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Abstract: In particular niches of the marine environment, such as abyssal trenches, icy 

waters and hot vents, the base of the food web is composed of bacteria and archaea that 

have developed strategies to survive and thrive under the most extreme conditions. Some 

of these organisms are considered ―extremophiles‖ and modulate the fatty acid composition 

of their phospholipids to maintain the adequate fluidity of the cellular membrane under 

cold/hot temperatures, elevated pressure, high/low salinity and pH. Bacterial cells are even 

able to produce polyunsaturated fatty acids, contrarily to what was considered until the 

1990s, helping the regulation of the membrane fluidity triggered by temperature and 

pressure and providing protection from oxidative stress. In marine ecosystems, bacteria 

may either act as a sink of carbon, contribute to nutrient recycling to photo-autotrophs or 

bacterial organic matter may be transferred to other trophic links in aquatic food webs. The 

present work aims to provide a comprehensive review on lipid production in bacteria and 

archaea and to discuss how their lipids, of both heterotrophic and chemoautotrophic origin, 

contribute to marine food webs. 
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1. Introduction 

The conditions of the marine environment led to the development of specialized lipid molecules 

responsible for the formation of membranes and storage of energy, and in higher organisms, for tissue 

formation, reproduction and growth. Fatty acids (FA) are important lipid compounds that are used as 

building blocks for the majority of lipid classes and as precursors for the biosynthesis of bioactive 

molecules. The fatty acid composition of phospholipids and their interaction with sterols and proteins 

determine the physical properties of cellular membranes, whilst neutral lipids, such as triacylglycerols 

(TAGs) and wax esters (WE), are reserves of fatty acids for energetic purposes and for  

phospholipid synthesis. 

Marine bacteria use adaptive changes in lipid composition as a response to environmental variations 

in pressure, temperature and salinity [1]. Archaea, which constitute a significant fraction of the 

―picoplankton‖ in the dark ocean water below 150 m, and equal bacteria in numbers at depths greater 

than 1000 m [2], are adapted to life in extreme environments, such as hot vents, and contain a much 

more stable membrane than bacteria. Bacterial membranes contain phospholipids in which the fatty 

acid moieties are linked by ester bonds to glycerol and form a phospholipid bilayer. However, archaeal 

membranes have bipolar lipids containing two polar heads linked by isoprenoid chains and ether 

linkages to glycerol. This allows for the formation of a monolayer membrane, which is likely to be 

responsible for the ability of these cells to thrive in extreme environments. Other features 

distinguishing archaeal and bacterial lipids include: the glycerophosphate backbone of archaeal 

phospholipids is sn-glycerol-1-phosphate, while bacterial have a sn-glycerol-3-phosphate backbone; 

the majority of the isoprenoid hydrocarbon chains of polar lipids in archaea are methyl-branched, 

whilst their bacteria counterparts are mostly straight-chain fatty acids; and several archaeal species 

present bipolar lipids with a tetraether core [3]. 

The development of mass spectrometry equipment and techniques has enabled the determination of 

structure and function of lipids in living systems and the emergence of lipidomics as an important part 

of metabolomics. There are two approaches in mass spectrometry-based lipidomics: one is based on a 

separation of lipids into different classes prior to analysis, whilst the other uses a shotgun approach in 

which all lipid species are analyzed simultaneously without a prior separation [4,5]. Novel lipid 

species can also be discovered by operating mass spectrometers in full-scan mode to search for new 

mass-to-charge ratio peaks [4]. In the field of marine lipidology, these different approaches can be 

used to search for new fatty acid structures and new sources of polyunsaturated fatty acids (PUFAs), in 

studying the role of the several fatty acids in cell membranes and their biosynthetic pathways and in 

finding the best fatty acid biomarkers or fatty acid ratios to assess trophic transfer in ecosystems [6].  

The recognition that PUFAs, especially docosahexaenoic (22:6ω3 or DHA) and eicosapentaenoic 

(20:5ω3 or EPA) acids, are fundamental to promote human health, by helping brain function and 

preventing cardiovascular diseases, increased the interest in these fatty acids [7–9]. The current global 

market for ω3 fatty acids is estimated to be 15,000–20,000 tons, derived from an approximate world 

production of fish oil of 300,000 tons per year [10]. Recent studies have shown that marine 

phospholipids have a better bioavailability, resistance to oxidation and a higher content of EPA and 

DHA than oily triglycerides from the same source [11,12]. Until the 1990s, it was considered that 

bacteria had no PUFA, with the exception of selected cyanobacteria. As noted by Okuyama et al. [13], 
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such assumption may have resulted from the fact that the bacterial species whose physiology, 

biochemistry and molecular biology had been well studied until that time were mesophilic species, 

such as Escherichia coli, which have no PUFA. Additionally, the culture conditions may determine the 

bacterial EPA content that is dependent on pH, temperature and other growth conditions [14]. It is now 

accepted that some species have the capacity to produce EPA, DHA or arachidonic acid (20:4ω6, 

ARA) [15]. As pointed out in a review by Valentine and Valentine, PUFAs have significant structural 

roles in bacterial membranes, including: regulatory function triggered by temperature and pressure; 

EPA-enriched membranes support a respiratory lifestyle dependent on proton bioenergetics; and 

contribution to increased fluidity of the cellular membrane under marine conditions [16]. DHA and 

EPA should also protect the marine organisms from biotic and abiotic oxidative stresses caused by 

reactive oxygen species (ROS), which are prevalent in marine environments [17]. Although, 

polyunsaturated fatty acids, such as EPA and DHA, are very susceptible to oxygen and ROS, several 

studies indicate that these molecules are rather stable against oxidative stresses when they are  

in vivo [17–19]. 

The concept of FA being transferred conservatively through aquatic food webs and of their use as 

biomarkers was first suggested in 1935 by Lovern [20] and applied to trace the diet in marine 

environments in the 1960s by Ackman and Eaton. As a result, FA biomarker analyses have become an 

important tool for resolving trophic interactions in marine ecosystems [21]. The use of bacterial fatty 

acids or bacterial fatty acid ratios may thus be used to disclose bacterial connections to the marine food 

web and its importance to supply materials and energy to the higher trophic levels. 

2. Lipid Production in Marine Micro-Organisms  

Bacteria must be able to maintain the biological functions and integrity of the cellular membrane 

under stressful conditions, as this structure is responsible for controlling the entrance of solutes in the 

cell, for the maintenance of energy status, for signal transduction and for keeping turgor pressure. 

Lipids play an important role in the maintenance of cell viability under stressful conditions, as 

membrane fluidity is maintained by alterations in the fatty acid composition of the membrane 

phospholipids through a mechanism called ―homeoviscous adaptation‖ [22]. However, several other 

lipid molecules, such as extracellular glycolipids, energy storage molecules, such as triacylglicerides, 

and defense lipids with antibacterial properties to fight competitors are also of paramount importance 

in marine environments. 

