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Abstract: Adenosine is a ubiquitous signaling molecule, with widespread activity across all organ systems. There is evi-
dence that adenosine regulation is a significant factor in traumatic brain injury (TBI) onset, recovery, and outcome, and a 
growing body of experimental work examining the therapeutic potential of adenosine neuromodulation in the treatment of 
TBI. In the central nervous system (CNS), adenosine (dys)regulation has been demonstrated following TBI, and correlated 
to several TBI pathologies, including impaired cerebral hemodynamics, anaerobic metabolism, and inflammation. In addi-
tion to acute pathologies, adenosine function has been implicated in TBI comorbidities, such as cognitive deficits, psychi-
atric function, and post-traumatic epilepsy. This review presents studies in TBI as well as adenosine-related mechanisms 
in co-morbidities of and unfavorable outcomes resulting from TBI. While the exact role of the adenosine system following 
TBI remains unclear, there is increasing evidence that a thorough understanding of adenosine signaling will be critical to 
the development of diagnostic and therapeutic tools for the treatment of TBI. 
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INTRODUCTION – ADENOSINE IN TBI 

 Adenosine (Ado) is a signaling molecule with wide-
spread actions throughout the body. A Pubmed search for 
adenosine reviews restricted to 2008 revealed over 50 arti-
cles reviewing adenosine physiology, pathology, modulation, 
and therapeutic targets for subjects ranging from cardiovas-
cular, renal, enteric, and sleep function to asthma, inflamma-
tion, and dermal wound healing. In the central nervous sys-
tem (CNS), adenosine (dys)regulation is implicated in cogni-
tion, psychiatric function, Parkinson’s disease, Alzheimer’s 
disease, epilepsy, and hypoxia/ischemia. This review is in-
tended to highlight the role of adenosine acutely following 
TBI as well as the potential adenosine-related mechanisms in 
co-morbidities of and unfavorable outcomes resulting from 
TBI, building on earlier studies [113].  

 The distribution of adenosine receptors makes Ado both 
an attractive target for continuing study and provides a po-
tentially daunting complication for adenosine-based treat-
ment strategies. There is an extensive set of tools for the 
study of adenosine, including agonists and antagonists of 
varying selectivity and specificity, transgenic mice, and 
functional assays. Several adenosine-related therapeutic can-
didates are either currently available or in clinical trials [11, 
52], potentially easing the regulatory burden for subsequent 
applications. However, the ubiquitous nature and diverse 
effects of adenosine signaling requires particular attention to 
drug delivery and activation, and the potentially significant 
side effect profile. 

 Adenosine is a potent neuromodulator, acting at CNS 
synapses to restrict synaptic activity via four known g-
protein coupled receptor subtypes, reviewed in [11]. Adeno-
sine receptors are found throughout the brain [15], and are  
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implicated in diverse neurological functions and pathologies 
[48]. In addition to its role as a signaling molecule, the nu-
cleoside Ado is an intermediary in a metabolic pathway that 
includes the nucleobase adenine, the nucleotide ATP (a pri-
mary energy substrate), and the second messenger cyclic 
adenosine monophosphate (cAMP) (Fig. (1)), which further 
highlights the varied consquences of Ado dysregulation. The 
neuroprotective role of Ado is well established in inflamma-
tion, ischemia/reperfusion injury, and asthma [90] as well as 
in diverse CNS diseases [20]. Unlike excitatory and inhibi-
tory amino acids with an “all or none” effect, Ado acts in the 
CNS as a modulator [119], which may be a key factor reduc-
ing negative side effects such as those found with NMDA 
receptor antagonists [57]. 

 Traumatic brain injury is a significant health burden in 
the United States; the US Centers for Disease Control esti-
mated 1.4 million TBIs per year in 2001 [81]. In a recent 
survey of Iraq war veterans, 15% of returning soldiers re-
ported a mild TBI; of those, 48% had symptoms of post-
traumatic stress disorder [65]. Additional lasting effects sig-
nificantly associated with a brain injury are chronic pain 
[102], fatigue and other sleep disturbances [141], cognitive 
problems [78], anxiety [98], and epilepsy [23, 122]. While 
these symptoms subside for many patients, they can persist 
for a lifetime of disability [66, 105].  

