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Mitochondria are characterized by its pivotal roles in managing energy production, reactive oxygen species, and calcium, whose
aging-related structural and functional deteriorations are observed in aging muscle. Although it is still unclear how aging alters
mitochondrial quality and quantity in skeletal muscle, dysregulation of mitochondrial biogenesis and dynamic controls has been
suggested as key players for that. In this paper, we summarize current understandings on how aging regulates muscle
mitochondrial biogenesis, while focusing on transcriptional regulations including PGC-1α, AMPK, p53, mtDNA, and Tfam.
Further, we review current findings on the muscle mitochondrial dynamic systems in aging muscle: fusion/fission, autophagy/
mitophagy, and protein import. Next, we also discuss how endurance and resistance exercises impact on the mitochondrial
quality controls in aging muscle, suggesting possible effective exercise strategies to improve/maintain mitochondrial health.

1. Introduction

Skeletal muscle accounts for approximately 40% of total body
mass, and it plays an indispensable role in locomotion and
metabolism. Skeletal muscle undergoes a gradual loss of fat-
free mass, size, and function in the aging process, called
sarcopenia [1]. The etiology of sarcopenia is complex and
involves the interplay of various factors such as oxidative
stress, physical inactivity, imbalanced protein homeostasis,
apoptosis, inflammation, malnutrition, and/or mitochon-
drial dysregulation [2–5]. Mitochondria play an essential role
in the aging-related muscle deterioration because of their
importance in the production of energy and reactive oxygen
species (ROS) [6], apoptotic signaling, and calcium (Ca2+)
handling [7]. Thus, the natural aging process, along with
coincident inactivity, progressively impairs mitochondrial
integrity which might be a leading factor for sarcopenia.

The underlying mechanisms of aging-associated mito-
chondrial dysregulation in skeletal muscle remain incom-
pletely understood. Morphologically, aging muscles appear
to have either fragmented, round-shaped mitochondrial

networks [8] or unusually enlarged mitochondrial fragments
[9, 10]. For example, subsarcolemmal (SS) and intermyofibril-
lar (IMF)mitochondrial fractions in the skeletal muscle of old
rats tend to be thinner and smaller, respectively [8]. In
contrast, other findings have shown that aging muscle mito-
chondria appear as an elongated, “giant” network [9, 10]. To
betterunderstand these inconsistentfindings in themitochon-
drial structure of aging muscle, it becomes important to
investigate the mechanisms involved in mitochondrial turn-
over, the balance between organelle biogenesis, dynamics,
and degradation, which may also help delineate the underly-
ing causes of aging-related dysregulation of mitochondria in
skeletal muscle.

Exercise and physical activity have been suggested as
effective tools for either improving the quality of aging mus-
cle or delaying the onset of sarcopenia, yet the underlying
mechanisms in the exercise-inducible adaptations are still
obscure. A growing number of studies have sought to define
mitochondrial adaptations in aging skeletal muscle follow-
ing various exercise regimens. While mitochondrial biogen-
esis has been relatively well investigated, research interests
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have more recently been directed to other mitochondrial
dynamic mechanisms (fusion/fission; autophagy/mitophagy)
in aging muscle.

This review summarizes current findings on the aging-
related mitochondrial adaptations in skeletal muscle, with a
specific focus on mitochondrial biogenesis and dynamic con-
trols. In addition, this paper also outlines current research
findings on the effects of exercise on mitochondrial quality
control in aging skeletal muscle.

2. Mitochondrial Biogenesis and Aging

The synthesis of new mitochondria, termed mitochondrial
biogenesis, promotes the expansion of an existing mitochon-
drial network. This process is constantly ongoing within
skeletal muscle in order to maintain mitochondrial content
and function in response to various stimuli including
exercise, as well as other cellular stressors. Aging is known to
be a leading factor for the reductions inmitochondrial compo-
nents andcapacity [11–13]. Furthermore, aged skeletalmuscle

has a reduced ability to synthesizemitochondria in response to
biogenesis-inducing factors [14, 15]. Thus, an understanding
of the regulation ofmitochondrial biogenesis in healthy skele-
tal muscle, and the changes associated with advanced aging, is
important in developing an intervention to prevent the
progression of sarcopenia (Figure 1).