2.1. Lipids as Protecting Agents in Marine Environments 

Some of the marine environments, including hot vents, polar icy waters, acidic and alkaline waters, 

salt brines and pressurized abyssal trenches, present conditions so hostile to humans that they were 

initially considered too extreme to support microbial life. However, as sampling and laboratorial 

culture conditions techniques evolved, it was found that microbial ―extremophiles‖ could survive and 

thrive in such environments [23]. They were named according to their optimal growth conditions as 

thermophiles (Topt > 60 °C), hyperthermophiles (Topt > 80 °C), psychrophiles (Topt < 15 °C), 

acidophiles (pHopt < 3), alkaliphiles (pHopt > 8.5), halophiles (NaCl > 3%) and barophiles, or 
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piezophiles. A few bacterial strains can endure both elevated temperature and extreme pH, being 

considered poly-extremophiles [24]. 

Extremophiles can be (i) obligate extremophiles, which only grow under one or more extreme 

conditions, and (ii) facultative extremophiles, which grow optimally at a non-extreme condition but 

can tolerate and thrive under conditions that are lethal or toxic to the majority of living organisms. 

Extremophiles present alterations in fatty acid composition of the cellular membranes and produce 

specialized lipids, allowing them to survive under conditions that kill most of the other micro-organisms.  

Most of the marine environment is characterized by a temperature below 4 °C and pressure above 

100 × 10
5
 Pa, favoring psychrophilic and barophilic bacteria [25]. During a one-year study with 

monthly sampling throughout the water column (from surface to 4750 m deep) in Hawaii, it was found 

that pelagic crenarchaeota, a group of archaea, was equivalent in cell numbers to bacteria at depths 

greater than 1000 m [2]. The authors estimated that the global oceans harbor approximately  

1.3 × 10
28

 archaeal cells and 3.1 × 10
28

 bacterial cells. Biogeochemical and stable carbon isotopic 

analyses of a sedimentary record of archaeal lipids indicate that an anoxic event in Earth history led 

certain hyperthermophilic Archaea to adapt to low-temperature environments and to their massive 

expansion [26]. In subsurface sediments, buried deeper than 1 m in a wide range of oceanographic 

settings, it was found that at least 87% of intact polar membrane lipids could be attributable to archaeal 

membranes [27]. 

The fatty acid composition of the membrane phospholipids regulates membrane fluidity. At 

extremely low temperatures, an increase in the content of unsaturated and polyunsaturated fatty acids 

and a decrease in the average chain length of fatty acids in cellular membranes is observed [28,29]. 

Several psychrophilic bacterial strains isolated from sea ice produce a novel enzyme family required 

for the biosynthesis of PUFAs at low temperatures called polyketide synthase (PKS) [30,31]. The 

genes encoding these enzymes responsible for de novo long-chain PUFA biosynthesis are designated 

pfaEABCD and were thought to exist in the narrow subset of marine bacteria able to produce  

long-chain fatty acids [32]. However, the genetic potential to produce long-chain fatty acids via a 

FAS/PKS mechanism seems to be scattered throughout the bacterial domain [32]. During a stepwise 

adaptation of Rhodococcus erythropolis DCL14 cells from optimal growth conditions (28 °C, pH 7.0) 

to extreme conditions (that previously killed non-adapted cells) [13], it was found that the cells 

produced increased amounts of polyunsaturated fatty acids at lower temperatures and in the presence 

of copper sulphate (Figure 1). The cells produced 2.4 and 3.6 times more PUFAs at 15 and 4 °C, 

respectively, than at 28 °C (Figure 1A). A dose-dependent increase in the content of PUFAs was 

observed with copper sulphate for concentrations higher than 0.03% (w/v), reaching a 3.7-fold increase 

at 1% (Figure 1D). The pH and salt concentration did not significantly affected PUFA production in  

R. erythropolis (Figure 1B,C). A type Q gene cluster homologous to the pfa genes had been found in 

R. erythropolis PR4 [32]. 
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Figure 1. Production of polyunsaturated fatty acids in R. erythropolis during adaptation to 

temperature (A), pH (B), high concentration of salt (C) or copper sulphate (D). 
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Lipids are known to be heat-sensitive, and hyperthermophile bacteria produce special lipids. The 

bacterium Thermotoga maritima, which presents one of the highest growth temperatures at 90 °C, 

contains a novel glycerol ether lipid called 15,16-dimethyl-30-glyceryloxy-triacontanedioic acid that 

confers protection against hydrolysis at high temperatures [33]. The lipids of thermophilic archaea are 

characterized by unique structural features: they contain isoprenoid (phytanyl) chains with 15, 20, 25 

or 40 carbons instead of straight chains observed in other organisms; two of these chains are linked via 

ether linkages to glycerol or a polyol; the glycerol found in archaea, 2,3-di-O-sn-glycerol, has the 

reverse stereochemistry when compared to that found in other organisms [34]. The ether lipids derived 

from diphytanyl-glycerol, or from its dimer di(biphytanyl)-diglycerol, are present on all archaeal 

membranes and confer to the cells a remarkable resistance against hydrolysis at high temperatures and 

acidic pH [35]. Furthermore, at high temperatures, an increased degree of cyclization of the aliphatic 

core of archaeal membranes is observed with a larger ratio of tetraether lipids vs. diether lipids, and the 

number of cyclopentane rings can vary up to four per aliphatic chain, thus maintaining membrane 

fluidity [36,37]. 

At high temperatures, thermophiles have problems keeping the intracellular concentration of Na
+
, 

since at a high temperature, the cell membrane becomes more permeable to the diffusion of protons 

and sodium ions [38]. Higher salinity concentrations cause, in general, an increase in the content of 

negatively charged phospholipids at the expense of neutral phospholipids. Gram-negative bacteria 

decrease the proportion of zwitterionic phosphatidylethanolamine in the membrane, while increasing 

the proportion of negatively charged phosphatidylglycerol and/or diphosphatidylglycerol [39,40]. In 
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gram-positive bacteria, the anionic lipid fraction increases with salinity as a result of a higher content 

of diphosphatidylglycerol rather than phosphatidylglycerol [40]. 

When the transcriptional profiling of the halophile Halobacterium sp. NRC-1, which was among 

the first Archaea to be completely sequenced, was studied, it was found that growth at cold 

temperatures altered the expression of genes involved in lipid metabolism [41]. The gene coding for 

sn-1-glycerol phosphate dehydrogenase, responsible for the first step in the synthesis of polar lipids, 

was down regulated by 2.7-fold, while up-regulation was observed in the genes encoding for 

dehydrogenases for increased turnover of polar lipids, for a long-chain fatty acid-CoA ligase and for 

acetoacetyl-CoA thiolase, allowing the strain to alter the composition in lipids in the cold. 

