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Abstract

Purpose Adequate epileptic seizure detection may have the potential to minimize seizure-related complications and improve
treatment evaluation. Autonomic changes often precede ictal electroencephalographic discharges and therefore provide a
promising tool for timely seizure detection. We reviewed the literature for seizure detection algorithms using autonomic
nervous system parameters.

Methods The PubMed and Embase databases were systematically searched for original human studies that validate an
algorithm for automatic seizure detection based on autonomic function alterations. Studies on neonates only and pilot stud-
ies without performance data were excluded. Algorithm performance was compared for studies with a similar design (ret-
rospective vs. prospective) reporting both sensitivity and false alarm rate (FAR). Quality assessment was performed using
QUADAS-2 and recently reported quality standards on reporting seizure detection algorithms.

Results Twenty-one out of 638 studies were included in the analysis. Fifteen studies presented a single-modality algorithm
based on heart rate variability (n=10), heart rate (n=4), or QRS morphology (n=1), while six studies assessed multi-
modal algorithms using various combinations of HR, corrected QT interval, oxygen saturation, electrodermal activity, and
accelerometry. Most studies had small sample sizes and a short follow-up period. Only two studies performed a prospective
validation. A tendency for a lower FAR was found for retrospectively validated algorithms using multimodal autonomic
parameters compared to those using single modalities (mean sensitivity per participant 71-100% vs. 64-96%, and mean
FAR per participant 0.0-2.4/h vs. 0.7-5.4/h).

Conclusions The overall quality of studies on seizure detection using autonomic parameters is low. Unimodal autonomic
algorithms cannot reach acceptable performance as false alarm rates are still too high. Larger prospective studies are needed
to validate multimodal automatic seizure detection.

Keywords Automatic seizure detection - Autonomic function(s) - Autonomic parameter(s) - Algorithm(s) - Epilepsy -
SUDEP
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Introduction

Epileptic seizures are potentially dangerous as they can lead
to complications, including injury, status epilepticus, and
sudden unexpected death in epilepsy (SUDEP) [1]. Ade-
quate seizure detection may have the potential to minimize
these complications and to ameliorate treatment evaluation,
as seizures—particularly those at night—are often under-
reported [2-5]. Detection devices may also help to improve
the independence and quality of life of people with epilepsy
and their caregivers [3, 6].

Several parameters, including movement, sound, and
autonomic nervous system changes, can be used to detect
seizures. This review focuses on changes in autonomic func-
tion, including cardiovascular, respiratory, and transpiration
changes [7]. Seizures can alter autonomic function, particu-
larly if the central autonomic network is involved. The most
common expression is a sudden increase in sympathetic
tone [7, 8]. Ictal tachycardia (IT) is a very frequent sign,
with prevalence rates ranging from 80 to 100% [9, 10]. IT
is a hallmark of convulsive seizures (i.e., focal to bilateral
tonic—clonic as well as generalized tonic—clonic seizures),
and more common in temporal lobe vs. extratemporal lobe
seizures [9]. Changes in autonomic function can precede
ictal electroencephalographic (EEG) discharges by several
seconds [10-12]. Preictal tachycardia has an incidence rate
of approximately one-third of seizures [13]. Autonomic
alterations may therefore provide an adequate tool for early
seizure detection and facilitate timely interventions. Ictal
arrhythmias and desaturations are more common but are
thought to be self-limiting, while postictal arrhythmias and
apneas may lead to SUDEP [14—17]. SUDEP usually occurs
several minutes after a convulsive seizure (mean 10 min,
range 2—17 min) [18]. Raising an alarm at seizure onset may
be sufficient to allow timely intervention.

We aimed to systematically review different seizure
detection algorithms based on autonomic function changes.

Methods

This systematic review was conducted in accordance with
the preferred reporting items for systematic reviews and
meta-analyses (PRISMA) guideline [19].