2.1. PGC-1α as a Regulator of Mitochondrial Biogenesis.
Mitochondrial biogenesis requires the coordination of the
nuclear and mitochondrial genomes, as 99% of approxi-
mately 1150 mitochondrial proteins are nuclear-encoded
[16], whereas only 13 proteins, along with 2 rRNAs and 22
tRNAs, are mitochondrially encoded [17, 18]. Peroxisome
proliferator-activated receptor (PPAR) gamma coactivator
1α (PGC-1α) is a master regulator of this process [19, 20],
and it plays a significant role in muscular phenotypic changes
and aerobic performance. Studies utilizing overexpression
[19, 21, 22] and deletion [23–25] of PGC-1α have shown that
it is critical in determining the oxidative phenotype and
mitochondrial content in skeletal muscle. Functionally,
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Figure 1: Aging is associated with reductions in mitochondrial biogenesis. Initial signaling through (1) AMPK and (2) SIRT1 is reduced with
aging, thereby reducing (3) PGC-1α coactivation and (4) p53 activation of (5) NUGEMP expression, leading to a decrease in (6) PGC-1α
protein and (7) mitochondrial targeted proteins. However, aging is associated with increased (8) TFAM and (9) p53 which has the
capacity to enhance (10) mtDNA replication. Depending on age, this mtDNA may contain elevated mutations and may not promote
efficient biogenesis in skeletal muscle.
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PGC-1α coactivates various transcription factors, such as
nuclear respiratory factors 1 and 2 (NRF-1/2), PPARγ, and
estrogen-related receptors (ERR), all of which are important
in activating the expression of nuclear genes encoding mito-
chondrial proteins (NUGEMPs) [26–29]. A critical PGC-1α-
regulated NUGEMP is a mitochondrial DNA-specific tran-
scription factor, transcription factor A of the mitochondria
(Tfam), which serves to coordinate the nuclear and mito-
chondrial genomes in the regulation of mitochondrial
biogenesis [30]. Furthermore, PGC-1α coactivates its own
gene expression by positive feedback, thus inadvertently
acting to increase its protein content as well [31, 32].

Various splice variants of PGC-1α have been identified
within skeletal muscle. For example, the full-length isoforms,
PGC-1α1–3, are associated with mitochondrial biogenesis
and oxidative phosphorylation [33], and the truncated vari-
ants, NT-PGC-1α, are produced by alternative 3′ splicing of
PGC-1α mRNA at exon1a. These truncated variants are
expressed in a similar ratio to that of PGC-1α in skeletal mus-
cle [34]. In contrast, a truncated splice variant of PGC-1α,
termed NT-PGC-1α-b or PGC-1α4, is involved in muscle
hypertrophy [35, 36]. Although several studies have indi-
cated that these truncated variants are upregulated by cold
exposure in brown adipose tissue [37] and are differen-
tially regulated by various exercise intensities in skeletal
muscle [38], the underlying mechanisms of actions of
these variants within skeletal muscle are not well understood,
and even less studied in the context of aging. A variety of
studies have indicated that PGC-1α is responsive to stimuli
such as Ca2+ [31, 39–41], ROS [42], nitric oxide [43], thyroid
hormone [44, 45], and increased energy imbalances such
as nutrient deprivation [25, 46, 47] and exercise [44, 48].
Thus, alterations in signaling from these sources can lead
to changes in mitochondrial content within skeletal mus-
cle, which are also linked with aging-associated alterations
in PGC-1α expression.

Considering the importance of PGC-1α in maintaining
skeletal muscle mitochondrial content through organelle bio-
genesis, aging-associatedmodifications in the expression and/
or activation of PGC-1α are a timely and highly relevant
research area. Although contradictory findings were observed
in human studies [11, 49, 50], aging is associatedwith a decline
in PGC-1α expression in the skeletal muscle of rodents [51].
The age-related reductions in PGC-1α have the potential to
reduce the transcriptional drive for mitochondrial biogenesis,
partially explaining the decreased skeletal muscle mitochon-
drial content associated with age. Further, knockdown of
PGC-1α expression in mice intensifies the decline in
mitochondrial gene expression and function in aging skeletal
muscle [52].

PGC-1α is also important for preventing or delaying the
onset of muscle atrophy by suppressing atrophy-related gene
expression, through the inhibition of Forkhead box O3a
(FoxO3a), a potent transcriptional inducer of muscle atro-
phy. For example, PGC-1α overexpression in adult rodents
suppressed FoxO3a activity, promoted muscle mass mainte-
nance [53], and similarly prevented starvation-associated
protein degradation and atrophy in myotubes [54]. Together,
this may explain the contribution of age-related PGC-1α

deficits to the phenotypic loss of muscle size, which thus
suggests the therapeutic potential of this protein in the pre-
vention of sarcopenia.

2.2. AMPK and NAD+. Various regulatory networks
converge to activate PGC-1α and promote mitochondrial
biogenesis. In response to a reduced cellular energy status,
energy-sensing networks associated with AMP-activated
protein kinase (AMPK) and silent mating type information
regulation 2 homolog 1 (SIRT1) are activated via AMP and
nicotinamide adenine dinucleotide (NAD+), respectively.
These proteins converge at PGC-1α to promote organelle
biogenesis [55, 56]. AMPK is an energy-sensitive kinase that
is activated by low energy status, as signified by an increase in
the AMP :ATP ratio [57–59], and it also phosphorylates
PGC-1α on threonine-177 and serine-538 [44, 60–62]. SIRT1
is an NAD+-dependent deacetylase that acts on PGC-1α in
response to an increase in NAD+, which is also indicative of
a reduction in cellular energy [32, 46, 63, 64]. AMPK and
SIRT1 are functionally interdependent, as AMPK can
increase NAD+ and subsequently activate SIRT1 within
muscle, and vice versa [55, 57, 65]. Moreover, AMPK may
function as a switch between PGC-1α-dependent and PGC-
1α-independent mitochondrial biogenesis pathways which
are promoted by SIRT1 [66]. Nevertheless, the phosphory-
lation and subsequent deacetylation of PGC-1α by AMPK
and SIRT1 activate PGC-1α and promote mitochondrial
biogenesis. Using exercise, caloric restriction, and/or phar-
macological activation models, it has been shown that both
AMPK and SIRT1 promote an oxidative phenotype within
skeletal muscle, along with increased mitochondrial content
[44, 46, 56, 58, 64, 65, 67–71].