NEUROPHYSIOLOGY OF THE ADENOSINE SYS-
TEM 

 The A1 and A2A receptors are widely expressed in brain, 
with high adenosine affinity (~100nM [38]), and comple-
mentary actions. The A1 receptor is a Gi/Go coupled me-
tabotropic receptor, acting to inhibit adenylyl cyclase and 
cAMP production, with uniform expression throughout the 
CNS [16, 37]. It is generally inhibitory at synapses, activat-
ing K+ and Cl- channels and inhibiting P- and N-type voltage 
gated calcium channels. The A2A receptor is a Gs coupled 
metabotropic receptor, activating adenylyl cyclase and 
cAMP production (Fig. (2)). While RT-PCR studies show 
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expression throughout the brain [37], it is preferentially ex-
pressed in the striatum, nucleus accumbens, and thalamus 
[118]. A2A receptors interact with A1 receptors, forming 
functional heteromers [31], as well as with several excitatory 
receptors, notably the dopamine [8, 44] and glutamate sys-
tems [121, 135]. Free adenosine in the brain (the “tone”) is 
typically in the nanomolar range [11, 83]. Adenosine is in-
creased locally to millimolar levels during low frequency 
synaptic activity [43], acting primarily via the A1 receptor as 
a presynaptic inhibitor of excitatory amino acid release and 
postsynaptically to maintain hyperpolarization [34]. Adeno-
sine appears to act as the unifying signaling molecule in 
studies of the molecular basis of learning [34]. It acts as an 
autocrine signaling molecule at the tetanized synapse, en-
hancing synapse strength via A2A receptor activation [4]. It 
acts as a paracrin signal via a calcium wave in the astrocytic 
syncitium, acting distant from the tetanized synapse to 
achieve heterosynaptic depression by A1 receptor activation 
[58]. In addition to their role at the synapse, astrocytes re-
lease Ado at endothelial cells, causing vasodilation via A2A 
receptor activation, which enhances local circulation and 
provides the additional metabolic support rquired during 
intense synaptic stimulation [61]. 

 The low-affinity (micromolar [38]) A2B and A3 receptors 
are also widely expressed in brain, though at low levels [37]. 
Their low affinity for adenosine makes them likely mediators 
of excessive adenosine signaling, such as occurs in trauma, 
but there is little research on their specific roles. Like the A1 
and A2A receptors, the A2B and A3 receptors have comple-
mentary actions; the A2B receptor is Gs coupled, and the A3 
Gi/Gq coupled (Fig. (2)). Unlike the A1 and A2A receptors, 
their expression seems to be mainly astrocytic. Stimulation 
of the A2B receptor rapidly triggers interleukin-6 production, 
making this a likely step in the inflammatory response fol-
lowing trauma [140]. A2B receptors are upregulated follow-
ing ischemic preconditioning, again suggesting a primary 
role in endogenous neuroprotective mechanisms [149]. The 
role of the A3 receptor is more controversial [10]. Studies 
have shown that A3 receptor activation is protective in astro-
cytes [17]. In neurons, a more complicated response has been 
revealed, with A3 receptor activation protecting CA1 neurons 
during short duration oxygen-glucose deprivation, yet caus-
ing damage during long-duration depriviation [116].  

PATHOLOGY OF THE ADENOSINE SYSTEM AF-
TER TBI 

 The study of TBI is unusual in that the invasive proce-
dures required to stabilize and monitor a severely injured 
patient have facilitated clinical studies that would be impos-
sible in other injuries or chronic diseases. Intracranial pres-
sure (ICP) has long been recognized as an indicator of TBI 

severity [56, 97]. ICP monitoring is an important component 
of a multi-modal monitoring procedure in the neurological 
intensive care unit [145]. As it requires insertion of a catheter 
into the ventricle, ICP monitoring allows regular monitoring 
of CSF. Consequently, we have an extensive understanding 
of changes to adenosine and its metabolites following human 
TBI. 

Cyclic AMP 

 3'-5'-cyclic adenosine monophosphate (cAMP) is a key 
component of the adenosine metabolic pathway (Fig. (2)). 
cAMP is a second messenger regulated by G-protein coupled 
receptors which serve to rapidly couple extracellular signals 
to intracellular responses. cAMP is is modulated by diverse 
extracellular signals, including hormones, dopamine, glut-
mate, and adenosine. Current understanding of cAMP dem-
onstrates the functional diversity of cAMP signaling [5] and 
highlights its role in synaptic plasticity [2, 39]. Specificity in 
cAMP signaling may be due to cellular compartmentaliza-
tion [110, 148], though this is not yet well understood in 
brain cells.  