The PubMed and Embase databases were systematically
searched through May 2018 for original studies validating
an algorithm for automatic seizure detection based on heart
rate (HR), heart rate variability (HRV), oxygen saturation
(Sp02), electrodermal activity (EDA, reflecting changes in
transpiration), or a combination of the aforementioned. A
sequence of synonyms for ‘autonomic variables,” ‘seizures,’
and ‘detection’ were used as search terms (see Table S1 in
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the Electronic supplementary material, ESM). Studies were
included if they met the following criteria: (1) human stud-
ies; (2) written in English; (3) reporting on children or adults
with any type of epilepsy; (4) validating an algorithm for
automatic seizure detection using autonomic parameters;
(5) reporting at least one performance measure [sensitiv-
ity, positive predictive value (PPV), false alarm rate (FAR),
or detection latency (DL)]. Studies on neonates only were
excluded, because both seizure and autonomic function char-
acteristics differ greatly at this age compared to older age.
Pilot studies lacking performance data, as well as conference
abstracts and reviews were also excluded (Fig. 1).

One author (AvW) screened all titles and abstracts, as
well as the full texts of the remaining studies. For each
article included, the following parameters were recorded:
method of automatic seizure detection, type of autonomic
variable, individual characteristics, number and types of sei-
zures analyzed, prospective or retrospective validation, total
recording time and performance of the algorithm (including
sensitivity, PPV, FAR, and DL). We compared algorithm
performance using multimodal autonomic parameters versus
those using single modalities, provided that the studies (1)
had a similar design (prospective vs. retrospective) and (2)
reported both sensitivity and FAR.

The quality of the included studies was evaluated using
the QUADAS-2 [20]. This tool consists of four domains
(patient selection, index test, reference standard, and flow
and timing) and different signaling questions to assist in
judgments of the risk of bias and applicability. Additionally,
we assessed all included studies according to the recently
proposed standards for clinical validation of seizure detec-
tion devices (SDDs) [21].

Results

Out of the 638 articles identified, 86 studies were selected
on the basis of title and abstract. After full-text screen-
ing, 21 studies were included for further analysis. Most
of the excluded articles lacked the validation of a seizure
detection algorithm (see Fig. 1). The characteristics of the
included studies are summarized in Table 1. Most of the
studies (n=15) focused on ictal cardiac changes as a tool
for seizure detection algorithms, including HRV (n=10) [8,
22-30], HR (n=4) [31-34], and changes in QRS morphol-
ogy (n=1) [35]. Six studies used multimodal algorithms,
including combinations of HR, corrected QT interval (QTc),
SpO2, EDA, and accelerometry (ACC) [2, 36—40]. None of
the included studies validated an algorithm based on oxygen
saturation or EDA alone. Most studies were conducted in
adults, but two studies included a pediatric population [23,
40], and six studies included both children and adults [22,
25, 35-37, 39]. Fourteen studies prospectively enrolled their
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Identification

Eligibility Screening

Included

Clinical articles on ictal autonomic changes as a tool for
automatic seizure detection in epilepsy care
using heart rate and other autonomic nervous system variables.

A 4

Records identified through Pubmed Additional records identified through Embase
on May 22" 2018 (n = 517) on May 22" 2018 (n = 121)

Duplicates removed
(n=19)

v

A4

Records after duplicates removed
in Mendeley® 1.17.10 (n =619)

Inclusion criteria:

- Original studies
validating an algorithm
for automatic seizure
detection using
autonomic function
parameters.

- Reporting at least one
outcome measure.

- Human studies

- English language

Exclusion criteria:
- Studies on neonates

only

- Conference abstracts,
reviews or pilot studies
without performance
data.

Fig. 1 Flowchart of the search for applicable studies

Title/abstract
screening

Articles excluded (n=533)

v

A\ 4

Full-text articles assessed

for eligibility
(n=86)
Full-text articles excluded
(n=65) on basis of:
Full text - Conference abstracts (n=19)
screening - No seizure detection (n=36)
- Neonates only (n=4)
» | - Double patient cohort (n=3)
- Pilot study without
Y performance data (1)
Studies included in - No outcome measures (1)
systematic review - Retracted study (n=1)
(n=21)

participants [8, 22, 23, 26, 28, 30-33, 36-40], but only two per patient tended to be low (median number of seizures
studies prospectively validated their algorithm [31, 33]. per participant 3, IQR 2-7). The total recording time used

Most studies had small sample sizes (median popula-  to validate the algorithm varied from 7 min to 158 h per
tion size 14, IQR 7-26). The number of seizures analyzed  person (median recording time per participant 34 h, IQR
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3-86 h), but was not specified in two studies. Seizure onset
was mostly focal (n=14) [8, 22, 24-26, 28, 30, 31, 33, 34,
37, 39, 40, 42], but was focal and generalized in some (n=4)
[2, 23, 35, 42] or not specified in others (n=3) [32, 36, 38].
All four performance measures (sensitivity, PPV, FAR,
and DL) were only reported in three out of 21 studies [22,
33, 39]; eight studies reported three [2, 23-25, 28, 30, 31,
42], eight studies reported two [8, 26, 34, 36-38, 40, 43],
one study reported one [41], and one study only reported
sensitivity and PPV data for some of the subjects [32].

