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ABSTRACT
The activity of genome-specific repetitive sequences is the main cause of genome
variation between Gossypium A and D genomes. Through comparative analysis of the
two genomes, we retrieved a repetitive element termed ICRd motif, which appears
frequently in the diploid Gossypium raimondii (D5) genome but rarely in the diploid
Gossypium arboreum (A2) genome. We further explored the existence of the ICRd
motif in chromosomes of G. raimondii, G. arboreum, and two tetraploid (AADD)
cotton species, Gossypium hirsutum and Gossypium barbadense, by fluorescence in
situ hybridization (FISH), and observed that the ICRd motif exists in the D5 and
D-subgenomes but not in the A2 and A-subgenomes. The ICRd motif comprises
two components, a variable tandem repeat (TR) region and a conservative sequence
(CS). The two constituents each have hundreds of repeats that evenly distribute
across 13 chromosomes of the D5 genome. The ICRd motif (and its repeats) was
revealed as the common conservative region harbored by ancient Long Terminal
Repeat Retrotransposons. Identification and investigation of the ICRd motif promotes
the study of A and D genome differences, facilitates research on Gossypium genome
evolution, and provides assistance to subgenome identification and genome assembling.

Subjects Agricultural Science, Evolutionary Studies, Genetics, Genomics, Plant Science
Keywords Gossypium, Repetitive element, D genome, Fluorescence in situ hybridization (FISH),
Genome-specific, Evolution

INTRODUCTION
Repetitive DNA sequences are common in eukaryotic genomes, and account for a large
fraction of the host genome (Ibarra-Laclette et al., 2013). Their amount is highly correlated
with the size of the host genome (Feschotte, 2008). Repetitive DNA is divided into two
major groups based on their structures: tandem repeats and interspersed repeats (Jurka et
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al., 2005). Tandem repeats are known as simple sequence repeat (SSR), and include micro-
satellites, mini-satellites, and satellites (Jeffreys, Neumann &Wilson, 1990). Interspersed
repeats are also referred to as transposable elements (TEs) or transposons.

After the first TE of Ac/Ds was reported in maize (McClintock, 1950; Brink & Williams,
1973; Goldschmidt, 2002), further TEs have been identified in many eukaryotic species
(Munoz-Lopez & Garcia-Perez, 2010). There are thousands of different TE families in
plants, which display extreme diversity (Sanmiguel & Bennetzen, 1998; Bennetzen, 2005;
Morgante, 2006). Finnegan first proposed a TE classification system, which includes
two classes based on their transposition mechanisms, viz., those mediated by RNA
(Retrotransposons) and those byDNA (DNA transposons) (Bowen & Jordan, 2002;Wessler,
2006; Arkhipova, 2018). Wicker unified TEs nomenclature and classification by applying
mechanistic and enzymatic criteria (Wicker et al., 2007). TEs play important roles in the
genome through diverse ways, such as variation in intron size (Deutsch & Long, 1999;
Zhang et al., 2011; Koonin, Csuros & Rogozin, 2013), segmental duplication (Del Pozo &
Ramirez-Parra, 2015), transfer of organelle DNA to the nucleus (Adams & Palmer, 2003),
expansion/contraction of tandem repeats, and illegitimate recombination (Finnegan, 1989;
Koike, Nakai & Takagi, 2002). Long Terminal Repeat Retrotransposons (LTR-TEs), which
are usually scattered throughout genomes, are the most abundant TE type and can cause
genome expansion over a short evolutionary period particularly in plants (Piegu et al.,
2006). The investigation of genome-specific TE is an efficient approach to studying species
formation and genome evolution (Dong et al., 2018).