Most reports on aged skeletal muscle show blunted
AMPK activation in response to exercise and AICAR treat-
ment [14, 70], with no apparent change in AMPK expression
[72]. These findings may partially explain the age-associated
declines in mitochondrial biogenesis since diminished
AMPK activation may downregulate PGC-1α. It may further
indicate a mechanism whereby reductions in AMPK activity
in aging muscle may reduce its ability to increase NAD+

levels and activate SIRT1. This evidence suggests that target-
ing AMPK activation within skeletal muscle may promote
mitochondrial biogenesis and thus healthier skeletal muscle
with age.

Reductions in NAD+ are evident within aged skeletal
muscle due to an increase in its breakdown, without reduc-
tions in SIRT1 protein [66, 73, 74], suggesting that this
signaling pattern toward mitochondrial biogenesis may be
hindered with aging. Using a knockdown model for cell-
specific nicotinamide mononucleotide (NMN) adenylyl-
transferase (NMNAT) which regulates NAD+ levels within
skeletal muscle, it was found that reductions in nuclear
NAD+ are partially responsible for the deficits in oxidative
phosphorylation (OXPHOS) and mitochondrial biogenesis
[66], which may help to explain the reductions in mitochon-
drial content with age. In the same study, aging mice treated
with the NAD+ precursor, NMN, restored skeletal muscle
NAD+, as well as increased mitochondrial function and
OXPHOS gene expression [66]. In addition, nicotinamide
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ribose treatment was also shown to increase NAD+ and to
prevent age-related muscle stem cell senescence, along with
an improvement in mitochondrial and muscle health with
age [75]. These data support the idea that age-related deficits
in NAD+ are partially responsible for the age-associated
reduction in mitochondrial biogenesis and suggest a possible
target for the replenishment in aging muscle.

2.3. Mitochondrial DNA. A unique characteristic of the mito-
chondrion is that it possesses its own mitochondrial DNA
(mtDNA), a circular molecule of approximately 16.6 kb in
size. mtDNA exists as a result of the mitochondrial evolu-
tionary upbringing as a prokaryote, maintaining a symbiotic
relationship with eukaryotic cells [76, 77]. Within each
organelle, there are multiple maternally inherited copies of
mtDNA, which are heteroplasmic due to the variant nature
of mtDNA copies within the cell [78].

Mitochondrial gene transcription is initiated by the
nuclear-encodedmitochondrialRNApolymerase (POLRMT)
[79], with the aid of mitochondrial transcription factors B1
and B2 (TFB1/2) and Tfam [80, 81]. Since the synthesis of
new mitochondria depends upon the coordination of the
nuclear and mitochondrial genomes, the integrity of mtDNA
and the machinery involved in its replication and gene
transcription are crucial in maintaining a healthy pool of
mitochondria and efficient biogenesis.

Within the skeletal muscle of humans, primates, and
rodents, aging has long been associated with an accumulation
of large-scale mtDNA deletions and mutations, which ulti-
mately contribute to sarcopenia and age-related myopathies
[3, 82–88]. This is likely because mtDNA is more readily
exposed to damaging free radical species due to its close
proximity to the electron transport chain (ETC), along with
the lack of protective proteins that nuclear DNA possess
[89]. Further, replicative damage to mtDNA leads to elevated
ROS production [90, 91], which is seen in aged skeletal
muscle [83], suggesting that aging is likely to lead to an
impairment in mtDNA replication. Taken together, mtDNA
damage likely ultimately reduces the quality and quantity of
mitochondrial biogenesis in aging muscle.

Aging skeletal muscle has also been associated with
declines in mtDNA copy number. For example, aged rats
(27 months old) were shown to have 20–40% less mtDNA
in skeletal muscle compared to young rats (6 months old),
corresponding to reductions in mitochondrial transcripts in
less oxidative muscle fibers [92]. However, it is unclear
whether aging-related reductions in mtDNA copy number
occur in humans, since inconsistent results have been
reported, whereby no changes [93] and even increase in
mtDNA have been observed [94]. Furthermore, elimination
of mtDNA in cells altered nuclear gene expression and
reduced mitochondrial proliferation [95], indicating that
mtDNA is required for organelle biogenesis and nuclear
coordination. These findings provide the opportunity to for-
mulate two potential theoretical frameworks. If mtDNA
reductions are evident in aged skeletal muscle, it may limit
the potential for mitochondrial biogenesis, as alluded to
above. On the other hand, if mtDNA is accumulating within
aged skeletal muscle, it could be indicative of a compensatory

mechanism in response to reduced respiratory chain func-
tion. This elevated level of mtDNA could contain mutations,
thus resulting in further overall respiratory chain defects.

