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proliferation, invasion, and metastasis. Here, we describe a role for the oncogenic lncRNA PCAT-1 in prostate
cancer proliferation through cMyc. We find that PCAT-1–mediated proliferation is dependent on cMyc protein
stabilization, and using expression profiling, we observed that cMyc is required for a subset of PCAT-1–induced
expression changes. The PCAT-1–cMyc relationship is mediated through the post-transcriptional activity of the
MYC 3′ untranslated region, and we characterize a role for PCAT-1 in the disruption of MYC-targeting microRNAs.
To further elucidate a role for post-transcriptional regulation, we demonstrate that targeting PCAT-1with miR-3667-
lncRNAs including PCAT-1. A.M.C. serves on the Scientific Advisory Board ofWafergen.
Gen-Probe orWafergen had no role in the design or experimentation of this study nor has
it participated in the writing of the manuscript. Gene expression array data: Microarray
data have been deposited at the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus as GSE54872. Author contributions: J.R.P., W.C., A.M.C.,
and F.Y.F. designed the project and directed the experimental studies. W.C., J.R.P., Q.C.,
M.T.P., V.K., S.H., J.R.E., and M.L. performed the experimental studies. M.K.I.
performed the bioinformatics and statistical analyses. J.R.P. and M.K.I. performed the
microRNA analyses. T.S.L., K.E.K., and M.L. facilitated the experiments and interpreted
the data. J.R.P., W.C., and F.Y.F. interpreted the data and wrote the manuscript.
3These authors contributed equally.
4Current address: Center for Inflammation and Epigenetics, Methodist Cancer Center,
Houston Methodist Research Institute, Houston, TX 77030.
Received 19 March 2014; Revised 16 August 2014; Accepted 4 September 2014

© 2014 Neoplasia Press, Inc. Published by Elsevier Inc. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1476-5586/14
http://dx.doi.org/10.1016/j.neo.2014.09.001



Neoplasia Vol. 16, No. 11, 2014 lncRNA PCAT-1 Regulates Cell Proliferation Prensner et al. 901
3p, which does not target MYC, is able to reverse the stabilization of cMyc by PCAT-1. This work establishes a
basis for the oncogenic role of PCAT-1 in cancer cell proliferation and is the first study to implicate lncRNAs in the
regulation of cMyc in prostate cancer.

Neoplasia (2014) 16, 900–908
Introduction
The maturation and spread of high-throughput sequencing technol-
ogies has enabled increasingly complex analyses of the cellular
transcriptome, with the nomination of numerous novel RNA species
[1,2]. Among these, long non-coding RNAs (lncRNAs) over 200 bp
in length have been implicated as fundamental actors in numerous
molecular processes, including cell differentiation, lineage specificity,
neurologic disorders, and cancer [3–5].
In prostate cancer, the first prominent lncRNA, PCA3, was initially

described as a novel biomarker of disease [6] and subsequently defined as
a promising urine test for this disease [7]. Similarly, the lncRNA
PCGEM1 has been implicated in prostate cancer as a regulator of
apoptosis [8] and newer lncRNAs are being pursued through high-
throughput technologies [9]. Using next-generation sequencing of a large
cohort of prostate cancer tissues, we recently defined the landscape of
lncRNAs in prostate cancer, including SChLAP1 as a regulator of
metastasis [10,11]. On the basis of this unbiased whole-transcriptome
analysis, we have previously nominated PCAT-1 as the top-ranked,
upregulated lncRNA in prostate cancer tissues [10], and indepen-
dent studies have confirmed overexpression of PCAT-1 in prostate
cancer [9] and implicated PCAT-1 as a prognostic biomarker for
colorectal cancer metastasis and poor patient survival [12].
Here, we characterize the function of the lncRNA PCAT-1 in

prostate cancer. We show that PCAT-1 promotes prostate cell
proliferation and that this phenotype is mediated through up-regulation
of the cMyc protein (encoded by theMYC gene). Antagonism of cMyc
is able to reverse PCAT-1–mediated cell proliferation. We show that
PCAT-1 regulates cMyc post-transcriptionally through the MYC 3′
untranslated region (UTR). Further, we find a protective effect of
PCAT-1 on cMyc by interfering with the regulation of MYC by miR-
34a. Conversely, microRNA-based targeting of PCAT-1 reverses its
effect on cMyc. These studies elucidate a novel mechanism of cMyc
stabilization in prostate cancer and describe a post-transcriptional
function of PCAT-1 in the antagonism of microRNAs.