Gossypium, a genus of flowering plants from which cotton is harvested, diverged from
the common ancestor with Theobroma cacao approximately 33.7 million years ago (MYA)
(Wang et al., 2012). Gossypium comprises eight diploid (2n= 2x = 26) genomic groups:
A, B, C, D, E, F, G, K, and one allotetraploid (2n= 4x = 52) genomic group: AD (Wang,
Wendel & Hua, 2018).Gossypium species are good subjects for research on polyploidization,
genomic organization and genome-size variation because of their high genome diversity:
from the smallest New World D genome with an average of 885 Mb to the Australian
K-genome with an average of 2,576 Mb (Hendrix & Stewart, 2005). The accumulation of
different lineage-specific TEs was thought to be responsible for the variation in genome size
in Gossypium genomic groups (Hawkins et al., 2006; Lu et al., 2018b). Of the eight genomic
groups, the A and D groups are the main ones investigated in cotton genomics research
(Du et al., 2018). Gossypium hirsutum, the major cultivated cotton species, is known to
have originated from the progenitors of G. arboreum (A2) and G. raimondii (D5) (Paterson
et al., 2012). The key phenotype difference between G. arboreum and G. raimondii is the
production of spinnable fibers in the former but not the latter. In terms of the genomics,
the former has a genome size of 1,746 Mb/1C, which is about two times that of the latter
(885 Mb/1C) (Hendrix & Stewart, 2005). Genome sequencing showed that the difference
in the numbers of protein-coding genes between the A (41,330) and D (37,505) genomes
is not obvious, while the lineage-specific TE content is the main reason for the size gap
between the A and D genome (Li et al., 2015; Du et al., 2018). Moreover, Wang, Huang
& Zhu (2016) suggested that the transposable elements play an important role during
cotton genome evolution and fiber cell development. Thus, research on the lineage-specific
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Table 1 Plant materials used in this work, together with ploidy, studied genome, and specimen acces-
sion code.

Species Ploidy Genome Accession

G. arboreum 2x A2 Shixiya-1
G. raimondii 2x D5 D5-07
G. hirsutum 4x (AD)1 CCRI-12
G. barbadense 4x (AD)2 Xinhai-7

repetitive sequences betweenA andDgenomes is ameaningful path to investigate speciation
dynamics.

Fluorescence in situ hybridization (FISH) is a versatile tool to visualize the distribution
of certain DNA sequences in chromosomes and plays a vital role in cytogenetic research.
In tetraploid cotton, FISH has played a key role in cytological experiments that have
contributed to the understanding the allotetraploid event. FISH with DNA segments
harboring dispersed repeats has identified genome-specific repeats between the A and D
genome, and showed that some A genome repeats appear to have spread to the D genome
(Hanson et al., 1998; Zhao et al., 1998a; Zhao et al., 1998b). Although the repetitive DNA
fragments are more common in the A than in the D genome, one tandem repeat family
(B77) has been well-characterized from the D Chromosome (Zhao et al., 1998a; Zhao et
al., 1998b). Recently, more repetitive sequences were observed with FISH in the cotton
genome after construction of a cotton cytogenetic map Cui et al., 2015; Liu et al. 2016. Lu
et al., 2018) suggested that CICR was an important contributor to the size gap between the
A and D genome. The identification and localization of these repetitive sequences benefit
genome assembly and facilitate understanding of the mechanism of genome evolution.

The D genomic group represents a diverse group of diploids that diverged from a
branch of A, B, C, E, F, G, and K genomic groups about 5–10 MYA (Senchina et al., 2003).
Although the D genome has the smallest size of all Gossypium species, this study has
revealed the presence of a set of repeat elements with high proliferation, which is absent
in the A genome. The discovery and characterization of these novel repetitive elements
provides components for a repetitive sequences database and new insight into Gossypium
evolution.

MATERIALS AND METHODS
Plant materials
Cotton plants were obtained from the National Wild Cotton Nursery in Hainan Island,
China, sponsored by the Institute of Cotton Research of Chinese Academy of Agricultural
Sciences (ICR-CAAS). They were also conserved in the greenhouse at ICR-CAAS’
headquarters in Anyang City, Henan Province, China. The DNA and cells came from
specimens listed in Table 1, which is based on the latest nomenclature of Gossypium species
(Wang, Wendel & Hua, 2018).