2.4. Transcription Factor p53. As a tumor suppressor, the
transcription factor p53 promotes the expression of various
genes involved in cellular defense systems such as apoptosis
and cell cycle arrest in response to DNA damage [96, 97].
More recently, p53 has been identified as a regulator of mito-
chondrial integrity, content, and function as well as organelle
biogenesis [98–103]. In particular, p53 can be colocalized
within cytoplasm, nucleus, and mitochondria, whereby it
facilitates both nuclear and mitochondrial gene expression
[101, 104–106]. Mitochondrial p53 interacts with and stabi-
lizes mtDNA [102], and mtDNA expression is dependent,
in part, on the presence of p53 in skeletal muscle [107].
Indeed, the value of p53 to the mitochondrial genome
became more evident following a study showing that an
exercise-induced upregulation of p53 lessens mtDNA dam-
age in the skeletal muscle of a mtDNA mutator mouse model
of aging, compared to the mutator mouse model with skeletal
muscle-specific knockdown of p53 [108].

Reductions in muscle mitochondrial content and com-
plex assembly in p53 knockout (KO) mice further implicate
p53 as an important factor for the maintenance of mitochon-
drial aerobic capacity [100, 109]. Within the nuclear genome,
p53 supports mitochondrial biogenesis by upregulating the
expression of genes indicative of oxidative phenotypes, such
as Tfam and NRF-1, as well as the ETC assembly protein
synthesis of cytochrome c oxidase (COX) 2 [23, 103, 105,
107, 110].Moreover, PGC-1α has a p53 binding site in its pro-
moter region [61, 111] so that p53 could potentially increase
PGC-1α transcription, inducing downstream NUGEMP
expression [112], further suggesting a role for p53 in the regu-
lation of mitochondrial biogenesis. Within the mitochondrial
genome, p53 induces the transcription of 16S rRNA and
COX subunit I [101, 105]. Thus, the reductions in mito-
chondrial content in p53-KO animals are likely due to
decreased p53-induced gene expression important to mito-
chondrial biogenesis.

Aging is associated with increases in skeletal muscle p53
protein, suggesting that p53 may promote a proapoptotic
environment in aged muscle [113–116]. This increase is
clearly insufficient to maintain mitochondrial content at
levels similar to those observed in the muscle of young ani-
mals. p53 receives a regulatory input from AMPK, whereby
AMPK phosphorylates and activates p53 [117–119]. Thus,
the age-related deficiency in AMPK activation in rodent skel-
etal muscle (see above) potentially suppresses p53 activation
and signaling for mitochondrial biogenesis. Contrary to
AMPK, SIRT1 normally deacetylates and inactivates p53,
whereby it is liberated from its stimulating effect on biogen-
esis [120, 121]. However, aging is associated with reductions
in SIRT1 activity, which may promote the proapoptotic func-
tions of p53 rather than biogenesis. Importantly, the aging-
related reductions in PGC-1α may also reduce p53 because
of its coactivity with PGC-1α [112]. It was recently revealed
that aging is also correlated with reduced s-nitrosylation of
p53, a modification that enhances p53 binding to the PGC-
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1α promoter and promotes its associated antioxidant
response [122], further suggesting a reduced ability of p53
to promote biogenesis through its cooperative action with
PGC-1α. However, more research is necessary to character-
ize the role of p53 in aged skeletal muscle and to determine
if there is a therapeutic potential in targeting p53.

2.5. Mitochondrial Transcription Factor A (Tfam). Regulation
of mtDNA transcription and replication is mediated by
factors such as POLRMT, mitochondrial TFB1M/TFB2M,
and Tfam [80, 123], all of which are nuclear gene products.
The transcription of Tfam, TFB1M, and TFB2M is activated
by NRF-1 and NRF-2, which are, in turn, coactivated by
PGC-1α, thus connecting the nuclear and mitochondrial
genomes in mitochondrial biogenesis [30, 124].

Tfam is crucial for the regulation of mtDNA, and whole-
body loss of its function is associatedwith embryonic lethality,
whereas partial loss leads to reductions inmtDNAcontent and
tissue-wide respiratory deficits [125, 126]. Categorically, Tfam
has the high-mobility group box domains, which have the
ability to induce a U-turn-like conformation of mtDNA
[127–129]. Once this is completed, TFB2M and POLRMT
are recruited to the H and L promoters of mtDNA allowing
for gene transcription. Furthermore, Tfam packages and
compacts mtDNA into nucleoid-like structures [130, 131],
protecting this genome against ROS-induced mutations.

Tfam levels are positively correlated with mtDNA con-
tent [132, 133]. Within developing skeletal muscle, the
increase in Tfam mRNA is associated with elevations in
mitochondrial content and localization [134]. Mitochondrial
biogenesis is associated with an elevated abundance in Tfam
transcripts, aswell as itsmitochondrial localization [135–140],
whereas muscle-specific depletion of Tfam serves to reduce
mtDNA abundance [141]. Together, these data indicate an
essential role forTfam inpromotingmtDNAreplication, tran-
scription, and its subsequent effects on elevating the synthesis
of mitochondria.