The fluidizing properties of EPA/DHA on cellular membranes seem a key point in barophilic 

bacteria, which have to carry out respiration at temperatures near 0 °C and under extremely high 

hydrostatic pressure. In Acholeoplasma laidlawii, when only 50% of the total lipids are in the fluid 

state, bacteria can still slowly grow and replicate, but growth ceases when around 90% of the 

membrane lipids pass from the liquid crystalline to the gel phase [42]. Although DHA and EPA 

phospholipids have an important role in disrupting or blocking the formation of islands of gel-phase 

lipids, there could be more fluidizing processes or lipids involved [15].  

Two barophilic bacteria isolated from sediments from the Marianas Trench, DB21MT-2 and 

DB21MT-5, presented novel phospholipids in the classes of phosphatidylglycerol (PG) and 

phosphatidylethanolamine (PE) and its derivatives, phosphatidylmethylethanolamine (PME) and 

phosphatidyldimethylethanolamine (PDME) [43]. The phospholipids contained a high amount of 

20:5ω3 (EPA; in DB21MT-2) and 22:6ω3 (DHA; in both strains) on the sn-1 and mostly on the sn-2 

position of the phospholipids. Furthermore, the PUFAs were associated with almost every PG 

molecule, which was expected to cause greater disruption in acyl chain packing due to the larger head 

group of this phospholipid. The studies by Fang et al. [43] also suggested that psychrophilic and 

barophilic bacteria should be the major contributors of PUFAs to deep-sea sediments, since the vertical 

flux of PUFAs from surface water plankton decrease rapidly with depth. 

2.2. Production of Specialized Lipids 

The marine environment has favored the production of unique fatty acids and lipid molecules 

(Table 1). Bacterial fatty acids that can be used as biomarkers in marine environment are typically  

odd-numbered, branched trans-unsaturated and cyclopropyl fatty acids, e.g., 15:0, 17:0, 10-methyl-16:0, 

iso- and anteiso-branched saturated and monounsaturated [5]. Besides phospholipids, fatty acids are 

the building blocks of other lipid classes, including ceramides, wax esters, glycosphingolipids and  

N-acylated lipid molecules. Cyanobacteria are a source of acylated lipids and fatty acid amides [5]. 

The marine cyanobacterium Oscillatoria sp. produces a new diacylgalactolipid comprising  

9,12-octadecadienoyl and 4-hexadecenoyl chains [44], whilst Lyngbya majuscule produces bioactive 

secondary malyngamides, such as Malyngamide G and 7-methoxydodec-4(E)-enoic acid [45,46]. 

Extremophiles are also good sources of unusual fatty acids. Psychrophilic Bacillus species produce 

relatively rare Δ
5
-isomers, although no obvious advantage for growth at low temperature is provided 

by these isomers when compared to membrane lipids with Δ
9
- or Δ

11
-isomers [47]. Bacteroides fragilis 

produces a branched-chain hydroxyl fatty acid in the amide for 3-hydroxy-15-methylhexadecanoic 
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acid in lipopolysaccharides, which is rather specific in gram-negative bacteria [48]. The archaea 

Thermoplasma acidophilum, whose optimal growth conditions are 55–59 °C and pH 1–2, produces a 

peculiar membrane with 82% polar lipids having as the main polar lipid a bipolar tetraether lipid with 

a phosphoglycerol and a β-L-gulopyranose as head groups and up to four cyclopentane rings per 

aliphatic chain [37]. 

Table 1. Unusual lipids produced by micro-organisms. 

Bacteria 

Thermotoga 

maritima 

15,16-dimethyl-30-

glyceryloxy-

triacontanedioic 

acid  

 

[33] 

Bacteria from fish 

microbiome 

 

sebastenoic acid 
 

 

[49] 

Marine bacteria 

such as 

Shewanella 

putrefaciens 

 

furan-acids 

 

 

[50,51] 

Bacillus sp. 
ω-cycloheptane 

fatty acids 
 

[52] 

Cyanobacteria 

Lyngbya 

majuscula  
malyngamide G 

 

 

[45] 

Archaea 

Thermoplasma 

acidophilum 

 

main polar lipid 
 

 

[37] 

 

 

Halobacterium 

salinarum 

2,3-diphytanyl-sn-

glycerol-1-phospho- 

3′-sn-glycerol-1′-

methylphosphate 

 

 

 

[53] 

In a recently published paper, Sanchez et al. [49] examined for the first time a fish microbiome to 

isolate bacteria able to produce unique marine natural products. The fish intestines were a source of 

Actinomycetales, as well as unique strains of Firmicutes and Proteobacteria. The chemical extracts 

contained a new bioactive lipid called sebastenoic acid, which has anti-microbial activity against 

Staphylococcus aureus, Bacillus subtilis, Enterococcus faecium and Vibrio mimicus. 

Furan fatty acids, shown to be scavengers of hydroxyl and peroxyl radicals and to provide potential 

protective properties in mammalian tissue and blood, have been found in, e.g., marine sponges, algae, 
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plants and also in marine bacteria, such as Shewanella putrefaciens [50,51]. These acids are tri- or  

tetra-substituted furan derivatives characterized by either a propyl or pentyl side chain in one of the  

α-positions and a substituted straight long-chain saturated acid with a carboxylic group at its end on  

the other. 

2.3. Non-Polar Phospholipids, Non-Phosphorous Polar Lipids and Neutral Lipids  

The analyses of phospholipid-based fatty acids (PLFAs) were introduced as a means to assess live 

bacterial biomass, since they are rapidly degraded after cell death [21]. However a surface sediment 

from Carteau cove, France, contained, apart from phospholipids, non-phospholipid polar compounds 

with 12- to 28-carbon atoms, which cautions against the use of PLFAs to assess bacterial biomass 

without preliminary analysis and purification of phospholipids [54].  

Some bacteria incorporate fatty acids containing furan in their phospholipids. Among the species able to 

produce furan acids are Shewanella putrefaciens, Marinomonas comunis, Enterobacter agglomerans and 

Pseudomonas fluorescens, which were isolated from the intestinal liquor of fishes [55]. It was 

proposed that in marine bacteria living in fish, furan acids are generated by incorporation of a methyl 

group into cis-vaccenic acid, followed by introduction of a second double bond, and the diunsaturated 

fatty acid formed is presumed to react with oxygen, followed by ring closure, to assume the final furan acid 

structure [51]. These acids present a radical-scavenging ability and should help in protecting the 

cells [50]. 

Marine oil-degrading or hydrocarbonoclastic bacteria usually produce significant amounts of 

neutral lipids, which can be used as storage compounds, probably as a result of sporadic availability of 

hydrocarbons as growth substrates [56,57]. Among these compounds are triacylglycerols, 

diacylglycerols, wax esters and polyhydroxyalkanoates. The marine hydrocarbonoclastic bacterium 

Marinobacter sp. PAD-2 produced extracellular wax ester-like compounds when grown on 

hexadecane or succinate as the sole carbon source [57]. When Alvarez et al. tested forty psychrophile 

or psychrotrophic crude oil-utilizing bacteria, they found that around 73% of the strains were able to 

accumulate specialized lipids, such as polyhydroalkanoic acids (PHAs), and two strains were able to 

produce wax esters as storage compounds [56]. PHA accumulation was predominantly observed 

between 4 and 20 °C. 