 Early studies of the second messenger cAMP were based 
on the hypothesis that cAMP is a metabolic regulator. Clini-
cal studies show that depth of coma is correlated to reduced 
cAMP in CSF, falling as low as 1.5 nM during grade V 
coma, with a steady improvement correlated to coma depth, 
to nearly normal levels (20 nM) upon reaching grade I [45, 
124]. Of note, in these studies plasma levels of cAMP re-
mained normal (9-19 nM), even when CSF levels were < 6 
nM, suggesting that the CSF cAMP measures reflect changes 
specific to the brain, and not a systemic reduction [45]. 
Regulation of CSF cAMP levels has been demonstrated in 
many neurological diseases. Eight-to-twelve hours following 
cerebral infarction, increased cAMP has been measured 
[100], but levels are depressed by 3 days [24]. Following 
epileptic seizure, depressed cAMP levels were measured for 
3 days [100], and are chronically low in patients with multi-
ple sclerosis [94]. These measurements of cAMP provide a 
valuable diagnostic tool, as well as insight into the evolution 
of brain injury.  

Cerebral Blood Flow 

 Oxygen and glucose are critical to brain function; con-
tinuous cerebral blood flow (CBF) is necessary as there are 
no energy stores in the brain. The mechanisms of CBF and 
metabolism have been described in detail [142]. Autoregula-
tory mechanisms in the brain circulation can compensate for 
minor or short term disruptions in blood flow, pressure, 
and/or volume. Brain swelling is a common consequence of 
TBI; as the volume within the intact skull is fixed, such 
swelling results results in compression of the ventricles (re-

 

 

 

Fig. (1). Adenosine and its metabolites are active at all levels of cellular function. 
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duction in CSF volume) and vasoconstriction (reduction in 
blood flow). While clinical monitoring of patients with se-
vere head injury has revealed wide fluxuations in CBF, oxy-
gen demand remains consistently low [108], even during 
hyperperfusion [33]. Kochanek et al. measured CSF levels of 
adenosine and cerebral oxygen use to test the hypothesis that 
adenosine could account for this uncoupling, as adenosine 
causes vasodilation via A2A receptors on endothelial cells, 
and represses synaptic activity through the A1 receptor on 
neurons. They found that increased adenosine was associated 
with depressed arterio-jugular venous oxygen difference and 
increased risk of death [32, 73]. Using microdialysis, Bell et 
al. demonstrated increased adenosine and cAMP levels in the 
cortex after TBI during secondary oxygen desaturation, cor-
relating these increases to increased glutamate and lactate 
[14], further supporting a role for adenosine release as a 
critical mediator of the cerebral response to TBI. 

Cellular Metabolism 

 Closely related to cerebral blood flow is cellular metabo-
lism, the means by which brain cells produce their primary 

energy substrate ATP. The first step is glycolysis, in which 
glucose is converted to pyruvate: 

Glucose + 2NAD+ + 2ADP + 2Pi >> Pyruvate + 2NADH + 
2H+ + 2ATP + 2H2O. 

 Under physiologic conditions, pyruvate and NADH be-
come the substrates for aerobic metabolism by the citric acid 
cycle, oxidizing NADH to NAD+ as well as generating ATP. 
Under anaerobic conditions, NAD+ is replenished by the 
enzyme lactate dehydrogenase: 

Pyruvate + NADH+ + H+ >> Lactate + NAD+. 

 Lactic acid is readily measured in the CSF, and a clear 
indicator of hypoxic conditions in the brain. 

 Hypoxia and ischemia are common co-morbidities of 
TBI [29, 55, 67], and their treatment is the focus of signifi-
cant clinical literature [28, 51, 63, 64, 95, 150]. Not all cere-
bral metabolic crisis is due to ischemia however; combined 
PET scans and microdialysis showed significant increases in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Adenosine and metabolites regulated in response to TBI. Compounds in italics are exogenous drugs discussed in the text. 
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the lactate/pyruvate ratio in the absence of ischemia [143], 
suggesting increased anaerobic metabolism.  