The repeat elements were characterized in the G. raimondii genome (Paterson et al.,
2012), and compared to genomes in other Gossypium genomes, viz., G. arboreum (Li et al.,
2014), G. hirsutum (AD)1 (BGI (Li et al., 2015), NBI (Zhang et al., 2015), HAU (Wang et
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al., 2019), ZJU (Hu et al., 2019)), G. barbadense (AD)2 (HAUv1 (Yuan et al., 2015), CAS
(Liu et al., 2015), HAUv2 (Wang et al., 2019), and ZJU (Hu et al., 2019)). All genome data
was downloaded from Cottongen (https://www.cottongen.org/), except the (AD)2-CAS
which was obtained from GenBank under PRJNA251673.

Characterization of the repetitive element and bioinformatics
analysis
BLASTN (v2.6.0) (Camacho et al., 2009) was used to identify repeat elements in the
genomes of the plant material, and in the genomes stored in the databases. We used a
threshold of greater than or equal to 80% matching ratio and an 80% similarity following
the 80–80 rule suggested byWicker et al. (2007). The tandem repeats (TRs) were identified
with Tandem Repeats Finder (v4.09) (Benson, 1999). We used Perl script for batch
extracting sequences from the genome (Doc S1). Sequence alignments were obtained
fromMUSCLE (v3.81) (Edgar, 2004). The Unipro UGENE (v1.31) was used to present the
alignments and train consensus sequences (Okonechnikov et al., 2012). The inner enzyme
annotation was obtained by online CD-search in NCBI (Marchler-Bauer et al., 2017). GIRI
Repbase (Chen et al., 2007) were queried for annotation. RepeatMasker (v4.07) was used
to annotate the insertions and estimate the proportion of repetitive sequences in genomes
(http://www.repeatmasker.org).

Flanking LTRs of LTR-TEs were identified with LTRharvest (v1.5.8) (Ellinghaus, Kurtz &
Willhoeft, 2008). Subsequently, Vmatch (v2.3.0) was used to cluster the LTRs (Kurtz, 2003).
The divergence time of the LTR-TEs was estimated using the formula T = d/2r , where
r represents a substitution rate of 1.3×10−8 per site per year (Ma & Bennetzen, 2004),
and d represents the distances of paired LTRs, which was calculated based on the Kimura
two-parameter (Kimura, 1980). The insertions of the repeat elements were obtained based
on the BLASTN result, and the LTR-TE and Coding-sequence (CDS) information was
obtained from genome annotation (Paterson et al., 2012), which were illustrated by the
ggplot2 R package (Wickham, 2016) with a sliding 500 kb window for LTR-TE and CDS.
The synteny blocks of the homologous segments were shown by a Perl script (Doc S1)
based on the BLASTN results.

Fluorescence in situ hybridization (FISH)
A probe was designed with the PCR product of the ICRd motif, which was
obtained from the forward primer: TTCTATTTTATCCATCGTTATG, reverse:
GGAGATAGGATTTGTTGCT; and followed the amplification procedure: firstly, 95 ◦C
for 5 min of pre-degeneration; then, 30 cycles at 95 ◦C for 30 s, 52 ◦C for 30 s, and 72 ◦C for
2 min. The final extension was done at 72 ◦C for 6 min. Composition of the reaction mix
used the following: gDNA (∼5 µg/ml), primers (∼0.8 µM), PCR Master Mix (Thermo),
and H2O. The gDNA was extracted from the leaves of the cotton plants (Table 1). The
probe was purified and labeled with digoxigenin-dUTP via nick translation, according to
manufacturer’s instructions (Roche Diagnostics, USA). Mitotic chromosome preparation
and FISH procedures were conducted using a modified protocol (Wang et al., 2001).

Lu et al. (2020), PeerJ, DOI 10.7717/peerj.8344 4/20

https://peerj.com
https://www.cottongen.org/
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA251673
http://dx.doi.org/10.7717/peerj.8344#supp-7
http://www.repeatmasker.org
http://dx.doi.org/10.7717/peerj.8344#supp-7
http://dx.doi.org/10.7717/peerj.8344


Figure 1 The structure of ICRd motif. (A) The self-blast of the ICRd motif showed the inner repeats;
(B) the structure of ICRd motif; (C) the basic TR unit; (D) the examples of the structure illustration of the
LTR-TEs inserted with ICRd motif.