Heart rate analysis

Heart rate was monitored using single or multiple lead elec-
trocardiography (ECG) in 14 of 18 studies [8, 22-26, 28, 32,
34-37, 42, 43]. Alternative methods included photoplethys-
mography (PPG) in a wearable sensor (n=2) [2, 30] and
an implanted heart rate sensor (AspireSR) (n=2) [31, 33].

Heart rate measurement was done using various methods
of R-peak detection, including those proposed by Pan and
Tompkins [30, 41], Kohler [28], Yeh and Wang [22-24], or
unspecified methods [8, 25, 26, 31-34, 42]. Some studies
applied noise filtering techniques to diminish false R-peak
detection, including high- and low-pass noise filters [8,
22-24, 26, 30] or a specific algorithm (baseline estimation
and denoising with sparsity) [42].

One case study prospectively assessed a HR algorithm
using a vagal nerve stimulation (VNS) device with a fixed HR
sensitivity threshold [33]. Alarms were generated when the
HR augmentation exceeded 50% of the baseline HR. Eleven
out of 12 seizures were detected (sensitivity 92%), together
with 128 false alarms (FAR 1.88/h; 68 h recordings). A sec-
ond prospective validation study of the same VNS device
compared different HR thresholds (>20%, >40%, and > 60%
increases from baseline) in 16 adults with refractory epilepsy
[31]. Lower thresholds resulted in higher sensitivity and
higher FAR than higher thresholds (e.g., sensitivity 59.3%
and FAR 7.2/h for threshold >20% vs. sensitivity 18.8% and
FAR 0.5/h for thresholds > 60%).

Similar effects of varying the thresholds (for both the
relative HR increase and the duration of HR increase) were
reported in two studies on retrospectively validated HR algo-
rithms [32, 34]. A follow-up using the same dataset exam-
ined different factors that may influence the probability of
seizure detection [44]. The best regression model was cre-
ated with variables including age, gender, etiology, seizure
class, and years with epilepsy.

Heart rate variability (HRV)
All of the HRV-focused studies performed retrospective vali-

dations [8, 22-26, 28, 30, 41, 42]. Different HRV features
were selected and specific feature thresholds were classified

@ Springer

as ‘“ictal’ or ‘interictal.” Nine out of ten HRV studies applied
linear analysis [8, 22-25, 28, 30, 41, 42] using time domain
[22-25, 28, 30, 41, 42] and frequency domain [8, 25, 28, 41,
42] features. Time domain analysis focuses on the instan-
taneous HR; the interval between two normal QRS com-
plexes, abbreviated to ‘NN.” Different time domain features,
such as the mean NN interval or the distribution of NN have
been used for seizure detection. Four studies extracted and
classified these time domain features using a support vec-
tor machine (SVM) classifier and validated the same HRV
algorithm in different populations [22-24, 30]. The first ret-
rospective study of 17 people with temporal lobe epilepsy
found a mean sensitivity of 83.2% with a FAR of 2.01/h
[22]. The second study extracted ECG or PPG data from
three different heart rate sensors worn by 11 adults with tem-
poral lobe epilepsy [30]. The best performance was obtained
using a wearable ECG device, with a sensitivity of 64% and
a FAR of 2.35/h. A third study tested the algorithm in 28
children and showed a higher overall sensitivity (81.3%)
and a lower FAR (0.75/h) [23]. Performance, particularly
FAR, improved when applying a patient-specific heuristic
classifier. The latter was confirmed in the fourth study of
data from 19 people with temporal lobe epilepsy from a
pre-existing epilepsy database [24]. The authors also pro-
posed an adaptive seizure detection algorithm, and showed
that similar results were obtained with simulated ‘real-time’
user feedback.