A R. erythropolis strain, able to degrade hydrocarbons and fuel oil under saline conditions [58], 

produces and excretes a trehalose based glycolipid to increase the bioavailability of hydrocarbons with 

reduced water solubility, and also when the cells are dehydrated (Figure 2). Extracellular polymeric 

substances provide protection for microbial cells, resulting in increased resilience under stressful 

periods [59]. Among the best examples of temporary stresses are marine intertidal conditions. In this 

case, micro-organisms are mainly in immobilized communities called biofilms, which confer 

protection against high temperature and exposure to ultraviolet radiation, temporary dehydration, 

limited access to nutrients and competition [60]. Curiously, intertidal bacteria have also been found to 

be a good source of PUFAs, with Shewanella colwelliana, Vibrio splendidus and Photobacterium 

lipolyticum being isolated from anoxic intertidal sediments [61]. 
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Figure 2. Nile Red staining of extracellular glycolipids produced by R. erythropolis  

during dehydration.  

  

3. Transfer of Bacterial Lipids to Metazoans in Marine Foodwebs 

Bacteria may either act as a sink of carbon in aquatic ecosystems, contribute to nutrient recycling to 

autotrophs or bacterial organic matter may be transferred to other trophic links in aquatic 

foodwebs [62]. Either as the sole diet or associated with other dietary items, bacteria are ingested by 

small sized aquatic animals. Although concentrations of bacteria-derived FA, including odd-numbered 

saturated, branched-chain and monounsaturated (e.g., 18:1ω7), are retained by macrozooplankton [20], 

the ecological significance of the bacterial FA retention in crustacean consumers is still unclear. The 

low dietary value of bacteria relative to that of photosynthetic autotrophs (e.g., diatoms) and flagellates 

for the higher trophic links of the aquatic foodwebs has been associated with the poor value of its lipid 

composition, especially that of polyunsaturated fatty acids (PUFA) and sterol [63–65].  

PUFA are involved in the regulation of physiological processes by serving as precursors in the 

biosynthesis of bioactive molecules, and both PUFA and sterols are essential major membrane 

constituents of crustacean zooplankton, zoobenthos and fish [66,67]. According to Brett &  

Müller-Navarra [66], all herbivores convert the short-chain PUFA (i.e., with <20 carbons) α-linolenic 

acid (18:3ω3) to long-chain PUFA (i.e., with ≥20 carbons), such as EPA and DHA, albeit with 

different efficiency. In aquatic environments, most PUFA and sterols originate in the primary 

producers, essentially the photosynthetic autotrophs. Bacteria are generally poor in PUFA, especially 

long-chained PUFA. EPA-producing bacteria are not common in marine environments, yet  

Yazawa et al. [68] found 88 strains of bacteria capable of producing EPA out of 5000 strains screened. 

In fact, it was recently found that several marine bacteria contain EPA and DHA at levels as high as 

25% of total membrane FA [69], and it is likely that the polyketide synthase (PKS) pathway for PUFA 

synthesis (that acts independently of FA elongase and desaturase activities to synthesize EPA directly) 

is widespread in marine bacteria [70]. Additionally, the culture conditions may determine the bacterial 

EPA content that is dependent on pH, temperature and other growth conditions [13]. Some crustacean 

species and nematodes may directly feed on bacteria and act as the first consumers of primary 

production, forming an important link between the basis of marine food webs and the higher trophic 

levels, like large metazoans and fish [71–77]. Direct feeding on bacteria may be crucial for crustacean 

species living close to hydrothermal vents, high-pressure low-temperature deep-sea habitats and 
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permanently cold marine environments [78], or when bacteria is the sole item available [77]. It is 

worthy to note that in both deep-sea habitats and in the anoxic sediment of intertidal flats, bacteria may 

produce PUFA [13,79–81]. Nevertheless, the ecological role played by bacteria in aquatic 

environments cannot be dissociated from that of heterotrophic protists (HP). Heterotrophy is practiced 

by ―mixotrophic‖ protists that include flagellated phytoplankton that may ingest bacteria or other 

protists [82] and by heterotrophic protists that do not possess permanent chloroplasts and rely on other 

organisms for nutrition [83]. HP are important consumers of bacteria and phytoplankton in oceanic 

food webs [83,84], act as regenerators of nutrients for further phytoplankton growth [85] and as a food 

resource for marine zooplankton [86,87]. Although HP have been described as early as the 1920s [88], 

their ecological importance was only fully appreciated when new analytical methods enabled their 

identification and quantification (e.g., epifluorescence microscopy and flow cytometry). The notion of 

a classical linear food chain in aquatic environments consisting of phytoplankton, zooplankton and fish 

predominated until the 1970s, and its replacement by the concept of a trophic web only gained ground 

in the 1980s [89–91]. In the trophic web concept, dissolved (DOM) and particulated organic matter 

(POM) consisting of detritus, heterotrophic bacteria and autotrophic phytoplankton are consumed by 

HP in a carbon-transfer pathway called the microbial food web. This microbial food web connects to 

the classical food chain that branches into a network of trophic links. Although picoplankton are 

responsible for the bulk of primary production in large parts of the marine environment (as well as 

lakes) [92–94], their small size makes them largely unavailable for direct consumption by crustacean 

zooplakton, which have difficulty in retaining these size particles in their filtering apparatus. In 

systems where microalgal species rich in high quality lipids (i.e., PUFA) dominate the phytoplankton 

and can be directly grazed by crustacean zooplankton, the trophic transfer from autotrophs to 

crustaceans via HP can be considered both as a loss of carbon (i.e., losses via respiration), as well as a 

loss of essential lipid compounds [95]. Nevertheless, HP feeding on nanophytoplankton and bacteria 

may biochemically enhance the quality of their prey, which led to the ―trophic-upgrading‖ concept 

developed by Breteler et al. [96,97]. Thus, heterotrophic protists bridge the gap between the microbial 

loop and higher trophic levels by both repackaging their food and by increasing its nutritional value, 

which may be especially important when phytoplankton abundance is low or of reduced lipid quality 

and producers are dominated by prokaryotic picoplankton [97–99]. 