 Breakdown of ATP in metabolically stressed tissue is a 
potentially significant source of adenosine; clinical meas-
urements following TBI demonstrate lasting alterations in 
the adenosine metabolic pathway. Cerebralspinal fluid (CSF) 
samples taken following severe TBI show significant eleva-
tions in adenosine in both adults [32] and children [120, 
129]. Further studies have shown that components of the 
adenosine metabolic pathway including cAMP, adenosine, 
inosine, hypoxanthine, and xanthine are all transiently upregu-
lated during secondary hypoxic periods in both clinical [14], 
and experimental [13] settings. Clinically, Ado levels are 
typically highest at early time points, though late elevations 
(> 72 hours following TBI) have been noted in children 
[120], and likely reflect the progression of secondary injury. 
Using microdialysis, Bell et al. demonstrated increased 
adenosine and cAMP levels in the cortex after TBI during 
secondary oxygen desaturation, correlating these increases to 
increased glutamate and lactate [14]. In rodent models of 
fluid percussion injury, transient decreases in ATP (with 
recovery by 24 hours) followed similar kinetics of adenosine 
increase; however, when FPI was combined with secondary 
ischemia, ATP remained depressed at 24 hours [6]. While 
these studies make it clear that the adenosine system is al-
tered by TBI, it is not yet clear whether this increased adeno-
sine reflects endogenous neuroprotection mechanisms or is a 
byproduct of ATP breakdown. 

MODULATION OF ADENOSINE RECEPTOR AC-
TIVITY 

 Direct modulation of adenosine (up to 30-fold) in re-
sponse to stimuli has been measured in multiple model sys-
tems [83]. Neuroprotection by adenosine receptor modula-
tion has been demonstrated in several model systems, includ-
ing hypoxia/ischemia [123, 133], epilepsy [18, 101], Parkin-
son’s disease [27, 69, 130], inflammation [26, 60] among 
others [27, 38, 119]. They play a key role in many organ 
systems, however, and have been the target of several drug 
treatments for respiratory disease [137, 139, 147], cardiovas-
cular disease [40, 111], and hepatic injury [12]. While no 
clinically effective neuroprotective strategies based on 
adenosine receptor modulation have yet emerged, modula-
tion of adenosine receptor activity has provided insight into 
the diverse roles of adenosine in neural function and dys-
function.  

Agonist/Antagonist Studies 

 In vivo studies of adenosine receptor modulation in TBI 
have demonstrated modest therapeutic improvements. The 
non-selective Ado agonist 2-chloro-adenosine (2CA), active 
at A2B > A1 > A2A receptors (IUPHAR database [59]), has 
been used in several experimental models. Kochanek et al. 
have demonstrated that intraparenchymal injection of 2CA 
increases CBF in the rat brain in a broad, dose-dependent 
and persistent manner [75]. Administration of 2CA by intra-
hippocampal injection after CCI restored CBF, more effec-
tively in moderate injury than in severe injury [74]. By other 
measures, however, the effects of 2CA treatment are mixed. 
Pre-treatment with 2CA by intra-cerebral ventricular (ICV) 

injection demonstrated partial restoration of [Mg2+] levels, 
and a small, but non-significant, improvement in neuroscore 
at 1 and 7 days following injury [62]. Post-CCI, intrahippo-
campal injection of 2CA resulted in improved wire-grip 
scores but no improvement in memory tasks or hippocampal 
cell survival [138]. Post injury treatment with the A1 receptor 
agonist CCPA improved the CA3 cell count, but had no sig-
nificant effects on learning and behavior measures [138], 
while the A1 receptor antagonist DPCPX and its solvent 
DMSO both resulted in increased lesion volume and reduced 
balance beam activity [138]. Together, these results reinforce 
the role of adenosine receptors as neuromodulators, with 
effects specific to the selected outcome measure. Additional 
studies with longer survival times are also likely to demon-
strate more definitive effects of adenosine receptor antago-
nism and antagonism.  