Frequency domain analysis is used to extract the fre-
quency components of the HR signal, each with its own
physiological footprint: low frequency (LF 0.04-0.15 Hz),
high frequency (HF 0.15-0.40 Hz), very low frequency
(VLF 0.0001-0.04 Hz), and very high frequency (VHF
0.4-0.5 Hz). Different frequencies were identified by power
spectral density analysis of HRV in four studies [8, 25, 28,
41], and two studies sped up this process by applying an
efficiency algorithm [fast Fourier transform (FFT)] [8, 28].
The LF/HF ratio , reflecting the balance of sympathetic and
parasympathetic function, was examined in two studies [25,
41]. One of these studies tested a seizure detection algorithm
combining both time and frequency domain features on 11
focal seizures upon awakening [25]. Ten of the 11 seizures
were detected prior to seizure onset (sensitivity 91%, DL
—494 +262 s). Another study of seven adults with focal epi-
lepsy that used time—frequency analysis of HRV based on
a combination of the matching-pursuit and Wigner—Ville
distribution algorithms reported a sensitivity of 96.4% with
high FAR (5.4/h) [42]. Combining ECG and EEG algorithms
yielded better performance (sensitivity 100%, FAR 1.6/h).

To assess the dynamic properties of ictal HR changes,
nonlinear analysis can be applied, such as a Lorenz (or
Poincaré) plot. This method plots the current R—R inter-
val against the next R—R value. Standard deviations in the
transverse (SD1) and longitudinal (SD2) directions of these
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plots can be calculated, and higher ratios of SD2/SD1 reflect
increased sympathetic tone. These ratios can be used in sei-
zure detection algorithms, since an increase in sympathetic
tone is often seen during the preictal and early ictal phases.
One small retrospective study proposed the modified car-
dio sympathetic index (mCSI) as a new measure in seizure
detection that reflects the sympathetic tone [26]. A seizure
detection algorithm based on changes in mCSI yielded a
sensitivity of 88% in five people with temporal lobe epilepsy
(FAR not reported). A larger follow-up study of adults with
focal epilepsy compared frequency domain analysis with
Lorenz plot analysis [8]. mCSI appeared more sensitive, but
FARs were not reported.

The two remaining studies of HRV combined linear and
nonlinear analysis [28, 41]. The first retrospective study of
seven people with focal epilepsy reported an overall sen-
sitivity of 88.3% with a specificity of 86.2% after select-
ing an optimal performance threshold for each patient [41].
The second study combined time—frequency and Lorenz
plot analysis with a second nonlinear analysis of ‘sample
entropy’ [28]. This parameter quantifies the regularity and
complexity of a time series, and entropy decreases can be
seen during the ictal phase. Applying all of these methods
together to ECG data from twelve temporal lobe epilepsy
patients resulted in overall sensitivity of 94.1% with a FAR
of 0.49/h.

Another retrospective study reported two different seizure
detection algorithms based on changes in QRS morphol-
ogy (algorithm 1) and cardiorespiratory interactions (algo-
rithm 2) [35]. The first algorithm captured five consecutive
QRS complexes, aligned them with respect to the R peak,
and assembled them into one QRS matrix. Principal compo-
nent analysis was used to select different features from this
QRS matrix. This process was repeated for every heart beat,
which resulted in a sensitivity of 89.5-100% for detecting
focal onset seizures and 86% for generalized onset seizures.
The second algorithm was based on the well-known modula-
tory effects of respiration on HRV. These cardiorespiratory
changes were quantified using phase-rectified signal aver-
aging—a methodology used to detect quasi-periodicities in
nonstationary signals such as the resampled RR interval time
series—and were used for seizure detection. Slightly better
performance was achieved by the second algorithm, which
yielded a sensitivity of 100% for focal onset seizures and
90% for generalized onset seizures. In this study, 10.4-90%
of the generated alarms were false, and this percentage was
lower for the second algorithm.

Combining autonomic parameters
All multimodal autonomic algorithms were retrospectively

validated. A combination of three biosignals, measured
by two different devices, was used for seizure detection in

a study of ten subjects with focal epilepsy [2]. An algo-
rithm based on a specific seizure pattern of increased HR,
decreased SpO2, and increased EDA was able to detect all
seizures in six out of ten patients with a low FAR of 0.015/h.
Specific thresholds of HR, QTC, and SpO2 were combined
in an algorithm tested on a larger study population of 45 peo-
ple with refractory epilepsy [37]. Only half of the collected
data was used for analysis, and a sensitivity of 81-94% was
found for focal to bilateral tonic—clonic seizures, while focal
seizures without bilateral spreading showed worse perfor-
mance, with a sensitivity of 25-36%. Overall FAR ranged
from 0.4-2.4/h.