3.1. Transfer and Transformation of Bacterial Fatty Acids to Protists 

The potentials for fatty acid and PUFA synthesis in HP are closely related to phylogenetic lineages 

(see Desvilettes & Bec and references therein [95]). Nevertheless, previous studies have identified two 

main factors affecting the PUFA composition of HP related to their habitat (marine vs. freshwater) and 

diet origin (bacteria vs. algae). While in freshwater HP ω6 FA dominate PUFA, marine HP contain 

high levels of ω3 highly unsaturated FA (HUFA), like EPA and DHA [100,101]. Both marine and 

freshwater HP feeding on algae have a higher content of ω3 PUFA than when feeding on 

bacteria [102,103], probably resulting from the higher availability of ω3 PUFA in algae. Most protists 

synthesize PUFA through a series of aerobic desaturations and elongations of the 16:0 and 18:0 acids 

produced by fatty acid synthase (FAS). Marine protists, namely thraustochytrids, are also able to 

produce PUFA using the PKS pathway and accumulate them in triacylglycerols [104,105]. 
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Thraustochytrids, which are abundant in the marine foodweb, may be an important source of PUFA for 

the higher trophic levels [106]. In fact, thraustochytrids that may feed on bacteria are considered an 

alternative to fish oils as a source of long-chain PUFA [102] and are established candidates for 

commercial production of DHA [107]. 

3.2. ―Transfer‖ of Sterol 

Bacteria usually do not produce sterols, although there is evidence that some eubacteria are capable 

of synthesizing sterols de novo (e.g., Methylococcus capsulatus [108]). Crustaceans usually obtain 

their sterols directly via algae or through HP that have been feeding on algae. Some heterotrophic 

flagellates have the ability to synthesize sterols de novo [98], although ciliates seem to lack this ability. 

In the absence of dietary sterols, as when feeding on bacteria, ciliates produce the pentacyclic 

triterpenoid alcohol tetrahymanol or hopanoids, which serve as sterol surrogates in cell membranes 

(see Martin-Creuzburg and von Elert, and reference therein [109]). Some crustaceans (e.g., copepods) 

may incorporate tetrahymanol into their tissues, which enables them to maintain minimal egg 

production. Nevertheless, as Martin-Creuzburg and von Elert noted, it hasn’t been tested whether 

tetrahymanol or hopanoids improve the performance of crustaceans. Nevertheless, the production of 

sterols or functionally equivalent compounds, like tetrahymanol, by intermediary protozoans may 

improve carbon transfer efficiency via the microbial loop from nutritionally inadequate primary 

producers to metazoan grazers. 

4. Conclusions  

The ecological role played by bacteria in aquatic environments cannot be dissociated from that of 

heterotrophic protists. The efficiency of carbon transfer between bacteria and metazoans may be 

improved by intermediary protists, which elongate fatty acids and synthesize sterol or sterol surrogates. 

Acknowledgments 

The authors would like to thank Fundação para a Ciência e a Tecnologia, Portugal (program 

Ciência2007) for financial support. The study was partially supported by the project CHARCOScomBIO 

awarded by the EDP Fund for Biodiversity (EDP Foundation, Portugal). 

References  

1. De Carvalho, C.C.C.R.; Fernandes, P. Production of metabolites as bacterial responses to the 

marine environment. Mar. Drugs 2010, 8, 705–727. 

2. Karner, M.B.; DeLong, E.F.; Karl, D.M. Archaeal dominance in the mesopelagic zone of the 

Pacific Ocean. Nature 2001, 409, 507–510. 

3. Koga, Y.; Morii, H. Biosynthesis of ether-type polar lipids in Archaea and evolutionary 

considerations. Microbiol. Mol. Biol. Rev. 2007, 71, 97–120. 

4. Han, X.; Gross, R.W. Global analyses of cellular lipidomes directly from crude extracts of 

biological samples by ESI mass spectrometry. J. Lipid Res. 2003, 44, 1071–1079. 



Mar. Drugs 2012, 10 2709 

 

 

5. Harkewicz, R.; Dennis, E.A. Applications of mass spectrometry to lipids and membranes. Annu. 

Rev. Biochem. 2011, 80, 301–325. 

6. Bergé, J.-P.; Barnathan, G. Fatty acids from lipids of marine organisms: Molecular biodiversity, 

roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Eng. 

Biothchnol. 2005, 96, 49–125. 

7. Mozaffarian, D.; Rimm, E.B. Fish intake, contaminants, and human health: Evaluating the risks 

and the benefits. JAMA 2006, 296, 1885–1899. 

8. Calon, F. Omega-3 polyunsaturated fatty acids in Alzheimer’s disease: Key questions and partial 

answers. Curr. Alzheimer Res. 2011, 8, 470–478. 

9. Simopoulos, A.P. Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Mol. 

Neurobiol. 2011, 44, 203–215. 

10. Lu, F.S.; Nielsen, N.S.; Timm-Heinrich, M.; Jacobsen, C. Oxidative stability of marine 

phospholipids in the liposomal form and their applications. Lipids 2011, 46, 3–23. 

11. Wijendran, V.; Huang, M.-C.; Diau, G.-Y.; Boehm, G.; Nathanielsz, P.W.; Brenna, J.T. Efficacy 

of dietary arachidonic acid provided as triglyceride or phospholipid as substrates for brain 

arachidonic acid accretion in Baboon Neonates. Pediatr. Res. 2002, 51, 265–272. 

12. Peng, J.; Larondelle, Y.; Pham, D.; Ackman, R.G.; Rollin, X. Polyunsaturated fatty acid profiles 

of whole body phospholipids and triacylglycerols in anadromous and landlocked Atlantic salmon 

(Salmo salar L.) fry. Comp. Biochem. Physiol. 2003, 134, 335–348. 

13. Okuyama, H.; Orikasa, Y.; Nishida, T.; Watanabe, K.; Morita, N. Bacterial genes responsible for 

the biosynthesis of Eicosapentaenoic and Docosahexaenoic acids and their heterologous 

expression. Appl. Environ. Microbiol. 2007, 73, 665–670. 

14. De Carvalho, C.C.C.R. Adaptation of Rhodococcus erythropolis cells for growth and 

bioremediation under extreme conditions. Res. Microbiol. 2012, 163, 125–136. 

15. Russell, N.J.; Nichols, D.S. Polyunsaturated fatty acids in marine bacteria—A dogma rewritten. 

Microbiology 1999, 145, 767–779. 

16. Valentine, R.C.; Valentine, D.L. Omega-3 fatty acids in cellular membranes: A unified concept. 

Prog. Lipid Res. 2004, 43, 383–402. 

17. Okuyama, H.; Orikasa, Y.; Nishida, T. Significance of antioxidative functions of 

eicosapentaenoic and docosahexaenoic acids in marine microorganisms. Appl. Environ. 

Microbiol. 2008, 74, 570–574. 

18. Miyashita, K.; Nara, E.; Ota, T. Oxidative stability of polyunsaturated fatty acids in an aqueous 

solution. Biosci. Biotechnol. Biochem. 1993, 57, 1638–1640. 

19. Yazu, K.; Yamamoto, Y.; Niki, E.; Ukegawa, K. Mechanism of lower oxidizability of 

eicosapentaenoate than linoleate in aqueous micelles. Lipids 1998, 33, 597–600. 