Material and Methods

Cell Lines and Reagents
All cell lines were purchased from the American Type Culture

Collection (Manassas, VA) and maintained in standard media.
PCAT-1 overexpression cell lines were generated using the pLenti6
vector (Invitrogen, Carlsbad, CA), and stably transfected cells were
selected by 2.5 μg/ml blasticidin (Invitrogen). PCAT-1 stable
knockdown LNCaP cell lines were transfected with appropriate
shRNA lentiviral constructs and a green fluorescent protein (GFP)-
positive cell fraction was selected by 1 μg/ml puromycin (Sigma, St
Louis, MO). All cell lines were used for fewer than 6 months after
resuscitation. Cell lines were confirmed by genotyping and were
analyzed by the University of Michigan DNA Sequencing Core using
the Profiler Plus PCR Amplification Kit (Applied Biosystems, Foster
City, CA). Details on the generation of these isogenic cell lines have
been previously published and can be found in reference [13] as well
as in the Supplementary Materials.

Cell Proliferation Assays
Cell proliferation assays were performed according to standard

protocols using trypan blue staining to enumerate the surviving
fraction of cells (see Supplementary Materials).

siRNA Knockdown and MicroRNA Transfection Studies
siRNA knockdowns were performed according to standard protocols

(see Supplementary Materials). siRNA sequences (in sense format) for
PCAT-1 knockdown were given as follows: siRNA 3 AUACAUAA
GACCAUGGAAAU; siRNA 4 GAACCUAACUGGACUUUAAUU.
Commercial cMyc siRNAswere obtained fromDharmacon (Dharmacon,
Lafayette, CO).

For microRNA transfection, respective microRNA mimics and
negative controls were purchased from Ambion (Austin, TX), and
transfections were performed with Oligofectamine (Invitrogen) as
described previously [14].

Bromouridine Pulse-Chase Labeling Assay
Cells were plated in 100-mm dishes and cultured until the cell

confluency reaches 75%. After 30 minutes of bromouridine labeling,
followed by uridine chases for 0 and 6 hours, cells were washed with
cold phosphate-buffered saline and harvested with TRIzol. Total cell
RNA was isolated by a standard protocol, and nascent Bru-labeled
mRNA was specifically isolated with anti-bromodeoxyuridine
antibodies. Samples were subjected to quantitative polymerase
chain reaction (qPCR), and the expression level of target gene was
determined. The gene expression levels at 0 and 6 hours represent
nascent mRNA synthesis and stability, respectively.

RNA Isolation, cDNA Synthesis, and qPCR Experiments
RNA isolation and cDNA synthesis were performedwith TRIzol and

Superscript III (Invitrogen), respectively, according to standard
protocols (see Supplementary Materials). qPCR was performed with
SYBRGreen. The primer sequences are listed below: PCAT-1-Forward:
TGAGAAGAGAAATCTATTGGAACC, PCAT-1-Reverse:
GGTTTGTC-TCCGCTGCTTTA; MYC-Forward: GCTCGTCTCA
GAGAAGCTGG,MYC-Reverse: GCTCAGATCCTGCAGGTACAA;
ACTB-Forward: AAGGCCAACCGCGAGAAG, ACTB-Reverse:
ACAGCCTGGATAGCAACGTACA. Additional primer pair
sequences can be found in Table W9.

Immunoblot Analysis
With or without treatment, cells were harvested and lysed in RIPA

lysis buffer (Sigma) supplemented with protease inhibitor cocktail
(Roche, Basel, Switzerland). Western blot analysis was performed
with standard protocols as described before [14,15]. The protein band
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densitometry was determined using the image analysis software
package Image J (version 1.42, available from the Research Services
Branch of NIH).

Luciferase Reporter Assays
The cMyc 3′UTR was amplified using reverse transcription–PCR

from LNCAP prostate cancer cells and subcloned into the pRL-TK
vector. DU145 control, DU145–PCAT-1, RWPE-LacZ, RWPE–
PCAT-1 pool, LNCaP sh–NT, LNCaP sh–PCAT-1–#1, and
LNCaP sh–PCAT-1–#2 were plated onto 24-well plates and
transfected with cMyc 3′UTR luciferase constructs as well as pRL-
TK vector as internal control for luciferase activity. After 48 hours of
incubation, luciferase reporter assay were conducted with the dual
luciferase assay kit (Promega, Madison, WI).

