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Abstract: An electronic nose (E-nose) consisting of 14 metal oxide gas sensors and one electronic
chemical gas sensor has been constructed to identify four different classes of wound infection.
However, the classification results of the E-nose are not ideal if the original feature matrix containing
the maximum steady-state response value of sensors is processed by the classifier directly, so a novel
pre-processing technique based on supervised locality preserving projections (SLPP) is proposed
in this paper to process the original feature matrix before it is put into the classifier to improve
the performance of the E-nose. SLPP is good at finding and keeping the nonlinear structure of
data; furthermore, it can provide an explicit mapping expression which is unreachable by the
traditional manifold learning methods. Additionally, some effective optimization methods are found
by us to optimize the parameters of SLPP and the classifier. Experimental results prove that the
classification accuracy of support vector machine (SVM combined with the data pre-processed
by SLPP outperforms other considered methods. All results make it clear that SLPP has a better
performance in processing the original feature matrix of the E-nose.
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1. Introduction

An electronic nose (E-nose) is an expert system which is composed of an array of gas sensors
as well as a corresponding artificial intelligence algorithm. The E-nose is effective in dealing with
problems of odor analysis [1,2], and has already been introduced into many fields such as disease
diagnosis [3–5] and food engineering [6,7]. The sensor array of the E-nose has a characteristic of
cross-sensitivity, namely different units in the array will make responses when facing the same smell,
which can effectively avoid the decision-making risk brought by the single sensor. The original feature
matrix which is extracted from the response of sensors is redundant, and much key information which
plays a crucial role in helping the E-nose make the right judgment is submerged.

Previous work has confirmed that the E-nose can be used to detect wounds of patients in labs and it
is feasible for the E-nose to detect bacteria including the in the investigation of bacterial volatile organic
compounds (VOCs) from cultures and also from swabs taken from wound-infected patients [8–11].
In fact, there are many kinds of pathogenic bacteria which can lead to wound infection. Therefore, the
same sampling experiment on one pathogenic bacterium must be repeated many times to make the
E-nose learn about one kind of wound infection “deeply”; meanwhile, the sampling experiments
based on different infection types are also necessary in order to let the E-nose distinguish more kinds
of wound pathogens. Additionally, based on the original feature matrix extracted from the response
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curves of sensors, the distance of points from different classes is larger than that of points from the
same class, namely the data structure of the original feature matrix is nonlinear.

When this original feature matrix of wound infection data is put into the classifier directly, the
classification accuracy of the E-nose is not ideal because of the redundancy of this matrix. So in order
to capture more useful information which can be analyzed and to improve the classification accuracy
of the E-nose as well, some methods must be applied to process the original feature matrix before it is
put into the classifier.

Many seemingly complex systems described by high-dimensional data sets are in fact governed
by a low number of parameters. The low-dimensional representation of such high-dimensional data
sets not only leads to a more compact description of the data, but also enhances our understanding
of the system [12]. Manifold learning is such a data processing method which can efficiently find
the meaningful low-dimensional embedding from high-dimensional nonlinear data, and it processes
the nonlinear data structure from the input matrix to a new matrix. In addition, the low-dimension
output is very attractive to us, because this output will be processed by the classifier of the E-nose; if
its dimension is low, then the computing complexity of the classifier is lower, and less computing and
storage resources are needed. Many manifold learning methods have been proposed up to now [13,14],
and a lot of work has been done to improve their performance [15–17]. Meanwhile, there are also
many successful applications of manifold learning [18–22].

However, the traditional manifold learning cannot provide explicit mapping expression, which
makes it unable to process the new sample points even if it can deal with the acquired data.
Specifically, in our study, a trained E-nose will be used to predict the class label of unknown wound
infection data, which means it is inevitable to encounter new data, and if the method employed
by the E-nose cannot deal with these new points, it will make the E-nose incapable in practical
application. Thus, supervised locality preserving projections (SLPP), a linear approximation of the
nonlinear Laplacian eigenmaps, is applied. It not only shares many properties of the nonlinear
techniques [23–27], but it also provides explicit mapping expression. As far as we know, SLPP has not
been used in the field of the E-nose.