Full-size DOI: 10.7717/peerj.8344/fig-1

RESULTS
One specific repetitive sequence in the Gossypium D5 genome
We performed BLAST to query all of the interspersed repetitive sequences of G. raimondii
(Paterson et al., 2012) with the whole genome of G. arboreum (A2) (Li et al., 2014). One
segment in the G. raimondii (D5) genome (Chr05: 50639971-50641791) was filtered out
and recognized as D5 genome-specific. This sequence repeats frequently and is spread
over 13 chromosomes of the D5 genome (Table S1), while it is absent from the A2

genome. Searches in Repbase (Chen et al., 2007) and NCBI found no related annotation
and LTRharvest (Ellinghaus, Kurtz & Willhoeft, 2008) and a CD-search (Marchler-Bauer et
al., 2017) revealed it is neither LTR nor a coding sequence.

Manual inspection revealed the structure of the genome-specific sequence as having two
constituents: a tandem repeats array (referred as TR hereafter) composed of 133 bp basic
units, and an unknown conservative sequence (referred as CS hereafter) (Fig. 1). Based on
this feature, we identified 72 sequences in total from the D5 genome with RepeatMasker
(Table S2), referred to here as the ICRd motif following our previous work (Lu et al.,
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Figure 2 The content of the basic unit in the TRs. (A) The basic unit content in the TRs involved in the
ICRd motifs, displayed from small to large; (B) the number of ICRd TRs that harboring different unit
content, the x-axis adopt the intervals of unit content for convenient exhibition.

Full-size DOI: 10.7717/peerj.8344/fig-2

2018b). Among the 72 ICRd motifs, the TRs are length-variable having 2–20 times of basic
units (Fig. 2A), while the CSs are stable and have an average size ∼860 bp.

To verify the genome specificity and chromosome distribution of the ICRd motif, we
used the PCR product of the ICRd motif from G. raimondii to design the probe for FISH
on the mitotic chromosomes of diploid A2 andD5, and tetraploid G. hirsutum ((AD)1) and
G. barbadense ((AD)2). The probe generated bright signals covering all the chromosomes
of the D5 and D-subgenome, but no signals on the A2 and A-subgenome (Fig. 3). These
cytogenetic inspections were in accordance with the genomic comparative analysis and
further revealed that the ICRd motif is a genome-specific and highly repetitive element in
the D5 genome, as well as in the D-subgenome of tetraploid cotton.

LTR-TEs inserted with the ICRd motif
We compared the insertion loci of 72 ICRd motifs with the whole genome repeats
annotation (gff file) of the D5genome (Paterson et al., 2012) and found that each of
the motifs is one-to-one harbored within the 72 LTR-TEs (Table S3), which meant the
former is the inner part of the latter.

We extracted the 72 LTR-TEs sequences from the D5 genome and parsed their structure,
which showed all sequences are incomplete, lacking either enzyme or flanking LTRs, the
required elements for an intact LTR-TE (Wicker et al., 2007). A consensus accumulation
histogram obtained from aligning all of these LTR-TEs together (Fig. S1) showed these
TEs to have a vast sequence variation and a single conservative region representing the
insertion region of the ICRd motif (Fig. 4). The ICRd motif appears to be more stable
than other parts of the TEs along with degradation and evolution. This stability implies the
importance of ICRd motif to the TEs.

Of the 72 LTR-TEs, 25 were identified as having paired flanking LTRs, and were used
to represent the classification and evolution of these TEs. The LTR cluster results showed
that, except for two TEs having similar LTR regions, the other 23 TEs are totally different
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Figure 3 The FISH images of ICRd.motif (red) hybridized to mitotic chromosomes of four species.
(A) G. arboreum (AA); (B) G. hirsutum (AADD); (C) G. barbadense (AADD); (D) G. raimondii (DD). Bar
= 5 µm.