 Interpretation of drug studies is complicated by our 
evolving understanding of receptor pharmacology as well as 
different methods of assessing agonist/antagonist kinetics. 
Within these limits, relative adenosine affinity must also be 
considered; A1 and A2A receptors have a much higher Ado 
affinity (10 – 100 times greater [38]) than A2B and A3 recep-
tors, so modulation of the A2B and A3 receptors may only 
influence the most extreme adenosine response, and may 
define the difference between beneficial and harmful adeno-
sine activity. The presence of A1/A2A heteromers further 
complicates the interpretation of activation/inhibition stud-
ies. The use of adenosine receptor knockout mice allows the 
examination of the specific receptor effects without the con-
founding effects of invasive drug delivery methods and non-
specific vehicle effects (eg, DMSO). Adenosine receptor 
knockouts have a relatively normal phenotype, making them 
an attractive tool for the study of adenosine regulation fol-
lowing TBI [49]. Knockout of the A1 receptor leads to lethal 
status epilepticus following cortical contusion injury [76], 
reinforcing the neuroprotective role of the A1 receptor as a 
synaptic inhibitor. Concurrent measurement of cAMP in this 
model would be interesting, as A1 receptor activation inhib-
its adenylyl cyclase and A1 knockout would be expected to 
enhance cAMP production (Fig. (2)), giving some additional 
insight into the causality of the cAMP-adenosine cycle. 
Knockout of the A2A receptor is neuroprotective in the CCI 
model [87], with improved neuromuscular behavior, reduced 
tunel staining, and reduced glutmate release. Perhaps most 
interestingly, the pro-inflammatory cytokines TNF-α and IL-
1β were significantly decreased by 24 hours following injury 
in the A2A knockout mice when compared to wild-type mice. 
Though the specificity of these effects is still unclear, these 
results further illustrate the complexity of adenosine signal-
ing and the interdepencence of adenosine signaling, neural 
tissue, the immune response, and the cerebrovascular system; 
any therapy affecting one parameter is likely to have an af-
fect on the others. 

Caffeine 

 Caffeine is a well-known stimulant with a primary inhibi-
tory activity at the A1 and A2A receptors. Coffee, tea, and 
soda are common sources of dietary caffeine, containing 40-
120 mg/serving, and in excess of 200 mg in “energy” drinks. 
Elevated caffeine in CSF has been correlated to improved 
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outcome in clinical studies; at 6 months following TBI, ele-
vated caffeine was a stronger predictor of outcome than 
Glasgow Coma Score or alcohol on admission [126]. In 
modeled TBI, acute pre-treatment with caffeine (50 – 150 
mg/kg) worsens outcome by all measures studied, including 
mortality, behavior, edema and blood-brain barrier break-
down, and peroxidase activity [3, 86]. In contrast, chronic 
pre-treatment with caffeine resulted in improvements in neu-
roscore, edema, apoptosis, CSF glutamate, and markers of 
the inflammatory response (CD45, TNF-α, and IL-1) [86]. 
Of note, chronic caffeine treatment resulted in increased A1 
receptor mRNA expression [86]; a corresponding increase in 
A1 receptor expression is likely a significant contributor to 
the protective effects of chronic caffeine.  
 The effects of caffeine are not limited to the adenosine 
receptors. Caffeine stimulates IP-3 receptor mediated intra-
cellular calcium release; calcium activates adenylyl cyclase, 
which catalyzes ATP into cAMP. Mechanical deformation of 
neural cells causes a significant acute rise in cytosolic 
[Ca2+] [82, 91, 125]; however, following stretch, it is not 
possible to to elicit this calcium response [146], suggesting 
that acute pre-treatment with caffeine may cause rapid and 
sustained increase in neuronal calcium, disrupting ionic ho-
meostasis, and sensitizing the brain to a subsequent injury. 
The combined actions of caffeine to enhance cAMP produc-
tion via adenylyl cyclase activation may have a role in the 
effects of acute caffeine treatment; however, evidence in the 
literature is contradictory. Clinically, cAMP increases during 
oxygen desaturation after TBI [14], but does not change dur-
ing secondary swelling [73]. In a rodent model of CCI, no 
acute changes were measured in cAMP [13]. In contrast, 
following lateral fluid percussion injury, not only were sig-
nificant reductions in cAMP measured, but phosphodi-
esterase inhibition with rolipram restored cAMP levels, re-
duced negative histopathological findings, and decreased the 
inflammatory response [7]. While the precise role of caffeine 
in the severity and recovery from TBI remains unknown, its 
wide use and clear effects in modeled TBI make it a potential 
confounding factor in clinical evaluation and treatment. 