Gene Expression Microarrays
Expression profiling was performed using the Agilent Whole

Human Genome Oligo Microarray (Santa Clara, CA), according to
previously published protocols. All samples were run in technical
duplicates comparing RWPE and Du145 cells overexpressing
PCAT-1 and treated with either non-targeting siRNAs or siRNAs
targeting cMyc. Expression array data were processed to yield log-2
expression values. Genes that were at least N1.5-fold changed in one cell
line and at least N0.5-fold changed in the second cell line were
considered to be significantly upregulated or downregulated. All cell line
replicates were considered. For gene ontology analysis, upregulated and
downregulated probes were separated and probe lists were analyzed
using the Database for Annotation, Visualization and Integrated
Discovery (DAVID) bioinformatics platform with the functional
annotation clustering tool. See the Supplementary Materials for
additional details.

Statistical Analyses for Experimental Studies
All data are expressed as means ± SD or SEM. All experimental

assays were performed in duplicate or triplicate. Statistical analysis was
performed by two-sided Student’s t test and one-way analysis of
variance (ANOVA) with a Student-Newman-Keuls follow-up test.
Significance was designed as “*” when P b .05.

Results

cMyc Is Required for PCAT-1–Mediated Cell Proliferation
To establish a role for PCAT-1 in prostate cancer, we overexpressed

PCAT-1 in Du145 prostate cancer and RWPE benign immortalized
prostate cells (Figure W1A). We further used two shRNA constructs
targeting PCAT-1 to deplete endogenous PCAT-1 levels in the
LNCAP prostate cancer cell line (Figure W1A). Additional details on
the characterization of these cell lines can be found in reference [13].
We found that overexpression of PCAT-1 substantially increased cell
proliferation in Du145 and RWPE cells, whereas PCAT-1
knockdown in LNCAP cells reduced cell proliferation (Figure W1,
B–D). We further confirmed that knockdown of PCAT-1 in Du145–
PCAT-1 and RWPE–PCAT-1 cells reversed this cell proliferation
phenotype, supporting the specificity of our overexpression models
(Figure W2). Finally, we confirmed that our in vitromodels expressed
PCAT-1 at a level similar to endogenous expression by comparing our
models with PCAT-1 expression from a previously published cohort
[10] of prostate cancer tissues (Figure W3).

We next sought to describe a mechanistic basis for the role of
PCAT-1 in cell proliferation. To this end, we noted that PCAT-1 is
located on chr8q24, just 725 kb upstream of the MYC oncogene
(Figure 1A, left). Given this close proximity, we hypothesized that
PCAT-1 may regulate MYC to achieve its functions. Indeed, the cis-
regulation of neighboring protein-coding genes is a common
mechanism for numerous lncRNAs, including the well-studied
lncRNAs such as H19 and Xist [5]. In cancer, the cis-regulation of
neighboring protein-coding genes by lncRNAs has also been
implicated in oncogenic processes such as cell invasion [16].

Surprisingly, we found that cMyc protein levels were dramatically
increased by PCAT-1 overexpression in Du145 and RWPE
(Figure 1A, right). Consistent with these observations, knockdown
of PCAT-1 in LNCAP cells reduced cMyc protein (Figure 1A, right).
To verify this relationship, we next performed siRNA knockdown of
PCAT-1 in Du145–PCAT-1 and RWPE–PCAT-1 cells and observed
a substantial down-regulation of the cMyc protein, confirming the
specificity of PCAT-1–mediated up-regulation of cMyc (Figure 1B).
To determine whether cMyc up-regulation played a role in PCAT-1–
mediated pathogenesis, we performed siRNA knockdown of cMyc in
PCAT-1–overexpressing cell lines. We found that cMyc knockdown
fully abrogated the proliferative effect of PCAT-1 overexpression in
Du145 and RWPE (Figure 1, C and D). PCAT-1–mediated cell
proliferation is thus dependent on cMyc overexpression.