In this paper, we will use SLPP to process the original feature matrix and output a new matrix
which can improve the classification accuracy of the E-nose. In Section 2, materials and experiments
are demonstrated clearly. In addition, we will give the whole mathematical derivation of SLPP in
Section 3. Then all considered pre-processing methods will be used to deal with the original feature
matrix of wound infection data, and the classification results will be presented, analyzed and compared
in Section 4. Finally, the conclusions of this paper are drawn in Section 5.

2. Materials and Experiments

2.1. Materials and Experimental Setup

In this study, sprague-dawley (SD) rats are chosen as the targets of wound pathogen infection.
There are four kinds of rats, uninfected and those infected with S. aureus, E. coli, and P. aeruginosa,
respectively. Each rat has a wound in its right hind leg and the pathogens are inoculated in the wound.
The metabolites in the reproduction process of the three pathogens are shown in Table 1. According to
the metabolites of pathogens and the response characteristics of gas sensors, 14 metal oxide sensors
and one electronic chemical sensor are adopted to construct the sensor array of this paper (shown in
Figure 1). In addition, the sensitive characteristics of the 15 sensors are shown in Table 2.

The practical E-nose system is shown in Figure 2. The gas sensor array is placed in a stainless
steel test chamber coated by Teflon with the volume of 240 mL. A triple valve is used to change the gas
circuit to make sure the desired gas can flow into the chamber. The flow velocity of gas is controlled by
a flow meter and a mini-pump, and its value is set as 80 mL/min. The response curves of the sensor
array obtained from the wound odor of rats are firstly conditioned through a conditioning circuit
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and then sampled and saved in a computer via a 14-bit data acquisition system (DAS). A schematic
diagram of the experimental system is shown in Figure 3.
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Table 1. Pathogens in wound infection and their metabolites.

Pathogens Metabolites

S. aureus
Acetic acid, Aminoacetophenone, Ammonia, Ethanol, Formaldehyde, Isobutanol,
Isopentyl acetate, Isopentanol, Methyl ketones, Trimethylamine, 1-Undecene,
2,5-Dimethylpyrazine isoamylamine, 2-Methylamine

E. coli

Acetaldehyde, Acetic acid, Aminoacetophenone, Butanediol, Decanol,
Dimethyldisulfide, Dimethyltrisulfide, Dodecanol, Ethanol, Formaldehyde, Formic
acid, Hydrogen sulfide, Indole, Lactic acid, Methanethiol, Methyl ketones, Octanol,
Pentanols, Succinic acid, 1-Propanol

P. aeruginosa
Butanol, Dimethyldisulfide, Dimethyltrisulfide, Esters, Methyl ketones, Isobutanol,
Isopentanol, Isopentyl acetate, Pyruvate, Sulphur compounds, Toluene, 1-Undecene,
2-Aminoacetophenone, 2-Butanone, 2-Heptanone, 2-Nonanone, 2-Undecanone
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Table 2. Sensitive characteristic of gas sensors.

Sensors Sensitive characteristic

TGS800 Methane, Carbon monoxide, Isobutane, Hydrogen, Ethanol

TGS813 Methane, Propane, Ethanol, Isobutane, Hydrogen, Carbon monoxide

TGS816 Combustible gases, Methane,Propane, Butane, Carbon monoxide, Hydrogen,
Ethanol, Isobutane

TGS822 Organic solvent vapors, Methane, Carbon monoxide, Isobutane, n-Hexane, Benzene,
Ethanol, Acetone

TGS825 Hydrogen sulfide

TGS826 Ammonia, Ethanol, Isobutane, Hydrogen

TGS2600 Gaseous air contaminants, Methane, Carbon monoxide, Isobutane, Ethanol, Hydrogen

TGS2602 VOCs, Odorous gases, Ammonia, Hydrogen sulfide, Toluene, Ethanol

TGS2620 Vapors of organic solvents, combustible gases, Methane, Carbon monoxide, Isobutane,
Hydrogen, Ethanol

WSP2111 Benzene, Toluene, Ethanol, Hydrogen, Formaldehyde, Acetone

MQ135 Ammonia, Benzene series material, Acetone, Carbon monoxide, Ethanol, Smoke

MQ138 Alcohols, Aldehydes, Ketones, Aromatics

QS-01 VOCs, Hydrogen, Carbon monoxide, Metane, Isobutane, Etanol, Ammonia

SP3S-AQ2 VOCs, Methane, Isobutane, Carbon monoxide, Hydrogen, Ethanol

AQ Carbon monoxide, Methanol, Ethanol, Isopropanol, Formaldehyde, Acetaldehyde,
Sulfur dioxide, Hydrogen, Hydrogen sulfide, Phenol, Dimethyl ether, Ethylene
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2.2. Data Collection