Full-size DOI: 10.7717/peerj.8344/fig-3

Figure 4 The consensus accumulation histogram from the whole alignment of the 72 LTR-TEs. The re-
gion marked with the black line is the ICRd motif region.

Full-size DOI: 10.7717/peerj.8344/fig-4

from each other, indicating that they do not belong to the same family based on the LTR
similarity rules (Wicker et al., 2007). The estimated active date curve of these TEs—almost
all prior to 10 MYA and peaking at ∼30 MYA (Fig. 5)—shows the peak is close to the
time that G. raimondii and T. cacao diverged approximately 33.7 MYA (Wang et al., 2012),
far earlier than the putative divergence time of the Gossypium A and D genomes (Wendel
& Cronn, 2001). These results indicate that these LTR-TEs are ancient and potentially
contributed to speciation of Gossypium.
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Figure 5 The accumulation of putative active date of the LTR-TEs.
Full-size DOI: 10.7717/peerj.8344/fig-5

Abundant constituents of the ICRd motif in the D5 genome
To further analyze the genomic features of the ICRd motif, we separately investigated the
content and distribution of its two constituents (TR and CS) in the D5 genome (Fig. 6A).
In total 350 TR insertions were detected (Table S2). Insertions varied in length (due to
the unit repeating at different times) between 2–21, but mainly 2–10 times the basic unit
length (Fig. 2B). The longest TR insertion in D5 (D503: 25689303–25697234) was an
extraordinary 61 units up to 8 kb; how it was formed is unknown. On the other hand, a
total of 463 CSs were found (Table S2). Combining the analyses of the insertion loci of the
two constituents, we found 72 TRs and 72 CSs constituting the ICRd motifs (Fig. 1).

Further analysis showed that the TR andCSwere evenly distributed on the chromosomes
based on an χ2 test, with the number of insertions being proportional to the size of the
chromosome [TR insertions, χ2= 5.56 (df = 12, P > 0.9); CS insertions, χ2= 9.08
(df = 12, P > 0.5)]. The even distributions meant that the CS and TR are possible ancient
repetitive sequences that have evolved along with the chromosomes. Previous G. raimondii
genome sequencing work reported that most TEs in G. raimondii are deletion derivatives
lacking the domains that are typically necessary for transposition and that only 3% of LTR
base pairs derived from full-length LTR-TEs (Paterson et al., 2012). We show that hundreds
of constituents of the ICRd motif in D5 are potentially the fragments produced from the
ancient LTR-TEs.

Disappearance of the ICRd motif from Gossypium
Aiming to observe the disappearance of the ICRd motif in the newly formed Gossypium A
genome, we selected two homologous segments from the highly collinear Chromosome 1
of G. raimondii (D501) and G. arboreum (A201) (Li et al., 2014), respectively. The segment
from Chromosome 1 ofG. raimondii (D501) harbored one ICRd motif and its homologous
segment from A201 was obtained from homologous SSR markers (Table S4). The
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Figure 6 The distribution of the ICRd motif and its constituent in the D5 genome. (A) Insertions of
the ICRd motif and its constituents in the D5 genomes; (B) (C) ICRd TR and TR-c chromosomal distribu-
tion, the expected (grey) and actual (white) distributions across all chromosomes are illustrated; in addi-
tion, the density per megabase is shown for each chromosome.

Full-size DOI: 10.7717/peerj.8344/fig-6

illustration of the syntenic block of the two segments showed that the ICRd motif together
with its host LTR-TE were lost on the A201 segment, while their up- and downstream
conservative regions remained (Fig. 7). In the upstream, we observed two insertions rich
in repeat sequences especially on the A201 segment (Table S4), which was potentially due
to a recent TE expanding event happening in the A genome (Lu et al., 2018a). Thus, we
observed that the ICRd motifs and host LTR-TEs were lost from the genome with the
recent formation of the A genome (Wendel & Cronn, 2001;Wendel, Flagel & Adams, 2012),
but remained in the D genome despite mass damage accumulation.