Identification of a PCAT-1–cMyc Regulatory Gene
Expression Program

We next sought to define downstream effectors of PCAT-1 and
cMyc through the analysis of gene expression changes following
modulation of these factors. Specifically, to evaluate whether cMyc
stabilization was necessary for PCAT-1–mediated gene expression
signatures, we performed gene expression array analysis of Du145–
PCAT-1 and RWPE–PCAT-1 cells treated with cMyc or non-
targeting siRNAs and compared them to control RWPE and Du145
cells lacking PCAT-1. We confirmed the microarray reproducibility
by running each sample in duplicate (Figure W4A). Next, we
observed a significant overlap (P b .05 by Fisher exact test) for probes
differentially regulated with PCAT-1 overexpression in RWPE and
Du145 (Figure W4B). Using this set of probes, we defined a signature
of 184 genes that were significantly upregulated or downregulated by
PCAT-1 and whose expression change was abrogated by cMyc
knockdown (Figure 2A and Table W1). Analysis of 91 genes
downregulated by PCAT-1 and dependent on cMyc using the
DAVID bioinformatics platform revealed enrichment for cytochrome
P450 genes, which are known downregulated targets of cMyc
(Table W2) [17–19]. Conversely, analysis of 93 genes upregulated by
PCAT-1 and dependent on cMyc demonstrated an enrichment of genes
involved in protein biosynthesis and transcriptional elongation, well-
described functions of cMyc (Table W3) [20,21]. This included both
ribosomal subunits such as RPL9 and RPLP0 as well as the translation
initiation factors EIF4B and EEF1A2. Interestingly, PCAT-1 also
required cMyc for the down-regulation of several well-established
tumor suppressor genes such as CDKN2B, a known cMyc target
[22,23], as well asTP73 and IKZF2. Together, these data support a role
for cMyc in the control of cancer-specific gene expression signatures
mediated through PCAT-1.

Post-Transcriptional Regulation of cMyc by PCAT-1
To establish amechanistic basis for cMyc overexpression byPCAT-1,

we next assessedMYC mRNA levels in our in vitro models. We found
thatMYC mRNA levels were unchanged in our LNCaP, Du145, and
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RWPE cell lines (Figure 2B). To further examine the regulation of
cMyc, we performed bromouridine pulse-chase labeling assays to test
the effect of PCAT-1 on the synthesis and stability of MYC mRNA.
Similarly, we found no change in MYC RNA stability in our model
systems (Figure 2C). Taken together, these data argue that the
regulation of cMyc byPCAT-1 operates at the post-transcriptional level.
Post-transcriptional regulation of mRNAs is frequently coordinat-

ed through the activity of microRNAs binding to the 3′UTR [24,25].
Specifically, increased activity of the 3′UTR can result in increased
protein abundance and gene activation. To test whether PCAT-1
regulated MYC through its 3′UTR, we transfected MYC 3′UTR
luciferase constructs into our isogenic cell lines. Supporting a role in
post-transcriptional regulation, we found that PCAT-1 overexpres-
sion increasedMYC 3′UTR activity, whereas knockdown of PCAT-1
decreased MYC 3′UTR activity (Figure 2D).

MicroRNA-Mediated Cross Talk between MYC and PCAT-1
Recently, several groups have argued that a subset of lncRNAs

may operate as coordinators of microRNA activity by disrupting
microRNA regulation of mRNA 3′UTRs [26–28]. lncRNAs may
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thus interfere with microRNA function. Conversely, microRNAs
that target lncRNAs would be predicted to titrate away the effect of
the lncRNAs. To apply this model to PCAT-1 regulation of cMyc,
we employed four microRNA-target prediction algorithms (mi-
Randa, miRBase, TargetScan, and PicTar) to nominate micro-
RNAs that target MYC or PCAT-1 (Tables W4–W7). For MYC,
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targeting control.
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we recovered known microRNA regulators such as the miR-34
family (including miR-34a, miR-34b, and miR-34c), which has
been previously reported to downregulate MYC in multiple
prostate cancer model systems [29–31]. For PCAT-1, we
surprisingly found only one microRNA, miR-3667-3p, that was
predicted to form high-confidence complementary base pairing
with PCAT-1 (Figure 3A).
To assess the effect of PCAT-1 on microRNA signaling, we