Three other retrospective validation studies combined
EDA and accelerometry (ACC), measured with one device
[28-40]. Different classifiers were used to select features of
EDA and ACC. The first study tested two machine learning
algorithms, the k-nearest neighbor (kNN) and random for-
est classifiers. The kNN classifier achieved the best results
with 11 features, and was most sensitive for nonmotor sei-
zures (sensitivity 97.1%, FAR not reported). The random
forest classifier selected 26 features and showed its best
performance with motor seizures (sensitivity 90.5%, FAR
not reported). A second study used a SVM classifier to
extract 19 features (16 ACC and 3 EDA) [40]. Fourteen
out of 16 focal onset seizures with bilateral spreading were
detected (sensitivity 88%) and FAR was 0.04/h. The same
feature set was used in the third study and compared to
a larger (40 ACC and 6 EDA) and a reduced (22 ACC
and 3 EDA) feature set [39]. Retrospectively tested on 24
children and 45 adults with focal epilepsy, the reduced set
showed the best performance (sensitivity 94.6%, FAR 0.20/
day).

A multicenter study combined HR and ACC measures in
95 people with nocturnal major motor seizures [36]. Data
from only 23 patients could be used to retrospectively val-
idate three different algorithms based on changes in HR,
ACC, and ‘HR or ACC.’ Clinically urgent seizures were
detected well (sensitivity 71-87%), but FAR was relatively
high (2.3-6.3/night), with wide variation between subjects.

Quality of the included studies

According to the QUADAS-2 criteria, the overall quality
of the included studies was medium-high (Table 2). Seven-
teen out of 21 studies were at risk of bias, mainly due to an
undefined patient selection process and fitting of the algo-
rithm [2, 8, 22-26, 30, 32, 34, 37-43]. There was concern
regarding the applicability of the selected patients in three
studies, because the populations consisted of children only
and/or were not well described [23, 25, 33]. Concerns about
the applicability of the index test (i.e., the tested algorithm)
arose in nine studies, mainly because the algorithm was fit-
ted to one dataset [2, 8, 23, 25, 28, 30, 32, 36, 37].

@ Springer
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Table 2 Quality of the included studies according to QUADAS-2

Study Risk of Bias Concerns regarding applicability
Patient Index Reference Flow and Patient Index Reference
selection tests standard timing selection tests standard
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Table 4 Performance of seizure detection algorithms grouped according to dataset size

Study Validation of algorithm Performance of algorithm
No. of No. of sei- Type of sei- Algorithm Sensitivity (%) FAR PPV (%) DL (s) [range]
sub- zures/TRT zures
jects
Large datasets
van Andel 23 86/402 h? All major Heart rate 60 0.5/h NA NA
etal. [36] motor” Movement 56 0.3/h NA NA
Hart rate or 71 0.7/h NA NA
movement
59 Clinically Heart rate 74 0.6/h NA NA
urgent Movement 71 0.3/h NA NA
serzures Hartrate or 87 0.8/h NA NA
movement
De Cooman 17 127/918 h FOS, including 83.2 [50-100] 2.01/h [0.88- 7.9% 13.3[- 18.2—
et al. [22] TCs 3.52/h] [0.4-21%] 54.3]
De Cooman 28 107/695 h Convulsive Patient-inde- Overall: 81.3  Overall: 0.75/h NA NA
et al. [23] and clini- pendent
calsubtle  pygient-spe-  Overall: 77.6 ~ Overall: 0.33/h  Overall: 30.7  19.1
seizures cific
De Cooman 19 153/2833 h FOS, includ- Patient-inde- Overall: 78.4  Overall: 1.73/h Overall: 2.4 NA
et al. [24] ing TCs pendent
(only clinical - patient-spe- ~ Overall: 76.5  Overall: 1.09/h  Overall: 3.7  NA
seizures) cific
Adaptive Overall: 77.1  Overall: 1.24/h Overall: 3.3 NA
Goldenholz 45 151/7104 h FOS, including Overall: 81-94 Overall: NA NA
et al. [37] TCs (FOBTC) 0.4-2.4/h
25-36
(FOS)®
Onorati et al. 69 55/5928 h FOS, all TCs  Classifier 1 83.6 0.29/day 39 31.2
[39] Classifier2  92.7 0.21/day 50 29.3
Classifier 3 94.6 0.20/day 51 29.3
Medium datasets
Boon et al. 16 66/NA Different types Thresh- 59.3 7.2/h [95% CI NA 6.0 [-112-105]
[31] of FOS, old>20% 5.31-9.94]
including Thresh- 34.8 2.7/ [95% CI NA 27.5 [0-57]
TCs old > 40% 1.70-3.91]
Thresh- 18.8 0.5/h [95% CI NA 35.0 [4-40]
old>60% 0.20-0.96]
Heldbergetal. 8 55/540 h Motor (M) kNN classifier 76.2 (M) NA 4.6 (M) NA
[38] and non-M 97.1 (non-M) 9.7 (non-M)
seizures Random forest 90.5 (M) NA 5.6 (M) NA
85.3 (non-M) 12.3(non-M)
Jeppesenetal. 17 47/£27h FOS, including 81: (mCSI- NA NA 16 [6-50]
[8] TCs 100)
(overall: 74,
mCSI-100)
Osorio et al. 81 241/6935 h FOS Lowest set- 98.8 9.5/h (1) NA NA
[34] tings T,D 7.2/h (2)
Datasets (1)
and (2)
Highest set- 85.5 1.1/h (1) NA NA
tings T,D 0.7/h (2)
Datasets (1)
and (2)
Pavei et al. 12 34/171 h FOIA Overall: 94.1  Overall: 0.49/h Overall: 95.6 NA
(28]
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Table 4 (continued)