ADENOSINE REGULATION 

 Adenosine levels in the brain are typically in the range of 
30-300 nM. Key Ado modulators include 5’-nucleotidases, 
adenosine deaminase (ADA), and adenosine kinase (ADK) 
(Fig. (2)). While neurons and glia both contribute to the 
maintainence of adenosinergic tone, expressing many similar 
enzymes, there is evidence that they respond to stimuli by 
different pathways [110]. Further, regionally distinct expres-
sion and activity of each of these enzymes suggests that the 
adenosine tone may differ by region [112]. Adenosine in-
volvement in the sleep/wake cycle is well established (recent 
reviews include [80, 96, 132]), and activity of these adeno-
sine modulators in the sleep regions of the brain follow simi-
lar diurnal patterns [92]. Further studies have demonstrated 
the effects of age on adenosine modulator activity, and shown 
that, while ADA does not vary with age, 5’nucleotidases and 
ADK both increase significantly with age [93]. While there 
is little direct study of these adenosine modulators in the 
context of TBI, their rapid and direct influence on the levels 
of adenosine in the brain make them a likely influence on 
outcome after TBI. 

5’-Nucleotidases 

 Located on the cell surface (ecto-) and in the cytosol (cy-
tosolic, endo-), 5’-nucleotidases act to hydrolyze ATP, AMP, 
and ADP to Ado [22]. Two commonly studied nucleotidases 
are CD39 (also known as apyrase and nucleotide triphos-
phate diphosphohydrolase) and CD73. CD39 hydrolyzes 
ATP to ADP and AMP, while CD73 hydrolyzes AMP to 
Ado. In particular, increases in CD73 function, mRNA, and 
protein have been shown in endothelial monolayers, as early 
as 8 hours following the onset of hypoxia or reperfusion [88, 
90], suggesting that it may be a component of the endoge-
nous response leading to ischemic preconditioning [47]. 
Models of pilocarpine-induced epilepsy suggest that en-
hanced ecto-nucleotidase activity may have a significant role 
in the “silent” phase of epileptogenesis [144]. In vivo studies 
examining the cellular response to a cortical stab injury 
(CSI) show a biphasic regulation of CD73: by 4 hours fol-
lowing the CSI, AMP hydrolysis is significantly reduced in 
the region of the stab wound [104], but by 15 days it has 
increased significantly in all regions of the brain considered 
[103]. In contrast, CD39 activity changed little, and only in 
the region of the CSI [104]. 

Adenosine Deaminase 

 Adenosine Deaminase (ADA) catalyzes the conversion of 
Ado to inosine (reviewed in [46]), and can be located either 
in the cytosol or on the extracellular surface of the plasma 
membrane of neurons, glia, and endothelial cells [30, 99, 
117]. ADA acts rapidly during ischemic events to decrease 
local Ado [109]. As Ado has anti-inflammatory properties 
[26, 60], it has been hypothesized that inhibition of ADA 
might increase abient Ado, reducing inflammation. The 
ADA inhibitor FR234938 reduced plasma levels of the pro-
inflammatory cytokine TNF-α and elevated the anti-
inflammatory cytokine IL-10 in response to lipopolysaccha-
ride treatment [77]. Further, treatment with the ADA inhibi-
tor deoxycoformycin was protective following permanent 
focal ischemia, with a notable reduction in swelling [89]. Of 
interest, colocalization of ADA, the A1 receptor, and the cy-
tokine CD26 (also known as dipeptidyl peptidase IV, DPP-
IV) has been noted in many organs and across species [1, 
16]. CD26 interacts directly with ADA on T-cells [70] as an 
active component of the immune response, and the colocali-
zation of this trio of proteins on endothelial cells [79] may 
have a role in the regulation of the blood-brain barrier fol-
lowing trauma. While the mechanisms of these interactions 
are not clear, this colocalization and conservation across 
species suggest a causal mechanism. 

Adenosine Kinase 

 In the developing brain, adenosine kinase (ADK) expres-
sion is primarily in the cytosol of neurons [134]. As the brain 
develops, however, ADK expression shifts to the cytosol of 
astrocytes; extracellular Ado is taken up by astrocytes via 
passive and facilitated diffusion, where it is phosphorylated 
into AMP by ADK. While it has not been studied directly in 
TBI, ADK regulation of adenosine has been implicated in 
many neurological disorders [20]. In acute injury such as 
ischemia, ADK upregulation is associated with poor out-
come [115], while reduced ADK improves outcome [114], 
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reviewed in [19]. Chronic diseases (such as epilepsy) have 
been associated with astrogliosis and ADK upregulation 
across multiple models, including kainic acid induced [42], 
kindled [85], and astrogliotic [84], reviewed in [21]. The 
additive effects of ADA and ADK inhibition [128] may pro-
vide an additional avenue for therapies targeting adenosine 
modulators. 