Distributions of ICRd motifs in tetraploid cotton
Tetraploid cotton,G. hirsutum andG. barbadense, are the major cultivated fiber-producing
cotton species. Research on the genome of these two species is an important approach to
improving cotton yield and quality. However, due to the large number of homologous
segments between A andD-subgenomes, the tetraploid cotton genome assemblage has been
a great challenge to molecular geneticists (Bowers et al., 2003; Chen et al., 2007). Through
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Figure 7 The colinearity of the two homologous segments.
Full-size DOI: 10.7717/peerj.8344/fig-7

high-throughput sequencing methods, two versions of the G. hirsutum genome assembly
((AD)1-BGI (Li et al., 2015), (AD)1-NBI (Zhang et al., 2015), and two G. barbadense
versions (AD)2-HAU (Yuan et al., 2015) and (AD)2-CAS (Liu et al., 2015) were completed
in 2015.With the advance of sequencing techniques, the tetraploid genome assemblies were
improved in quality (Hu et al., 2019; Wang et al., 2019). However, to benefit research in
the post-genome era, such as facilitating molecular breeding of cotton, suitable evaluation
is needed to provide accurate reference data. Application of the lineage-specific repetitive
element and the ICRd motifs are important tools in evaluating the quality of the genome
assembly of tetraploid cotton.

To observe the assembling quality of the ICRd motif in tetraploid genomes, we queried
it with BLAST in all published tetraploid cotton genomes, including four versions of G.
hirsutum ((AD)1) and four versions of G. barbadense ((AD)2) (Table 2). In the case of
(AD)1, the two recently published (Hu et al., 2019; Wang et al., 2019) versions and the
previous NBI version were in agreement with our FISH inspection results, viz., that the
ICRd motifs only generated the signals on the D-subgenome chromosomes (Fig. 3).
However, the BGI version (Li et al., 2015) is inconsistent with the FISH results in that
the ICRd motif was misassembled into the A-subgenome. For the (AD)2 assemblies, the
two newly published (Hu et al., 2019; Wang et al., 2019) and CAS versions were better
assembled than the HAUv1 version. The HAUv1 showed the number of matches in the
chromosome-unassembled scaffolds, while the HAUv2 has improved quality (Table S5).
This means that with advances in genome sequencing techniques, tetraploid genomes can
be more precisely assembled though the existence of homologous segments from At and
Dt.

DISCUSSION
Identification of ICRd motif and Gossypium evolution
TEs have played an important function in Gossypium speciation and the accumulation of
different genomic-specific TEs were thought to be responsible for genome-size variation
in Gossypium (Hawkins et al., 2006). Through FISH inspection, some A genome-specific
repetitive elements have been well identified and characterized (Liu et al., 2016), but similar
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Table 2 The distribution of ICRdmotifs on different genome assemblies of tetraploid cotton.

Tetraploid Version Reference ICRd motif

BGI Li et al. (2015) Dh01-Dh13; Ah02, Ah05, Ah07, Ah08
NBI Zhang et al. (2015) Dh01-Dh13; None in A-sub
HAU Wang et al. (2019) Dh01-Dh13; None in A-sub

G.
hirsutum
(AD)1

ZJU Hu et al. (2019) Dh01-Dh13; None in A-sub
CAS Liu et al. (2015) Db01-Db13; None in A-sub
HAUv1 Yuan et al. (2015) Db01, Db02, Db06-Db09, Db12; None in A-sub
HAUv2 Wang et al. (2019) Dh01-Dh13; None in A-sub

G.
barbadense
(AD)2

ZJU Hu et al. (2019) Dh01-Dh13; None in A-sub

work in the D genome have been rare; this may be because the genome-specific repetitive
sequences in the A genome are much more numerous than in the D genome (Liu et al.,
2018a). However, in the present study, starting with comparative genomic data, we have
screened out one kind of specific sequence in the D genome, and subsequently, we have
identified and characterized TEs.