Several studies suggest that Tfam is elevated in aged skel-
etal muscle, although reductions in mitochondrial content
are evident. This was shown to be the case in the skeletal
muscle of both aged rats [88] and humans [142]. In humans,
these increases were correlated with increases in NRF-1
mRNA and protein bound to nuclear DNA [142]. Altogether,
these data suggest that aging may lead to a compensatory
increase in Tfam, probably to maintain or increase mito-
chondrial content and respiratory function. Nevertheless, it
may also further promote the production of mutated
mtDNA, leading to mitochondrial dysfunction.

3. Mitochondrial Dynamics and Aging

In addition to organelle biogenesis discussed in the previous
sections, mitochondrial quality is finely adjusted by reshap-
ing mitochondrial structures that are primarily controlled
by fusion/fission, as well as autophagy/mitophagy. The fol-
lowing sections summarize our current understanding in
these mitochondrial regulatory systems in skeletal muscle
in the context of aging, as well as the mechanisms by which

proteins are imported into the mitochondria, allowing for
the expansion of the mitochondrial reticulum.

3.1. Fusion and Fission.Mitochondria are dynamic organelles
that are continuously undergoing the processes of fusion and
fission. Mitochondrial fusion is the expansion of the mito-
chondrial network that is accomplished by mitofusin 1
(Mfn1) and mitofusin 2 (Mfn2) in the outer mitochondrial
membrane [143], as well as by optic atrophy 1 (OPA1) in
the inner mitochondrial membrane [144]. These mitochon-
drial fusion proteins contain GTPase functional domains,
which, when activated, lead to an expanded, elongated mito-
chondrial network. Mitochondrial fission is the process that
opposes fusion, whereby the mitochondrial network can be
divided, resulting in small, fragmented, and globular mito-
chondria. Fission is also governed by GTPase proteins such
as dynamin-related protein (Drp1) and fission 1 protein
(Fis1) [145, 146]. Healthy mitochondrial dynamics are regu-
lated through the maintenance of a balance between these
opposing processes, which is fundamental for sustaining
mitochondrial quality and function in skeletal muscle. How-
ever, aging muscle appears to have an imbalance between the
fusion and fission processes, thus disposing mitochondria
toward undergoing either fusion or fission.

Several studies have revealed that aging skeletal muscle
mitochondria may preferentially undergo fission, resulting in
smaller and fragmented mitochondrial structures [8, 147].
For example, in a study comparing young (5 months) and
old (35 months) Fisher 344 Brown Norway (BN) rats, aging
skeletal muscles were observed to have elevated protein levels
of Fis1 and Drp1, as well as downregulated Mfn2 levels,
compared to their young counterparts [8]. Notably, a
remarkable reduction in Mfn2 protein levels was also found
in the skeletal muscle of old mice, and the age-related
decline was shown to be progressive throughout aging
[148]. This Mfn2 deficiency in aging muscle is also linked
to mitochondrial dysfunction, along with diminished oxida-
tive capacity [148], and this can contribute to muscle atrophy
and weakness. Thus, the absence of Mfn2 may play a signifi-
cant role in contributing to mitochondrial fragmentation and
associated sarcopenia in aging muscle.

Contradictory results have been also reported that skele-
tal muscle may be more dependent on mitochondrial fusion
in response to aging. Using a two-dimensional microscopic
analysis, Leduc-Gaudet et al. showed more elongated SS
mitochondria in the skeletal muscle of old mice, as well as
more branched IMF mitochondria, as compared to those of
young mice [9]. In this study, although no significant differ-
ence in fusion and fission proteins was found, the ratio of
Mfn2 to Drp1 appeared to increase, indicating an elevation
in the fusion index in the aging muscle [9]. It may be that
mitochondrial fusion is more active than fission in the
early-aging skeletal muscle of mice (~15months old), as indi-
cated by significantly increased Mfn1 and Mfn2 protein
levels in the skeletal muscle, as well as decreased Fis1 protein
levels [149]. In addition, other studies have revealed that both
fusion and fission proteins are not changed [150] or are all
upregulated [151] in the skeletal muscle of old animals. These
inconsistent results in the process of mitochondrial dynamics
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may be due to differences in age, species, and/or muscle types
of animals. Taken together, it is still unclear how aged skeletal
muscle regulates fusion and fission to meet the aging-related
alterations in mitochondrial structure and capacity.

3.2. Autophagy/Mitophagy. Autophagy is a “self-eating”
system by which damaged organelles and cellular byproducts
are degraded in the lysosome to help maintain cellular
homeostasis. Autophagic substrates are nonselectively
encapsulated by a double-membrane structure, an autopha-
gosome, wherein they are conjugated and ubiquitinated by
both the lipidated, active form of microtubule-associated
protein 1A/1B-light chain 3 II (LC3-II) and p62. The autop-
hagosome is then fused with a lysosome, whereupon an auto-
lysosome is formed. The engulfed substrates are subsequently
degraded by a variety of pH-dependent lysosomal proteases.
Mitophagy is a mitochondria-specific form of autophagy.
Damaged and/or dysfunctional mitochondria, characterized
by a loss of mitochondrial membrane potential, recruit
PTEN-induced kinase 1 (PINK1), which in turn activates
parkin and leads to the ubiquitination of the outer membrane
proteins. This mitochondria-ubiquitinated complex is encap-
sulated by autophagosome and then is degraded in the
lysosome. Mitophagy has been identified to be crucial in
maintaining healthy mitochondria in various tissues and
disease states through the deletion of malfunctioning mito-
chondrial segments within the network.