20. Lovern, J.A. Fat metabolism in fishes: The fats of some plankton crustacea. Biochem. J. 1935, 

30, 387–390. 

21. Dalsgaard, J.; St John, M.; Kattner, G.; Muller-Navarra, D.; Hagen, W. Fatty acid trophic 

markers in the pelagic marine environment. Adv. Mar. Biol. 2003, 46, 225–340. 

22. Sinensky, M. Homeoviscous adaptation—A homeostatic process that regulates the viscosity of 

membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 1974, 71, 522–525. 

23. MacElroy, M. Some comments on the evolution of extremophiles. Biosytems 1974, 6, 74–75. 



Mar. Drugs 2012, 10 2710 

 

 

24. Bowers, K.; Mesbah, N.; Wiegel, J. Biodiversity of poly-extremophilic bacteria: Does combining 

the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical 

boundary for life? Saline Syst. 2009, 5, 9. 

25. Delong, E.F.; Yayanos, A.A. Properties of the glucose-transport system in some deep-sea 

bacteria. Appl. Environ. Microbiol. 1987, 53, 527–532. 

26. Kuypers, M.M.M.; Blokker, P.; Erbacher, J.; Kinkel, H.; Pancost, R.D.; Schouten, S.;  

Sinninghe Damsté, J.S. Massive expansion of marine Archaea during a mid-cretaceous oceanic 

anoxic event. Science 2001, 293, 92–95. 

27. Lipp, J.S.; Morono, Y.; Inagaki, F.; Hinrichs, K.-U. Significant contribution of Archaea to extant 

biomass in marine subsurface sediments. Nature 2008, 454, 991–994. 

28. Canganella, F.; Wiegel, J. Extremophiles: From abyssal to terrestrial ecosystems and possibly 

beyond. Naturwissenschaften 2011, 98, 253–279. 

29. Thomas, D.N.; Dieckmann, G.S. Antarctic Sea Ice—A habitat for extremophiles. Science 2002, 

295, 641–644. 

30. Metz, J.G.; Roessler, P.; Facciotti, D.; Levering, C.; Dittrich, F.; Lassner, M.; Valentine, R.; 

Lardizabal, K.; Domergue, F.; Yamada, A.; Yazawa, K.; Knauf, V.; Browse, J. Production of 

polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 

2001, 293, 290–293. 

31. Bowman, J.P.; Gosink, J.J.; McCammon, S.A.; Lewis, T.E.; Nichols, D.S.; Nichols, P.D.; 

Skerratt, J.H.; Staley, J.T.; McMeekin, T.A. Colwellia demingiae sp. nov., Colwellia hornerae 

sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: Psychrophilic 

Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω3). Int. J. Syst. 

Bacteriol. 1998, 48, 1171–1180. 

32. Shulse, C.N.; Allen, E.E. Widespread occurrence of secondary lipid biosynthesis potential in 

microbial lineages. PLoS One 2011, 6, e20146. 

33. De Rosa, M.; Gambacorta, A.; Huber, R.; Lanzotti, V.; Nicolaus, B.; Stetter, K.O.; Trincone, A. 

Microbiology of Extreme Environments and Its Potential for Biotechnology; da Costa, M.S., 

Duarte, J.C., Williams, R.A.D., Eds.; Springer: New York, NY, USA, 1989; pp. 167–173. 

34. Wilson, Z.E.; Brimble, M.A. Molecules derived from the extremes of life. Nat. Prod. Rep. 2009, 

26, 44–71. 

35. Stetter, K.O. Extremophiles and their adaptation to hot environments. FEBS Lett. 1999, 452, 22–25. 

36. Uda, I.; Sugai, A.; Itoh, Y.H.; Itoh, T. Variation in molecular species of polar lipids from 

Thermoplasma acidophilum depends on growth temperature. Lipids 2001, 36, 103–105. 

37. Nicolas, J. A molecular dynamics study of an archaeal tetraether lipid membrane: Comparison 

with a dipalmitoylphosphatidylcholine lipid bilayer. Lipids 2005, 40, 1023–1030. 

38. Van de Vossenberg, J.L.C.M.; Driessen, A.J.M.; Grant, D.; Konings, W.N. Lipid membranes 

from halophilic and alkali-halophilic Archaea have a low H
+
 and Na

+
 permeability at high salt 

concentration. Extremophiles 1999, 3, 253–257. 

39. Vreeland, R.H.; Anderson, R.; Murray, R.G. Cell wall and phospholipid composition and their 

contribution to the salt tolerance of Halomonas elongata. J. Bacteriol. 1984, 160, 879–883. 

40. Russell, N.J. Adaptive modifications in membranes of halotolerant and halophilic microorganisms. 

J. Bioenerg. Biomembr. 1989, 21, 93–113. 



Mar. Drugs 2012, 10 2711 

 

 

41. Coker, J.A.; DasSarma, P.; Kumar, J.; Müller, J.; DasSarma, S. Transcriptional profiling of the 

model Archaeon Halobacterium sp. NRC-1: Responses to changes in salinity and temperature. 

Saline Sys. 2007, 3, 6. 

42. McElhaney, R.N. The effects of alterations in the physical state of the membrane lipids on the 

ability of Acholeoplasma laidlawii B to grow at different temperatures. J. Mol. Biol. 1974, 84, 

145–157. 

43. Fang, J.; Barcelona, M.J.; Nogi, Y.; Kato, C. Biochemical implications and geochemical 

significance of novel phospholipids of the extremely barophilic bacteria from the Marianas 

Trench at 11,000 m. Deep-Sea Res. 2000, 47, 1173–1182. 

44. Son, B.; Kim, J.; Choi, H. A new diacylgalactolipid containing 4Z-16:1 from the marine 

cyanobacterium Oscillatoria sp. Lipids 2001, 36, 427–429. 

45. Dembitsky, V.M.; Srebnik, M. Natural halogenated fatty acids: Their analogues and derivatives. 

Prog. Lipid Res. 2002, 41, 315–367. 

46. Wu, M.; Milligan, K.E.; Gerwick, W.H. Three new malyngamides from the marine 

cyanobacterium Lyngbya majuscula. Tetrahedron 1997, 53, 15983–15990. 

47. Kaneda, T. Iso- and Anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic 

significance. Microbiol. Rev. 1991, 55, 288–302. 

48. Wollenweber, H.W.; Rietschel, E.T.; Hofstad, T.; Weintraub, A.; Lindbert., A.A. Nature, type of 

linkage, quantity, and absolute configuration of (3-hydroxy) fatty acids in lipopolysaccharides 

from Bacteroides fragilis NCTC 9343 and related strains. J. Bacteriol. 1980, 144, 898–903. 

49. Sanchez, L.M.; Wong, W.R.; Riener, R.M.; Schulze, C.J.; Linington, R.G. Examining the fish 

microbiome: Vertebrate-derived bacteria as an environmental niche for the discovery of unique 

marine natural products. Plos One 2012, 7, e35398. 

