L20 74 91 (R) 82
L21 72 94 (S)

Following the success of this protocol, Carreira and co-workers exhibited the AA3 coupling
reactions with 4-piperidone as the amine component (Figure 19) [58]. Again, (R,R)-Pinap L21 was
chosen as the optimal ligand. It is worth pointing out that the reaction rate was increased (up to
5-fold) when dichloromethane was used instead of toluene, since it was observed that the complex
formed between CuBr and (R,R)-Pinap L21 could completely soluble in dichloromethane. Carrying
out these reactions with silyl-substituted alkynes resulted in higher enantioselectivity (85–96% ee)
compared to aryl-substituted alkynes (83–85% ee) and aliphatic alkynes (70% ee). With respect to
practically, the tertiary amine adducts could be selectively removed in the presence of a solid-supported
amine scavenger.
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On the basis of the previous work, Ma’s group reported a CuBr/Pinap-catalyzed AA3-coupling
reaction utilizing pyrrolidine or 1,2,3,4-tetrahydroisoquinoline as the secondary amine (Figure 20) [59].
In the presence of 2-methylbut-3-yn-2-ol 16, the corresponding chiral propargylamines were obtained
in high yields (79–95%) and excellent ee (91–>99%). According to the control experiments,
the dimethylcarbinol unit in the alkyne component played an important role in ensuring high
enantioselectivity. It was believed that the possible coordination of the hydroxyl oxygen to copper(I)
was responsible for the excellent stereoselectivity. Furthermore, the 2-hydroxy-2-propyl group could
be easily removed to afford the terminal propargylic amines 17 [60]. The generated terminal alkynes
could further be functionalized via Sonogashira cross-coupling and furnished the phenylacetylene
derivative 18 in 70% yield [61,62]. Treatment of 17 with n-BuLi could generate the alkynyllithium
intermediate. The following alkylation with paraformaldehyde or methyl chloroformate provided the
corresponding alcohol 19 or alkynoate 20 [63], respectively. It is important to stress that both aliphatic
and aromatic aldehydes were tolerated in this protocol.
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Next the amine component was expanded to pyrroline. In this reaction, instead of the normal
propargylic amines, optically active N-allyl pyrrole 21 was unexpectedly obtained in 97% ee with a
complete E-stereoselectivity (Figure 21) [64]. Based on the results of deuterium-labeling experiments, a
possible mechanism of the coupling-semireduction reaction was proposed in Figure 21. It suggested
that the alkyne 16 was coordinated with the copper(I) complex through the hydroxyl oxygen.
Then the copper alkynylide specie 22 reacted with the iminium ion, yielding the corresponding
propargylic amine-CuBr complex 23. This compound would afford the iminium intermediate 24 via
an anti-1,5-hydride transfer, in which the unsaturated cyclic dialkylamine acted as a hydrogen donor.
Finally, the protodemetalation of 24 resulted in the N-allyl pyrrole 21 and regenerated the catalyst.
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Following the same strategy, new P,N-ligands L23 and L24 (StackPhim) were prepared by the 
same group in 2017 [66]. The two diastereomeric phosphines could be readily separated by simple 
column chromatography without a resolution process. Then the ligands were evaluated in CuBr-
catalyzed AA3-coupling with butynyl diol rac-25. As shown in Table 4, the desired propargyl amine 
26 was obtained in high yields after 4 h. Moreover, the subsequent Au-catalyzed cyclization of the 

Figure 21. The synthesis of N-allyl amines via A3-couplings.

In 2013, an atropisomeric P,N-ligand L22, which they named StackPhos, was designed and
synthesized by Aponick and co-workers. Instead of the fused 6-membered aromatics, an imidazole
ring was incorporated into the biaryl system (Figure 22) [65]. The N-containing heterocycle not only
contains a coordinating atom, but also provides the possibility to stabilize the chiral conformation
through π-stacking. Then the performance of L22 was tested in the AA3-coupling reaction of
silylacetylene. Delightfully, the reactivity was enhanced compared to Quinap. The corresponding
chiral propargylamines were isolated in high yields (60–95%), the reaction time was drastically reduced
from 4 days to 24 h with the StackPhos ligand compared with other axially chiral ligands such as
Quinap and Pinap. It is noteworthy that the catalyst system enabled the use of both aliphatic and
aromatic aldehydes with excellent enantioselectivity (89–97% ee).
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Following the same strategy, new P,N-ligands L23 and L24 (StackPhim) were prepared by the same
group in 2017 [66]. The two diastereomeric phosphines could be readily separated by simple column
chromatography without a resolution process. Then the ligands were evaluated in CuBr-catalyzed
AA3-coupling with butynyl diol rac-25. As shown in Table 4, the desired propargyl amine 26 was
obtained in high yields after 4 h. Moreover, the subsequent Au-catalyzed cyclization of the alkyne
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provide an efficient access to chiral 2-aminoalkyl furan 27 [67]. The (S,R,R)-StackPhim L23 exhibited
superiority in stereocontrol toward this reaction compared with the previous reported (S)-StackPhos
L22 (Table 4, entry 2 vs. 1). Notably, the stereoselectivity was further improved to 94% ee with the
diastereomeric ligand L24 (Table 4, entry 3). Once again, the substrate scope of the aldehyde had little
influence on both the yields and the stereoselectivities.

Table 4. The evaluation of StackPhim.
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74% 81% −94%

In 2014, Naeimi et al. reported the use of Schiff base as a chiral tetradentate ligand in the
AA3-coupling reaction of morpholine [68]. The preparation of the catalyst was very simple using
readily available chemicals. Nevertheless, it is regrettable that the Cu(I) complex of thiosalen could only
deliver the corresponding propargylamines in moderate to good enantiomeric excesses (43–69% ee)
(Figure 23).
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In addition to the use of phosphine-based ligands, Seidel reported the application of carboxylic
acid-thiourea as a cocatalyst in Cu(I)-catalyzed asymmetric A3 reactions with pyrrolidine [69]. A series
of urea catalysts were prepared and tested. The authors found that the combination of cocatalyst L25
and CuI exhibited the best efficiency (Figure 24, Equation (1)). They also attempted to rationalize
the roles of the cocatalyst. The data suggested that L25 acted as a ligand for copper(I), forming
a highly reactive copper acetylide complex. However, the role of the carboxylate moiety in the
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enantiodetermining step remained unclear. In addition, this method was successfully transferred to
the synthesis of chiral allenes in the presence of AgNO3 (Figure 24, Equation (2)) [70].
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4. Conclusions

In summary, this review has demonstrated the recent advances in asymmetric A3-coupling
reactions. From the perspective of atom and step economy, the multicomponent character of
this process provides a great convenience for the enantioselevtive synthesis of propargylic amines.
Although great progress has been made, there are still substantial hurdles to be overcome. For example,
the catalytic efficiency needs to be further improved, the substrate scope needs to be expanded, and
mechanisms need to be investigated in greater detail. Tandem processes that combine different types
of reactions in a single operation are also appealing. It is reasonable to believe that the discovery and
development of new chiral ligands will continue to flourish and result in more developments in the
years to come.
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