The literature is replete with statements that the autoph-
agy system is dysregulated with age [152–154], including
within aged skeletal muscle [155, 156]; however, variations
and contradictory findings are present in the literature
[149, 155–157]. For instance, an increased accumulation of
the autophagy markers p62 and LC3-II was observed in both
slow (soleus) and fast (tibialis anterior) skeletal muscles of
aged Fisher 344 BN rats [155], which may be indicative of
diminished autophagic degradation in aging muscle, because
LC3-II is degraded during autophagy. Others have shown
that basal autophagic regulation in skeletal muscle may be
not alteredwith aging [150, 158]. For example, muscle protein
abundance of key autophagymarkers such as Beclin-1, ULK1,
and p62, as well as the protein ratio of LC3-II to LC3-I, is not
different between young and older subjects [150, 158]. Mean-
while, the LC3 ratio (II to I) was observed to be lower in the
skeletal muscle of middle-aged animals [159], suggesting that
autophagy may be differentially regulated with age. Impor-
tantly, many of these observations are based on data in which
autophagy (or mitophagy) flux has been not assessed. Colchi-
cine, an inhibitor of autophagosome transport, is an effective
chemical for estimating “autophagic flux.” Using colchicine,
Baehr et al. provided some information to suggest that autoph-
agy flux is impaired in the skeletalmuscle of old animals [155].
However, much more research is required to clarify the
contradictory findings in the literatures.

Recent studies have also sought to understand the effects
of aging on mitophagy in skeletal muscle [160], even though
the number of studies is limited. In Drosophila, Rana et al.
have suggested the necessity of parkin not only for prolong-
ing lifespan but also for sustaining mitochondrial quality
and function in aging flight muscles [160]. They further

suggest a notable link between parkin and mitochondrial
fusion, as parkin overexpression appears to downregulate
aging-related increases in Mfn abundance, thus accelerating
the degradation of polyubiquitinated proteins and relieving
mitochondrial proteotoxicity [160]. In contrast, a recent study
by Sebastian et al. showed that the aging-associated Mfn2
deficiency may contribute to a decrease in mitophagic flux, as
suggested by an increased accumulation of LC3-II and parkin
on the mitochondria [148]. This aging-associated decline
in muscle mitophagy seems to be compensated by increas-
ing other signaling pathways including hypoxia-inducible
factor 1-alpha (HIF1α) and BCL2/adenovirus E1B 19 kDa
protein-interacting protein 3 (BNIP3) in a ROS-dependent
manner [148].

AMPK is a key player in autophagy and mitophagy
during starvation and aging [149, 161], and its activation in
skeletal muscle appears to be diminished by aging [14, 149].
Bujak et al. showed that AMPK is important in maintaining
mitochondrial integrity and mitophagic capacity in aging
skeletal muscle [161]. In response to muscle-specific AMPK
deletion, both SS and IMF mitochondrial sizes were shown
to be increased in comparison to those of age-matched
wild-type mice, along with a significant decline in mtDNA
copy numbers [161]. In this animal model, remarkable accu-
mulations of p62 and parkin proteins were also observed,
thus indicating a link between AMPK and mitophagy in
aging muscle [161]. In addition, Fritzen et al. also revealed
data that following AMPK knockdown, the ratio of LC3-II
to LC3-I was increased in the skeletal muscle of old mice as
compared to that of age-matched animals [157]. AMPK has
also been observed to regulate transcription factor EB
(TFEB), a master regulator of lysosomal biogenesis. In mouse
liver, AMPK is activated in response to starvation, which
leads to the upregulation of autophagy and lysosomal genes
via the interaction between TFEB and its coactivator,
arginine methyltransferase 1 (CARM1) [162]. Whether this
occurs in skeletal muscle is not known and further investiga-
tion is warranted.

Autophagy that is achieved via the direct transport of
substrates into the lysosome is termed chaperone-mediated
autophagy (CMA). This process requires carrier proteins
such as heat shock cognate 70 (HSC70) to deliver the
substrates to lysosomal-associated membrane protein 2A
(LAMP2A), whereupon the substrates are translocated into
the lysosomal lumen for degradation. In the context of the
lysosomal system itself, aging may downregulate lysosomal
activities, as LAMP2A [163] and HSC70 protein levels
[164] are all reduced in the liver of old rats. To our knowl-
edge, very few studies have been done to understand CMA
in aging muscle, and a single study showed that HSC70 pro-
tein abundance appears to be elevated in the skeletal muscle
of old (30 months) mice than in young (12 months) animals
[165]. Moreover, the skeletal muscle of old Fisher 344 BN rats
appeared to be characterized by lipofuscin accumulation
within the lysosomal lumen [166], suggesting that defects in
lysosomal function exist in aging muscle. It was also reported
that LAMP2 mRNA levels are decreased in the aging
plantaris of Fisher 344 BN rats as compared to those in young
animals [167], which is supported by data revealing that the
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activity of the lysosomal protease cathepsin L was also lower
in aging skeletal muscle, regardless of muscle type [155].
Thus, dysregulation of the lysosomal system may play a lim-
iting role in aging muscle autophagic regulation. However,
more detailed studies are needed to clarify the underlying
mechanisms of CMA and other lysosomal activities in aging
skeletal muscle.