overexpressed miR-34a, a known regulator of MYC[29], and miR-
3667-3p, which was nominated as a PCAT-1 regulator, in Du145
control and Du145–PCAT-1 cells. We predicted that PCAT-1
should antagonize the effects of miR-34a, preventing its regulation
of cMyc; conversely, miR-3667-3p should antagonize PCAT-1 and
impact cMyc levels only in PCAT-1–overexpressing cells. When
tested in our in vitro models, we observed that miR-34a
appropriately decreased cMyc abundance in Du145 control cells
but not in Du145–PCAT-1 cells (Figure 3B). This suggests that
PCAT-1 expression exerts a protective effect on cMyc by interfering
with microRNA-based regulation. By contrast, overexpression of
miR-3667-3p decreased cMyc protein levels exclusively in Du145–
PCAT-1 cells (Figure 3B). Quantification of cMyc protein
abundance from these experiments confirmed the significance of
these results (Figure 3B, right). We further confirmed these
phenomena in RWPE PCAT-1 overexpression cells, where
miR-34a and miR-3667-3p overexpression produced highly
concordant results (Figure W5). We also assessed the endogenous
levels of miR-34a and miR-3667-3p in both parental cell lines
and overexpression lines (Figure W6).

To confirm that this regulation of cMyc was post-transcriptional, we
verified that overexpression of miR-34a and miR-3667-3p specifically
decreased the MYC 3′UTR activity in Du145 control and Du145–
PCAT-1 cells, respectively (Figure 3C). Further, we reasoned that if
miR-3667-3p affects cMyc protein abundance by targeting PCAT-1,
then PCAT-1 mRNA levels should be depleted on overexpression of
this microRNA. Indeed, we found that PCAT-1 mRNA levels
decreased approximately 50% when miR-3667-3p was overexpressed
in Du145–PCAT-1 cells (Figure W7). Finally, to demonstrate the
functional impact of miR-34a and miR-3667-3p, we performed cell
proliferation assays. Consistent with our model, miR-34a significantly
decreased proliferation only in Du145 control cells, whereas
miR-3667-3p decreased proliferation only in Du145–PCAT-1 cells
(Figure 3D). Analyzing the data shown in Figure 3, B to D, for
statistical significance using a one-way ANOVA test further confirmed a
significant P value b .05 for all experiments (Table W8). Together,
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these data support a model in which PCAT-1 interferes with the
regulation ofMYC by microRNAs (e.g., miR-34a), thereby increasing
cMyc protein levels and enhancing cell proliferation (Figure W8).
Targeting of PCAT-1 by miR-3667-3p is able to reverse its effects
by depleting PCAT-1 and preventing it from upregulating MYC 3′
UTR activity and protein abundance.

Discussion
Taken together, this study represents the first analysis of lncRNA-
based regulation of cMyc in prostate cancer. We find that PCAT-1
post-transcriptionally upregulates cMyc protein, leading to cell
proliferation and specific gene expression programs, including
increased expression of cMyc target programs such as protein
translation. Moreover, we investigate a post-transcriptional regulatory
web in which PCAT-1 disrupts microRNA-based regulation of cMyc.
Specifically, we find that PCAT-1 is able to abrogate the
down-regulation of cMyc by miR-34a. By contrast, targeting
PCAT-1 with miR-3667-3p is able to reverse the stabilizing effect
of PCAT-1 on cMyc protein levels. These findings correlate with the
3′UTR activity of MYC, which is also regulated by PCAT-1.

cMyc is a well-studied regulator of cell proliferation and is
frequently dysregulated in prostate cancer, where amplification of
the cMyc locus occurs in N20% of patients with localized disease
and N50% of patients with metastatic disease [32]. cMyc is a
ubiquitous transcription factor essential for cell cycle progression,
and its oncogenic up-regulation results in wide-ranging conse-
quences on cancer cell biology [33]. Indeed, it is estimated that up
to one third of all human genes may be regulated by cMyc in certain
contexts [34]. Numerous mechanisms of cMyc regulation have been
described in cancer, including the post-transcriptional regulation of
cMyc by microRNAs. In particular, miR-34a has been shown to
target the 3′UTR of MYC, thereby degrading cMyc protein and
strongly suppressing cancer cell proliferation and transformation
[29,35]. However, regulation of cMyc by prostate cancer lncRNAs
has not been previously studied.