Adenosine Transport 

 The third major system for adenosine clearance is nu-
cleoside transporters, reviewed in [72]. In microdialysis stud-
ies, larger increases in ambient adenosine were measured in 
vivo in response to treatment with uptake inhibitors than 
were measured with ADA inhibitors, without the concurrent 
rise in adenosine metabolites inosine and hypoxanthine [9]. 
In a model of cerebral contusion, treatment with the transport 
inhibitor propentofylline increased expression of the neuro-
protective peptide basic fibroblast growth factor [25]. As 
ethanol is a common factor in TBI, a potential additive role 
of adenosine in the cardiovascular response was measured in 
a swine model of TBI; however, no significant protection 
was measured with adenosine transport inhibition [41]. 
Adenosine uptake inhibition remains an untapped source of 
potential neurprotective strategies [106]. 

ADENOSINE REGULATION AND TBI CO-MORBI-
DITIES 

 While many TBI survivors regain gross motor and men-
tal functions, comorbidities often remain throughout life. 
Studies following mild and moderate TBI survivors show 
improvements in community integration, cognitive and neu-
ropsychiatric measures over 6-12 months [107], 5 years 
[136], and 22 years [105]. However, impairments persist, 
and there is significant opportunity for therapeutic interven-
tion. Chronic pain is a common result of TBI, even after mild 
injury [102]. Adenosine modulation has been widely impli-
cated in inflammation [26, 53, 60] and analgesia [38, 72, 
127]. Anxiety is one of many neuropsychiatric comorbidities 
of TBI [98], with clear correlates to adenosine dysregulation 
[35, 54, 68]. Post traumatic epilepsy has a long latency, often 
decades, and is particularly common following severe injury 
in both pediatric [131] and adult [50] populations. Even in 
individuals without clinical seizure manifestations, epilepti-
form activity has been reported [122]. In an A1 receptor 
knockout mouse, TBI led to lethal status epilepticus [76], 
suggesting a clear role for the A1 receptor in seizure suppres-
sion. To date, two models of spontaneous seizure develop-
ment following lateral fluid percussion injury (LFPI) have 
been published, with different characteristics. D’Ambrosio et 
al. reported rapid onset of high frequency, short duration 
cortical seizure activity, accompanied by generally mild be-
havior manifestations within the first 8 weeks of (1-2 on a 
the 1-5 Racine scale)[36]. Kharatishvili et al. report a latency 
of 2-12 months before seizure onset of seizures, similar to 
the latency observed clinically following TBI, with seizure 
activity lasting nearly two minutes [71]. Further studies im-
plicate adenosine dysregulation in epileptogenesis and epi-
lepsy, reviewed in [21]. Taken together, these results suggest 
that adenosine modulation a source of therapeutic potential 
across the spectrum of traumatic brain injury and recovery.  

CONCLUSION 

 There is strong evidence that adenosine (dys)regulation 
plays a role in the brain following TBI. It is still not clear 
whether Ado is an endognous neuroprotective measure or a 
byproduct of stressed cellular metabolism; the truth is likely 
in between, and linked to injury severity. Current studies 
highlight the potential of adenosine to act in both protective 
and detrimental pathways; the multi-factoral pathologies of 
TBI and effects of adenosine signaling may mean that 
adenosine is not a practical target for neuroprotective thera-
pies following TBI. Whether the adenosine system emerges 
as a neuroprotective target, it is clear that adenosine has a 
role in the evolution of neural recovery after traumatic brain 
injury, and a thorough understanding of its influences in the 
CNS will be critical in the development of diagnostic and 
therapeutic tools. 
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ABBREVIATIONS 

2CA = 2-Chloroadenosine 

Ado = Adenosine 

ADA = Adenosine Deaminase 

ADK = Adenosine Kinase 

ADP = Adenosine Diphosphate 

AMP = Adenosine Monophosphate 

ATP = Adenosine Triphosphate 

cAMP = Cyclic Adenosine Monophosphate 

CCI = Cortical Contusion Injury 

CCPA = 2-Chloro-N(6)-Cyclopentyladenosine 

CNS = Central Nervous System 

CSF = Cerebral Spinal Fluid 

CSI = Cortical Stab Injury 

DMSO = Dimethyl Sulfoxide 

DPP-IV = Dipeptidyl Peptidase IV 

ICV = Intra-Cerebroventricular 

LFPI = Lateral Fluid Percussion Injury 

NMDA = N-methyl-D-aspartic acid 

TBI = Traumatic Brain Injury 
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