50. Spiteller, G. Furan fatty acids: Occurrence, synthesis, and reactions. Are furan fatty acids 

responsible for the cardioprotective effects of a fish diet? Lipids 2005, 40, 755–771. 

51. Shirasaka, N.; Nishi, K.; Shimizu, S. Biosynthesis of furan fatty acids (F-acids) by a marine 

bacterium, Shewanella putrefaciens. Biochim. Biophys. Acta 1997, 1346, 253–260. 

52. Poralla, K.; König, W.A. The occurrence of ω-cycloheptane fatty acids in a thermo-acidophilic 

bacillus. FEMS Microbiol. Lett. 1983, 16, 303–306. 

53. Kates, M.; Moldoveanu, N.; Stewart, L.C. On the revised structure of the major phospholipid of 

Halobacterium salinarium. Biochim. Biophys. Acta 1993, 1169, 46–53. 

54. Aries, E.; Doumenq, P.; Artaud, J.; Molinet, J.; Bertrand, J.C. Occurrence of fatty acids linked to 

non-phospholipid compounds in the polar fraction of a marine sedimentary extract from Carteau 

cove, France. Org. Geochem. 2001, 32, 193–197. 

55. Shirasaka, N.; Nishi, K.; Shimizu, S. Occurrence of a furan fatty acid in marine bacteria. 

Biochim. Biophys. Acta 1995, 1258, 225–227. 

56. Alvarez, H.M.; Pucci, O.H.; Steinbüchel, A. Lipid storage compounds in marine bacteria. Appl. 

Microbiol. Biotechnol. 1997, 47, 132–139. 

57. Nakano, M.; Iehata, S.; Tanaka, R.; Maeda, H. Extracellular neutral lipids produced by the 

marine bacteria Marinobacter sp. Biocontrol Sci. 2012, 17, 69–75. 



Mar. Drugs 2012, 10 2712 

 

 

58. De Carvalho, C.C.C.R.; ds Fonseca, M.M.R. Degradation of hydrocarbons and alcohols at 

different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol. 

Ecol. 2005, 51, 389–399. 

59. Decho, A.W. Microbial biofilms in intertidal systems: An overview. Cont. Shelf Res. 2000, 20, 

1257–1273. 

60. Otto Ortega-Morales, B.; Jesus Chan-Bacab, M.; del Carmen De la Rosa-Garcia, S.;  

Carlos Camacho-Chab, J. Valuable processes and products from marine intertidal microbial 

communities. Curr. Opin. Biotechnol. 2010, 21, 346–352. 

61. Freese, E.; Rütters, H.; Köster, J.; Rullkötter, J.; Sass, H. Gammaproteobacteria as a possible 

source of eicosapentaenoic acid in anoxic intertidal sediments. Microb. Ecol. 2009, 57, 444–454. 

62. Sherr, E.B.; Sherr, B.F.; Albright, L.J. Bacteria: Link or sink? Science 1987, 235, 88a. 

63. Phillips, N.W. Role of different microbes and substrates as potential suppliers of specific, 

essential nutrients to marine detritivores. Bull. Mar. Sci. 1984, 35, 283–298. 

64. Ahlgren, G.; Lundstedt, L.; Brett, M.; Forsberg, C. Lipid composition and food quality of some 

freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 1990, 12, 809–818. 

65. Volkman, J.V. Sterols in microorganisms. Appl. Microbiol. Biotechnol. 2003, 60, 495–506. 

66. Brett, M.; Müller-Navarra, D. The role of highly unsaturated fatty acids in aquatic foodweb 

processes. Freshw. Biol. 1997, 38, 483–499. 

67. Albers, C.S.; Kattner, G.; Hagen, W. The compositions of wax esters, triacylglycerols and 

phospholipids in Arctic and Antarctic copepods: Evidence of energetic adaptations. Mar. Chem. 

1996, 55, 347–358. 

68. Yazawa, K. Production of eicosapentaenoic acid from marine bacteria. Lipids 1996, 31, S297–S300. 

69. Nichols, D.; Bowman, J.; Sanderson, K.; Nichols, C.M.; Lewis, T.; McMeekin, T.; Nichols, P.D. 

Developments with Antarctic microorganisms: Culture collections, bioactivity screening, 

taxonomy, PUFA production and cold-adapted enzymes. Curr. Opin. Biotechnol. 1999, 10, 240–246. 

70. Wallis, J.G.; Watts, J.L.; Browse, J. Polyunsaturated fatty acid synthesis: What will they think of 

next? Trends Biochem. Sci. 2002, 27, 467–473. 

71. Ustach, J.F. Algae, bacteria and detritus as food for the harpacticoid copepod,  

Heteropsyllus pseudonunni Coull and Palmer. J. Exp. Mar. Biol. Ecol. 1982, 64, 203–214. 

72. Sogard, S.M. Utilization of meiofauna as a food source by a grassbed fish, the spotted dragonet 

Callionymus pauciradiatus. Mar. Ecol. Prog. Ser. 1984, 17, 183–191. 

73. Decho, A.W. Water-cover influences on diatom ingestion rates by meiobenthic copepods. Mar. 

Ecol. Prog. Ser. 1986, 33, 139–146. 

74. Norsker, N.-H.; Støttrup, J.G. The importance of dietary HUFAs for fecundity and HUFA 

content in the harpacticoid, Tisbe holothuriae Humes. Aquaculture 1994, 125, 155–166. 

75. De Troch, M.; Mees, J.; Wakwabi, E. Diets of abundant fishes from beach seine catches in 

seagrass beds of a tropical bay (Gazi Bay, Kenya). Belg. J. Zool. 1998, 128, 135–154. 

76. Buffan-Dubau, E.; Carman, K.R. Diel feeding behavior of meiofauna and their relationships with 

microalgal resources. Limnol. Oceanogr. 2000, 45, 381–395. 

77. De Troch, M.; Boeckx, P.; Cnudde, C.; Van Gansbeke, D.; Vanreusel, A.; Vincx, M.;  

Caramujo, M.J. Bioconversion of fatty acids at the basis of marine food webs: Insights from a 

compound-specific stable isotope analysis. Mar. Ecol. Prog. Ser. 2012, 465, 53–67. 



Mar. Drugs 2012, 10 2713 

 

 

78. Stevens, C.J.; Limén, H.; Pond, D.W.; Gélinas, Y.; Juniper, S.K. Ontogenetic shifts in the trophic 

ecology of two alvinocaridid shrimp species at hydrothermal vents on the Mariana Arc, western 

Pacific Ocean. Mar. Ecol. Prog. Ser. 2008, 356, 225–237. 

79. Šajbidor, J.; Dobroñová, S.; Čertík, M. Arachidonic acid production by Mortierella sp. S-17 

influence of C/N ratio. Biotechnol. Lett. 1990, 12, 455–456. 