The TEs harboring the ICRd motif showed an ancient active date of much earlier
than 10 MYA, while the time of divergence of the A and D genomes from the common
ancestor is estimated to have occurred 5–10 MYA (Grover et al., 2004). Thus the ICRd
motifs have existed in the ancestor of A and D genome, while disappeared along with the
formation of the A genome. Previous researchers have considered that the accumulation
of lineage-specific TEs, which is thought to be responsible for the variation of Gossypium
genomes (Hawkins et al., 2006), and the LTR-TE activities after 5 MYAmainly contributed
to the two-fold size difference of the A and D genomes (Zhang et al., 2015). Based on our
analysis, we presumed that as in the activity of new repetitive sequences the extinction of
ancient repetitive sequences, such as the disappearance of the ICRd motif in the A genome,
also contributed significantly to genome evolution. Through FISH, we observed that the
ICRd motifs were only distributed in D-subgenome chromosomes, and the results were
in agreement with a previous study which reported that the TE have proliferated in the
progenitor genomes but were retained after allopolyploid formation in the D-subgenome
(Zhang et al., 2015).

ICRd motif support cytogenetic markers for tetraploid cotton
The identification of the ICRd motif provides a new subgenome marker for the accurate
assembling of tetraploid cotton (Chen et al., 2007). Chromosome identification is the
foundation of plant genetics, evolution and genomics research (Saranga, 2007; Xie et
al., 2012). Although many species have been sequenced, the rapid identification of the
subgenome is still useful in applied research. FISH has been used as a reliable cytological
technique for chromosome identification in many species (Wang, Guo & Zhang, 2007),
but has only been used recently for the identification of cotton chromosomes (Gan et al.,
2012). In the present study, the identified ICRd motifs can be used as a new cytological
marker in Gossypium, especially in tetraploids. Further, the repetitive sequence probes are
easier and more successfully detected than other probes. Several similar markers have been

Lu et al. (2020), PeerJ, DOI 10.7717/peerj.8344 11/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.8344


reported (Liu et al., 2016). The addition of these new cytological markers will enrich the
marker database for chromosome identification and facilitate cotton genomic studies.

Eukaryotic genomes have a high proportion of TEs and these TEs make eukaryotic
genome assembly muchmore difficult than simple genome assembly (Treangen & Salzberg,
2012). Many reported genome sequences have gaps because of the high proportion of TEs
(Adams et al., 2000). Allopolyploid genomes are especially difficult to assemble homologous
fragments from subgenomes (Chen et al., 2007). Incorrect assembling of the genomes leads
to ambiguity in research which, in turn, produces biases and errors when interpreting
results (Adams et al., 2000). The repetitive sequences analysis in this work were screened
out from the whole genome comparison, we characterize the distribution feature on
referenced genome assembly, moreover, FISH observation on chromosomes of somatic
cell verified the lineage-specific feature. Combining FISH with genome-specific repeat
segments is a convenient and practical approach to observe chromosome differences, in
addition to assisting polyploid genome assembling, and evaluating assembling accuracy.
With the progress of genome sequencing and assembling, genome assembly will become
increasingly more precise and convincing, and it is likely that the latter published tetraploid
genome will adopt the BioNano and Hi-C approaches (Hu et al., 2019; Wang et al., 2019)
and improve the identification of homologous segments from subgenomes. The improved
tetraploid cotton genome assemblies were consistent with FISH, which provides a reference
for researchers deciding which genomes to adopt in their research.

CONCLUSIONS
We identified and characterized a new type of repetitive sequence termed ICRd motif in the
GossypiumDgenome. Themotifs are interspersed in 13 chromosomes of the D genome, but
absent in the A genome, and retained in D-subgenome in tetraploid cotton. We analyzed
their structure, genomic distribution, affiliation, and evolution, which revealed a conserved
region harbored in ancient LTR-TEs. The identification and characterization of the ICRd
motif provided new insight into understanding TE evolution along with the formation of
cotton genomes as well as providing a convenient and practical tool to distinguish the A
and D genome subsets of the tetraploid cotton genome assembly. The ICRd motif has a
novel structure and affiliation; how the structure was formed and what function the ICRd
motif plays in LTR-TEs would be valuable areas for future research.
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