Study Validation of algorithm Performance of algorithm
No. of No. of sei- Type of sei- Algorithm Sensitivity (%) FAR PPV (%) DL (s) [range]
sub- zures/TRT zures
jects
Pohetal. [40] 7 16/688 h' FOS, all TCs  Non-patient- 88 0.04/h (n=28) NA NA
specific
Semi-patient- 94 0.04/h NA NA
specific
Qarageetal. 7 68/NA FOS, including ECG 96.4 [75-100] 5.4/h [1.5-9.5/h] NA 13.1 [8-20.5]
[29] TCs ECG+EEG 100 1.6/h [0-3.5/h]  NA 12.3 [3-26]
Vandecasteele 11 47/701 h FOIA Wearable ECG 64 (overall: 2.35/h (overall: 2.03 (overall: NA
et al. [30] 70) 2.11/h) 2.15)
Hospital ECG 57 (overall: 2.05/h (overall: 2.22 (overall: NA
57) 1.92/h) 1.93)
PPG 33 (overall:32) 1.88/h 1.43 (overall: NA

(overall:1.80/h) 1.12)
Small datasets

Cogan et al. 6 10/340 h FOIA and TCs 3 Sensors 100 0.015/h 86 NA
(2] Personalized 100 0.000/h 100 NA
Elmpt, vanet 10 104/9 h Motor seizures NA? NA NA NA
[32] (T, TC, MC)
and atypical
absences
Fujiwaraetal. 14 11/69 h FOS (awake) 77 statistics Overall: 55 Overall: 1.2/h NA —524+216
(23] Q statistics Overall: 91 Overall: 0.7/h NA —494 4262
Hampeletal. 1 12/68 h FOS with 92 1.88/h 8 7.4 (+5)
[33] hyperkinetic
movements
Jeppesenetal. 5 11/13 h FOIA 88 (CSI-30) NA NA —5-60
[26] (overall:
73, CSI-30,
mCSI-50)
Moridani et al. 7 11/+6h FOS Overall: 88.3 NA NA NA
[27]
Varon et al. 42 108/+5h FOS and GOS, Algorithm 1¢#  89.5 (F1) NA 85.7 (F1) NA
[43] including T, 86 (G1) 57.3 (G1)
TC, MC, and 100 (F2) 52.6 (F2)
absences
Algorithm 2f 100 (F1) NA 90.5 (F1) NA
90 (G1) 77.5 (G1)
100 (F2) 71.4 (F2)

CSI cardiac sympathetic index, DL detection latency, ECG electrocardiogram, EEG electroencephalography, FAR rate false alarm rate, FOBTC
focal onset to bilateral tonic—clonic, FOIA focal onset with impaired awareness, FOS focal onset seizures, # hour, MC myoclonic, mCSI modified
cardiac sympathetic index, NA not applicable, No. number, PPG photoplethysmography, s seconds, 7T tonic, 7Cs tonic—clonic seizures, TRT total
recording time