80. Nichols, D.S.; Nichols, P.D.; McMeekin, T.A. Polyunsaturated fatty acids in Antarctic bacteria. 

Antarct. Sci. 1993, 5, 149–160. 

81. Yano, Y.; Nakayama, A.; Yoshida, K. Distribution of polyunsaturated fatty acids in bacteria 

present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl. Environ. 

Microbiol. 1997, 63, 2572–2577. 

82. Caron, D.A. Symbiosis and Mixotrophy among Pelagic Microorganisms. In Microbial Ecology 

of the Oceans; Kirchman, D.L., Ed.; Wiley-Liss: New York, NY, USA, 2000; pp. 495–523. 

83. Sherr, E.B.; Sherr, B.F. Heterotrophic dinoflagellates: A significant component of 

microzooplankton biomass and major grazers of diatoms in the sea. Mar. Ecol. Prog. Ser. 2007, 

352, 187–197. 

84. Strom, S.L. Bacterivory: Interactions between Bacteria and Their Grazers. In Microbial Ecology 

of the Oceans; Kirchman, D.L., Ed.; Wiley-Liss: New York, NY, USA, 2000; pp. 286–351. 

85. Caron, D.A.; Goldman, J.C. Nutrient Regeneration. In Ecology of Marine Protozoa;  

Capriulo, G.M., Ed.; Oxford University Press: New York, NY, USA, 1990; pp. 283–306. 

86. Stoecker, D.K.; McDowell, C. Predation on protozoa: Its importance to zooplankton. J. Plankton 

Res. 1990, 12, 891–908. 

87. Gifford, D.J.; Dagg, M.J. The microzooplankton-mesozooplankton link: Consumption of 

planktonic protozoa by the calanoid copepods Acartia tonsa Dana and Neocalanus plumchrus 

Murkukawa. Mar. Microb. Food Webs 1991, 5, 161–177. 

88. Fauré-Fremiet, E. Contribution à la connaissance des infusoires planctoniques. Bull. Biol. Fr. 

Bel. 1924, 6 (Suppl.), 1–171. 

89. Pomeroy, L.R. The ocean’s food web, a changing paradigm. Bioscience 1974, 24, 499–504. 

90. Azam, F.; Fenchel, T.; Field, J.G.; Gray, J.S.; Meyer-Reil, L.A.; Thingstad, F. The ecological 

role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 1983, 10, 257–263. 

91. Sherr, E.; Sherr, B.F. Role of microbes in pelagic food webs: A revised concept. Limnol. 

Oceanogr. 1988, 33, 1225–1227. 

92. Li, W.K.W.; Rao, D.V.S.; Harrison, W.G.; Smith, J.C.; Cullen, J.J.; Irwin, B.; Platt, T. 

Autotrophic picoplankton in the tropical ocean. Science 1983, 219, 292–295. 

93. Stockner, J.G.; Antia, N.J. Algal picoplankton from marine and freshwater ecosystems: A 

multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 1986, 43, 2472–2503. 

94. Weisse, T. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. Adv. 

Microb. Ecol. 1993, 13, 327–369. 

95. Desvilettes, C.; Bec, A. Formation and Transfer of Fatty Acids in Aquatic Microbial Food Webs: 

Role of Heterotrophic Protists. In Lipids in Aquatic Ecosystems; Kainz, M., Brett, M.T.,  

Arts, M.T., Eds.; Springer: New York, NY, USA, 2009; pp. 25–42. 



Mar. Drugs 2012, 10 2714 

 

 

96. Breteler, W.C.M.K.; Schogt, N.; Baas, M.; Schouten, S.; Kraay, G.W. Trophic upgrading of food 

quality by protozoans enhancing copepod growth: Role of essential lipids. Mar. Biol. 1999, 135, 

191–198. 

97. Bec, A.; Martin-Creuzburg, D.; Elert, E.V. Trophic upgrading of autotrophic picoplankton by the 

heterotrophic nanoflagellate Paraphysomonas sp. Limnol. Oceanogr. 2006, 51, 1699–1707. 

98. Sanders, R.W.; Wickham, S.A. Planktonic protozoa and metazoa: Predation, food quality and 

population control. Mar. Microb. Food Webs 1993, 7, 197–223. 

99. Veloza, A.; Chu, F.-L.; Tang, K. Trophic modification of essential fatty acids by heterotrophic 

protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Mar. Biol. 

2006, 148, 779–788. 

100. Zhukova, N.V.; Kharlamenko, V.I. Sources of essential fatty acids in the marine microbial loop. 

Aquat. Microb. Ecol. 1999, 17, 153–157. 

101. Vera, A.; Desvilettes, C.; Bec, A.; Bourdier, G. Fatty acid composition of freshwater 

heterotrophic flagellates: An experimental study. Aquat. Microb. Ecol. 2001, 25, 271–279. 

102. Broglio, E.; Jónasdóttir, S.H.; Calbet, A.; Jakobsen, H.H.; Saiz, E. Effect of heterotrophic versus 

autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: 

Relationship with prey fatty acid composition. Aquat. Microb. Ecol. 2003, 31, 267–278. 

103. Bec, A.; Desvilettes, C.; Vera, A.; Fontvielle, D.; Bourdier, G. Nutritional value of different food 

sources for the bennthic daphnidae Simocephalus vetulus: Role of fatty acids. Arch. Hydrobiol. 

2003, 156, 145–163. 

104. Ratledge, C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. 

Biochimie 2004, 86, 807–815. 

105. Kobayashi, T.; Sakaguchi, K.; Matsuda, T.; Abe, E.; Hama, Y.; Hayashi, M.; Honda, D.; Okita, Y.; 

Sugimoto, S.; Okino, N.; et al. Increase of eicosapentaenoic acid in Thraustochytrids through 

thraustochytrid ubiquitin promoter-driven expression of a fatty acid Δ5 desaturase gene. Appl. 

Environ. Microbiol. 2011, 77, 3870–3876. 

106. Parrish, C.C.; Whiticar, M.; Puvanendran, V. Is w6 docosapentaenoic acid an essential fatty acid 

during early ontogeny in marine fauna? Limnol. Oceanogr. 2007, 52, 476–479. 

107. Raghukumar, S. Thraustochytrid marine protists: Production of PUFAs and other emerging 

technologies. Mar. Biotechnol. 2008, 10, 631–640. 

108. Volkman, J.K. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic 

pathways. Org. Geochem. 2005, 36, 139–159. 

109. Martin-Creuzburg, D.; Elert, E.V. Ecological Significance of Sterols in Aquatic Food Webs.  

In Lipids in Aquatic Ecosystems; Kainz, M., Brett, M.T., Arts, M.T., Eds.; Springer: New York, 

NY, USA, 2009; pp. 43–64. 

Samples Availability: Available from the authors. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