In addition, these data give insight into the complex web of post-
transcriptional regulation of RNA and protein species in the cell
cytoplasm. Here, our work derives from the theory of competing
endogenous RNAs proposed by Pandolfi and colleagues [36].
According to this model, cytoplasmic RNA species are able to “titrate
away” the presence of other regulatory entities, particularly micro-
RNAs but also pseudogenes and other mRNAs [26–28]. This occurs
through competitive disruption of microRNA binding to target
genes. Characterization of the PTEN mRNA by Pandolfi and
colleagues has led to an increased appreciation for the numerous
cytoplasmic interactions that may occur at the RNA level and
contribution to overall protein abundance and production [36]. We
propose that PCAT-1 functions through a similar web in prostate
cancer to coordinate increased cMyc abundance (Figure W8).

With respect to mechanism specifically, we have previously
suggested that PCAT-1 may interact with the nuclear polycomb
repressive complex 2 (PRC2) [10]. While a subset of PCAT-1
transcripts appear to localize to the nucleus, possibly engaging PRC2
for functional effects, we subsequently found that a majority of
PCAT-1 transcripts are located in the cytoplasm [13] and thus likely
operates independently of PRC2 in this cellular compartment. This
current manuscript therefore supports a function of PCAT-1 in the
cytoplasm but does not exclude potential mechanisms for gene
expression regulation in the nucleus through PRC2 or other means.
One additional notable point is that we previously showed that
PCAT-1 expression does not correlate well with MYC mRNA
expression in human prostate cancer tissues. Our current work would
support that observation: we find no effect of PCAT-1 on MYC
mRNA. In this regard, our work is consistent with evidence showing
that microRNA-based regulation can occur primarily through
translational inhibition in certain situations [37].

We have also independently shown that PCAT-1 downregulates
BRCA2 [13], and a recent study in breast cancer cells demonstrated
that cMyc could downregulate BRCA2 through genomic binding to,
and up-regulation of, miR-1245 [38]. However, given the well-
documented cell type–specific functions of both microRNAs and
cMyc [39–42], the relationship between miR-1245 and cMyc in
prostate cells remains an unexplored area of research.

Further, we have observed that PCAT-1 is able to interfere with
the regulation of MYC by miR-34a. However, we have been unable
to locate a direct binding site for miR-34a in the PCAT-1 gene
sequence. Our analyses are limited by the capabilities of microRNA
target prediction software packages, which almost exclusively
include protein-coding genes only. miRBase, in fact, was the only
software that allowed us to search for microRNAs targeting PCAT-
1 directly. Thus, the effect of PCAT-1 on miR-34a–mediated
regulation may be indirect and may reflect a broader function of
PCAT-1 in which PCAT-1 disrupts microRNA function
indirectly. Here, we are intrigued by the presence of numerous
repeat elements in PCAT-1, including retroviral long-terminal
repeats and an Alu element (see [10]). Repeat elements are
known to have effects on microRNA regulation and function [43–45],
which may mean that PCAT-1 is able to impact microRNAs in this
manner as well.

More broadly, our work gives insight into role of the 8q24
chromosomal locus in tumor aggressiveness. The 8q24 locus has been
studied at length given its frequent amplification in cancer [46],
including prostate cancer [32]. While MYC is a presumed target for
this amplification, it is also clear that the function of 8q24
amplification in cancer is more expansive than simply MYC
amplification. This is supported by the fact that 8q24 aberrations
are typically very large or arm-level amplifications. Indeed, additional
targets such as NCOA2 and PVT1 have been proposed [47,48].
However, to date, no model has been able to fully elucidate the role of
8q24 amplification in cancer. Here, we suggest that PCAT-1may also
contribute to the role of 8q24 amplification by augmenting the
function of cMyc. This function of PCAT-1 may support a role for
other 8q24 ncRNAs in cancer pathogenesis.

Clinically, PCAT-1 may be an attractive candidate for biomarker
development given its substantial overexpression in prostate cancer and
functional role in cancer proliferation. To this end, PCAT-1
overexpression has been implicated in the poor prognosis of lethal
colorectal cancers [12], and in situ hybridization assays have been
suggested as a possible avenue for the clinical translation of lncRNAs
[11]. While the direct therapeutic targeting of lncRNAs has not yet
been proven to date, RNA-based therapies are increasingly investigated
as potential therapeutic agents. Ultimately, disease-specific targeted
therapies against both proteins and lncRNAs may improve the clinical
management of refractory prostate cancer.
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