*Training and test set combined

®Including tonic—clonic, tonic, hypermotor, and cluster (series of at least five tonic or myoclonic spasms within 3 min)

“When attendance or intervention was deemed necessary, based on seizure severity, postictal arousal state, breathing difficulties, and distress
9High variability in sensitivity and PPV

Percentage of evaluable data

f3525 h without seizures were also tested for false positives

£F1 focal seizures in children, GI generalized seizures in children (F1 + G1 =training set), F2 focal seizures in adults, used for validation
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Based on the standards for the clinical validation of SDDs
proposed by Beniczky and Ryvlin [21], most studies were
classified as phase 1 proof-of-principle studies, whereas
three were classified as phase O initial studies [34, 41, 42],
and only one as a phase 2 study on a dedicated SDD [31]
(Table 3). Seven other studies also tested a dedicated device
but included small population sizes or did not address the
safety of the device and were therefore classified as phase 1
[2, 30, 33, 36, 38—40]. Ten studies trained and tested their
algorithm on the same dataset [2, 8, 22, 26, 32, 34, 37,
40-42], and only four used a predefined algorithm or cutoff
values [30, 31, 33, 36]. Eighteen studies used video-EEG as
reference standard; the remaining three used EEG or ECoG
without video recordings [34, 41, 42].

Discussion

The overall quality of studies on seizure detection using
autonomic parameters is low. Small population sizes, short
follow-up periods, and high study heterogeneity raise con-
cerns about the applicability of the results. Available stud-
ies are mainly initial or proof-of-principle studies that lack
long-term and real-time ambulatory monitoring, which is
needed to obtain more reliable performance data and usabil-
ity outcomes.

HR- or HRV-based algorithms are most frequently
applied, but it is hard to compare the results of different stud-
ies due to wide variation in the detection techniques used
and a lack of FAR data (Table 4). Additionally, FAR, when
mentioned, is high for these studies and exceeds acceptable
limits for daily practice. We could not compare the perfor-
mance of HR- and HRV-based algorithms due to the wide
variety of study designs employed. HRV-based algorithms
seem attractive given their short detection latency, but they
still require prospective validation. HRV is, however, situa-
tion dependent and affected by exercise, stress, respiration,
and sleep stage [45—47]. These confounding factors make
it more challenging to distinguish ictal patterns from non-
ictal ones, resulting in lower accuracy [48]. Also, similar
activation of the autonomic nervous system can occur before
physiological arousal or other sleep-related movements [49].

Multimodal algorithms might help to lower FARs. A ret-
rospective study of seven children with tonic—clonic seizures
validated different unimodal and multimodal algorithms
on the same dataset. All combinations of multimodal sen-
sors, including ECG, EMG, and ACC, showed at least 75%
lower FAR [50]. Studies differentiating outcome accord-
ing to seizure type showed diverse results, indicating that
that different seizure types may require different detection
techniques. Multimodal techniques can provide a solution
to this problem [51]. Another solution could be personal-
izing or tailoring the algorithm. One study group studied

two different personalization strategies and calculated the
number of seizures required for accurate tailoring [52]. The
authors proposed an initialization phase to tailor an existing
predefined algorithm to a patient-specific algorithm. Six to
eight seizures seemed sufficient to set individual thresholds
[52]. Another retrospective multicenter study proposed an
automatic adaptive HRV algorithm and tested it on a data-
base of 107 nocturnal seizures from 28 children [23]. After
an initialization phase of five seizures, the personalized algo-
rithm resulted in lower FARs compared to those obtained
with the patient-independent algorithm. A follow-up study
proposed an adaptive classifier with real-time user feedback
that presented similar performance; this method might be
better accepted in daily practice [24].

Conclusion

Autonomic function alterations seem to represent an attrac-
tive tool for timely seizure detection. Unimodal autonomic
algorithms cannot, however, reach acceptable performance:
while most algorithms are quite sensitive, false alarm rates
are still too high. Multimodal algorithms and personaliza-
tion of the algorithm are important strategies to improve
performance. Larger, prospective, home-based studies with
long-term follow-up are needed to validate these methods
and to demonstrate the added value of SDDs in clinical care.
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