Each rat is placed in a jar of which the volume is 2.8 L with a rubber stopper. There are two holes
in the rubber stopper with two thin glass tubes inserted. One glass tube is fixed above the wound
of the infected rat as closely as possible. The output gas of the tube which contains VOCs of the rat
wound flows out of the bottle and then flows into the chamber through a Teflon tube.

The dynamic headspace method is adopted in all the sampling experiments. Each sampling
experiment contains the following three steps:

Step 1: Set the triple valve to make port 1 connect to port 3, so clean air is exposed to the chamber
and lasts for 3 min to wash the sensor array;

Step 2: Set the triple valve to make port 2 connect to port 3, so the gas stream containing VOCs of
the wound passes over the sensor array for 5 min;
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Step 3: Set the triple valve to make port 1 connect to port 3, so the sensors are exposed to clean air
again for another 15 min.

The clearance time between two experiments is 5 min. Twenty sampling experiments for each
group of rats are made under the same conditions, and thus 80 sampling data sets can be collected.
The response curves of 15 sensors on one wound infected with P. aeruginosa are shown in Figure 4.
It can be seen that the obvious rise of each response curve is from the third min when the gas stream
containing VOCs of the wound begins to pass over the sensor array, and the curves begin to drop from
the eighth min when clean air is exposed to wash the sensor array.
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2.3. Original Feature Matrix

After all the sampling experiments have been finished, we succeed in extracting the maximum
steady-state response value of each sensor during each sampling experiment, and then the original
feature matrix of the wound infection data is constructed. The detailed information of this original
feature matrix is shown in Figure 5. As it shows, there are 80 points in this matrix and the dimension
of each point is 15. Each class of wound infection contains 20 points.
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To study the data structure of the original feature matrix, we use Equation (1) to compute the
average Euclidean distance of points in the original feature matrix.

dij “
1

Mi

1
Mj

Mi
ÿ

p“1

Mj
ÿ

q“1

dispxp, xqq, i, j “ 1, 2, ¨ ¨ ¨ , 4 (1)

where dij is the average Euclidean distance between class i and j, Mi and Mj stand for the number of
points in class i and j, and dis (¨ ) is the Euclidean distance of points. The computed results are shown
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in Table 3. For uninfected wounds and those infected with S. aureus, the distance of points from the
same class is less than that of the points from different classes. However, the distance between E. coli
and no infection is less than that of the points between E. coli and other different classes, and the same
situation happens in P. aeruginosa. This proves that the data structure of the original feature matrix is
nonlinear and complex.

Table 3. Average Euclidean distance of points in matrix X.

No-Infection P. aeruginosa E. coli S. aureus

No-infection 1155.5567 1372.7781 1325.8864 1344.9724
P. aeruginosa 1372.7781 1461.6700 1488.3676 1499.6072

E. coli 1325.8864 1488.3676 1416.4451 1523.1622
S. aureus 1344.9724 1499.6072 1523.1622 1100.3343

3. SLPP

Suppose there is a set of xi, i = 1, 2, . . . , m in RN , find a transformation matrix A mapping these
points to a set of points yi, i = 1, 2, . . . , m in RL, such that yi will represent xi, where yi “ ATxi.
The algorithmic procedure of SLPP can be formally stated below.

(1) Constructing the neighborhood: xj becomes the neighbor of xi only if they are from the same class
and are “close”, where both xi and xj are the points of X and i ‰ j. Additionally, two different
ways can be employed to find the neighborhood of xi.

(a) ε-neighborhood: if ||xi ´ xj||2
ă ε, ε P R, then xj can be taken as the neighbor of xi.

(b) k-nearest-neighbors: a judgment is made on whether xj is among the k-nearest neighbors
of xi.

(2) Describe the relationship between xi and xj: suppose that wi,j is a variable describing the
relationship between these two points, and wi,j will be “larger” if xi and xj are “closer”. There are
also two different methods available to realize it.