3.3. Protein Import. Mitochondrial biogenesis is dependent
on protein components encoded by both mitochondrial and
nuclear DNA (mtDNA and nDNA, resp.). Only thirteen pro-
teins are encoded by mtDNA, while the remainder (~1100)
are dependent on the transcription of nDNA. Proteins that
are encoded by nDNA are transported from the cytosol to
the mitochondrial membrane import machineries, named
the translocases of the outer/inner membrane (TOM/TIM).
Through these complexes, the proteins are moved into mito-
chondrial matrix by the mitochondrial heat shock protein 70
(mHSP70) and are subsequently posttranslationally modified
by mitochondrial processing peptidase (MPP). This impor-
tant machinery contributes importantly to the management
of mitochondrial quality and the correct stoichiometry of
ETC components in skeletal muscle mitochondria.

Although it was shown that TOM proteins (e.g., TOM22)
are not changed in the aging skeletal muscle of humans [147]
and rodents [149], studies using mitochondrial fractions
have suggested that the aging process may lead to the upreg-
ulation of TOM protein levels in skeletal muscle [168]. For

example, key protein markers for TOM complex such as
TOM40 and TOM22 were increased in the muscle mito-
chondrial fraction of old rats, as compared to those in young
animals [168]. Moreover, it was also shown that TOM22
levels are increased in the skeletal muscle of functionally
inactive old subjects [147]. Taken together, it seems likely
that the mitochondrial protein import system is activated in
order to compensate for age-related mitochondrial dysfunc-
tions in skeletal muscle.

4. Exercise, Mitochondrial Adaptations, and
Aging

Exercise has been relatively well accepted as an effective
strategy for delaying either the onset or the progression of
sarcopenia; however, its effects on mitochondrial biogenesis
and turnover have been less studied in aging skeletal muscle.
In the following sections, we outline studies focusing on the
effects of exercise on mitochondrial quality control in aging
skeletal muscle (Figure 2).

4.1. Exercise and Mitochondrial Biogenesis. As compared to
young, healthy skeletal muscle, fewer studies have been
accomplished to delineate the effects of exercise on
mitochondrial quality controls in aging skeletal muscle.
Endurance exercise training or chronic contractile activity
(CCA) successfully leads to mitochondrial adaptations in
aging skeletal muscle, to a lesser extent than which is

Fusion

Fission

Protein import

Autophagy/mitophagy

Lysosome

TOM

p62
LC3II

Autophagosome

TIM

PGC‒1�훼

TFEB
?

Mitochondrial biogenesis

Endurance exercise

Figure 2: Exercise and mitochondrial dynamics in aging muscle. Endurance exercise training increases mitochondrial biogenesis in aging
muscle, although its extent may be lessened compared to young muscle. In addition, chronic exercise leads to a global upregulation of
protein markers for mitochondrial dynamic controls: fusion/fission, autophagy/mitophagy, and protein import. Since the lysosomal
system has been suggested as a key player for governing mitochondrial quality control, the role of TFEB, a master regulator of lysosomal
biogenesis, appears to be important and its relationship with PGC-1α may be also considerable for the exercise-inducible upregulation of
mitochondrial turnovers. However, more studies are needed to clarify the effects of endurance training exercise on the mitochondrial
turnover systems in aging muscle.
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observed in young muscle [51, 151, 169]. Following endur-
ance training, aging skeletal muscle does exhibit increases
in the gene and protein abundances of PGC-1α, accompa-
nied by increases in mtDNA, mitochondrial mass, ETC
components, and mitochondrial transcriptional regulators
such as Tfam [151, 169]. These training-inducible mitochon-
drial adaptations are regulated by various signaling path-
ways. Several studies have reported that endurance training
activates AMPK, p38 mitogen-activated protein kinase
(MAPK), and SIRT1 in the skeletal muscle of old rodents
and humans, all of which are activators of PGC-1α and thus
of mitochondrial biogenesis [151, 169]. Nonetheless, some
findings have suggested that the decline in mitochondrial
markers was not prevented in the skeletal muscles of animals
at advanced age (i.e., 34~36-month-old Fisher 344 BN rats)
in response to endurance training [14, 170]. Also, it was
reported that mitochondrial biogenesis following 12 weeks
of cycling exercise training was attained in the skeletal muscle
of old women without an increase in PGC-1α protein [171],
suggesting possible alternative signaling pathways to lead to
exercise-induced mitochondrial biogenesis in aging muscle,
as compared to young muscle [172].

Research trials employing lifelong physical activity also
suggest an important role of chronic muscle activity in the
maintenance and improvement in mitochondrial integrity
and aerobic performance that are attenuated with aging
[173, 174]. Higher mitochondrial volume density following
lifelong exercise is observed, and it is highly correlated with
aerobic capacity (VO2max) in the skeletal muscle of healthy
individuals over 60 years old [175].