(a) simple-type: wi,j “ 1 if xj is the neighbor of xi; otherwise, wi,j “ 0.

(b) heat-kernel:

#

wi,j “ expp´
||xi´xj||2

t q If xj is the neighbor of xi
0 Otherwise

(3) Find the map: to make the relationship between yi and yj similar to that between xi and xj; let Y
be a “good” map to minimize the following objective function [27].

Fpyi, yjq “
ÿ

i,j

pyi ´ yjq
2
wi,j (2)

under appropriate constraints, where yi and yj are the points of Y and i ‰ j. If xi and xj are “close”
enough, then the value of wi,j will be much “larger”, and to make sure Equation (2) reaches its
minimum, yi and yj must be “close” as well. In this way, Equation (2) transfers the local structure
from matrix X to Y. Furthermore, because yi “ ATxi, Equation (2) can be computed as

1
2

ř

i,j
pyi ´ yjq

2wi,j “
1
2

ř

i,j
pATxi ´ATxjq

2wi,j

“
ř

i,j
ATxiDi,ixi

TA´
ř

i,j
ATxiwi,jxi

TA “ ATXpD´WqXTA “ ATXLXTA
(3)

where Di,i “
ř

i,j
wi,j. A constraint is imposed as follows [23]

YTDY “ 1 ñ ATXDXTA “ 1 (4)
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Finally, the minimization problem is reduced to find

arg min
ATXDXTA“1

ATXLXTA (5)

The transformation matrix A minimizing Equation (5) can be given by the minimum eigenvalue
solution to the generalized eigenvalue problem

XLXTA “ λXDXTA (6)

Let the vectors a1, a2, ..., aL be the solutions of Equation (6), and order them according to their
eigenvalues, λ1 ą λ2 ą ... ą λL. Thus, the embedding is as follows

Y “ ATX, A “ pa1, a2, ..., aLq (7)

4. Results and Discussion

4.1. Experimental Results

To verify the effectiveness of SLPP, the original feature matrix of wound infection is processed
by principal component analysis (PCA) [28], Fisher discriminant analysis (FDA) [29] and kernel FDA
(KFDA) [30]. The original feature matrix (defined as matrix X) which was introduced in Section 2.3
will be processed by these four different data processing methods to create a new feature matrix
which has been denoted as Y. Finally, matrix Y is put into the classifier as its input. For SLPP, the
k-nearest-neighbors method is employed to find the neighborhood, and if the size of the neighborhood
is different, the local data structure will be changed which will finally influence the classification results
of the E-nose. To solve this problem, the grid-searching method is adopted to set the number of the
nearest neighbors in SLPP. The heat-kernel method is used to describe the relationship of points; the
value of t will influence the performance of the heat-kernel, and so quantum-behaved particle swarm
optimization (QPSO) [31] is used to find the optimal value of t.

In this paper, we employ support vector machine (SVM) [32] and k-nearest-neighbor (KNN) [33]
as the classifiers, and the parameters of SVM are optimized by QPSO, and the size of the neighborhood
in KNN is searched by the grid-searching method. The cross-validation method is adopted to train and
test SVM, and the folds of cross-validation in this paper are 10, 40 and 80. The numbers of particles
and iterations in QPSO are set as 60 and 500. Every single data processing method is evaluated by its
corresponding classification results.

Tables 4–9 list the classification accuracy of SVM and KNN based on PCA, FDA, KFDA and
SLPP when the folds of cross-validation are set as 10, 40 and 80, respectively. In addition, we also
provide the classification results when matrix X is put into SVM directly without being processed by
any method (no-dealing). It is evident, for the classification accuracy of the total four classes, that the
best performance is achieved by SLPP, and the worst one is achieved by FDA, no matter if the fold of
the cross-validation is 10, 40 or 80.

Table 4. Classification results of 10-fold using different data processing methods (SVM).

Methods
L Classification Accuracy (%)

No-Infection P. aeruginosa E. coli S. aureus Total

No-dealing 15 85 85 90 85 86.25
PCA 10 90 90 85 85 87.5
FDA 3 75 80 85 85 81.25

KFDA 3 90 95 95 95 93.75
SLPP 7 100 95 100 100 98.75

L is the dimension of matrix Y, and for the no-dealing method, L is the dimensionality of matrix X; Total means
the classification accuracy of the classifier in predicting the class label of the total 80 points; No-dealing means
the original feature matrix is put into the classifier directly.
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Table 5. Classification results of 40-fold using different data processing methods (SVM).

Methods
L Classification Accuracy (%)

No-Infection P. aeruginosa E. coli S. aureus Total

No-dealing 15 85 90 90 75 85
PCA 10 90 80 90 85 86.25
FDA 3 75 80 70 95 80

KFDA 3 90 95 90 95 92.5
SLPP 7 100 95 90 100 96.25

Table 6. Classification results of 80-fold using different processing methods (SVM).

Methods
L Classification Accuracy (%)

No-Infection P. aeruginosa E. coli S. aureus Total

No-dealing 15 80 80 95 75 82.5
PCA 10 85 85 90 75 83.75
FDA 3 75 80 70 95 80

KFDA 3 85 85 90 90 87.5
SLPP 7 100 85 90 100 93.75

Table 7. Classification results of 10-fold using different data processing methods (KNN).

Methods
L Classification Accuracy (%)

No-Infection P. aeruginosa E. coli S. aureus Total

No-dealing 15 85 80 80 85 82.5
PCA 11 90 85 75 85 83.75
FDA 3 85 80 75 85 81.25

KFDA 3 95 90 90 90 91.25
SLPP 8 100 90 90 100 95

Table 8. Classification results of 40-fold using different data processing methods (KNN).

Methods
L Classification Accuracy (%)

No-Infection P. aeruginosa E. coli S. aureus Total

No-dealing 15 80 80 75 80 81.25
PCA 11 85 80 75 85 81.25
FDA 3 75 75 70 80 77.5

KFDA 3 90 90 85 90 88.75
SLPP 8 100 90 85 100 93.75

Table 9. Classification results of 80-fold using different processing methods (KNN).

Methods
L Classification Accuracy (%)

No-Infection P. aeruginosa E. coli S. aureus Total

No-dealing 15 75 75 75 85 77.5
PCA 11 80 80 75 85 80
FDA 3 75 75 70 85 76.25

KFDA 3 85 90 85 90 87.5
SLPP 8 100 80 85 100 91.25

4.2. Discussion

This paper focuses on the investigation of the performance of SLPP in pre-processing the original
feature matrix of wound infection data. Three other methods are also used to deal with this original
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feature matrix. When PCA is used to deal with the original feature matrix, its improvement is not
obvious because PCA is good at finding and keeping the linear structure of data. FDA can make use
of the class label information of the original feature matrix and find a linear transformation which
can maximize the between-class scattering and minimize the within-class scattering to achieve a new
feature matrix. However, the performance of FDA in predicting the class of wound infection is the
worst among all the processing methods. As an enhanced technique of FDA, KFDA firstly maps the
data to the high-dimension space, and then finds the same transformation as FDA, and its classification
results of wound infection are better than that of FDA. However, SLPP manages to preserve the local
structure of the data set through finding and keeping the neighbors of each point, and it can make use
of the class label information during the course of finding the nearest neighbors. Further experimental
results prove that the classification accuracy of the E-nose increases when SLPP is used to pre-process
the original feature matrix of wound infection data, and meanwhile, it reduces the dimension of points
from 15 to 7, which can greatly decrease the computational complexity of classifier.

5. Conclusions

Although the sensor array of the E-nose is good at cross-sensitivity, the original feature matrix
extracted from the response curves of sensors is redundant; meanwhile, the data structure in this matrix
is nonlinear. Traditional manifold learning methods are capable of solving the nonlinear problem,
but they cannot provide an explicit mapping expression, which limits their application in the field
of the E-nose. As a novel manifold learning technique, SLPP can efficiently find the meaningful
low-dimensional embedding from high-dimensional nonlinear data, and it can process the nonlinear
data structure from the input matrix to a new matrix; furthermore, the explicit mapping expression
given by SLPP makes it possible for the E-nose to process the new sampling points.

The experimental results of this paper have proved that the classification accuracy of SVM
combined with SLPP is much higher than that of other considered methods. All in all, SLPP is an ideal
technique for the E-nose to pre-process its original feature matrix of wound infection data and improve
its classification accuracy.
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