Resistance exercise for aging individuals has been well
defined as an effective regimen for lessening aging-associated
muscle atrophy and weakness [176, 177]. However, only few
studies have sought to investigate the underlying mechanism
by which resistance exercise alters mitochondrial abundance
and function inaging skeletalmuscle.Acute resistance exercise
with leg extensions was shown to significantly increase the
mRNA levels of both total PGC-1α and PGC-1α4, as well
as Tfam, in the muscle of aged men [178]. While Flack
et al. [179] observed no changes in mitochondrial markers
in the skeletal muscle of individuals over 60 years old follow-
ing 12 weeks of resistance exercise, other studies have shown
that 6 months of resistance training partially reversed the
aging-related dysregulation of genes for mitochondrial
function [176]. Furthermore, a mixed type of chronic
exercise (voluntary resistance wheel exercise training) was
found to have a significant effect on increasing muscle
aerobic capacity in aging muscle, as well as muscle mass
and size [158], indicating the therapeutic potential of using
a mixed training type to prevent the atrophy and reduction
in mitochondria that is associated with age.

4.2. Exercise and Mitochondrial Turnover

4.2.1. Fusion/Fission and Exercise. Recent studies have sought
to understand the effects of exercise on mitochondrial
dynamics in aging skeletal muscle. While mixed results have
been found in young skeletal muscle [180, 181], several stud-
ies have shown parallel changes in both fusion and fission

proteins in aging skeletal muscle following chronic physical
activity or endurance exercise training [151, 182, 183]. For
example, 6 weeks of treadmill exercise upregulated both
Fis1 and Mfn1 protein abundances in the skeletal muscle of
old animals [151]. Furthermore, lifelong physically active
older women demonstrated elevated levels of both Mfn2
and Drp1 mRNA in their skeletal muscle as compared to
age-matched inactive women [184]. Hence, chronic muscle
activity seems to control mitochondrial dynamics in aging
skeletal muscle through the coregulation of both fusion and
fission processes.

4.2.2. Autophagy/Mitophagy and Exercise. Although contra-
dictory findings have been observed [185, 186], acute aerobic
exercise is likely to increase the autophagic responses in
skeletalmuscle [187]. For example, a bout of treadmill exercise
elevated muscle and mitochondrial autophagic flux in young
skeletal muscle, wherein LC3-II and p62 fluxes were upregu-
lated immediately after exercise, as well as during recovery
[187]. Interestingly, this acute exercise-related increase in
muscle autophagic and mitophagic flux appeared to be
diminished in the absence of PGC-1α, which suggests the
importance of PGC-1α on the exercise-inducible muscle
remodeling [187]. This is also supported by a study by
Vainshtein et al. [188], wherein denervation-induced
upregulation of the mitophagy system was lessened in
the skeletal muscle of PGC-1α-KO mice. Future work will
be required to determine whether PGC-1α plays a key role
inactivity-dependent changes in autophagy/mitophagy in
aging skeletal muscle.

Several studies have sought to understand endurance
training effects on the cellular systems in aging muscle. For
instance, it has been claimed that endurance exercise training
may upregulate the autophagy process in the skeletal muscle
of old animals [158, 189, 190]. However, these interpreta-
tions have been derived from measurements of the ratio of
LC3-II to LC3-I without changes in p62 protein accumula-
tion [158], which is a limitation as they did not measure
autophagy flux. Nonetheless, in response to endurance train-
ing, these aging muscles were shown to have increased
expression of autophagic markers such as autophagy-
related protein 7 (ATG7) and Beclin-1 that are all significant
players in the formation of the autophagosome. The CMA
protein LAMP2A also followed the same pattern [185]. Fur-
ther, physically active elderly individuals have increased
mRNA levels of autophagy markers such as Beclin-1,
ATG7, and p62 [173, 184], and they also had increased mito-
phagy markers including BNIP3 and parkin in the muscle
[173, 184]. Indeed, in a recent study (in Press), we observed
that muscle autophagy may be concomitantly altered along
with mitochondrial adaptations over the course of chronic
muscle activity. In addition, lysosomal proteins appear to
adapt prior to mitochondrial changes. Therefore, it is possi-
ble that endurance exercise training or chronic muscle activ-
ity may lead to a mitochondrial remodeling in the skeletal
muscle of aged individuals, but more studies are warranted
to clearly understand endurance exercise training effects on
the autophagy/mitophagy systems.
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Autophagic responses following resistance exercise are
shown to be different from the endurance exercise-induced
changes discussed above. For example, it has been reported
that in response to a bout of resistance exercise, the protein
ratio of LC3-II to LC3-I was decreased in the muscle of old
individuals compared to that in the young group [191, 192],
while p62 protein accumulated [178]. As in the acute
responses, resistance training appears to accelerate autophagic
degradation (flux) in aging skeletal muscle. For example,
6 weeks of ladder climbing exercise training was shown to
downregulate the ratio of LC3-II to LC3-I and p62 protein
abundance in the muscle of old rats [193]. In this study, other
autophagy protein markers including Beclin-1, ATG7, and
cathepsin L were all upregulated in the aging muscle [193],
collectively suggesting that resistance exercise may accelerate
autophagy with age.

4.2.3. Protein Import and Exercise. As in other aging studies,
there have been few studies examining the effects of exercise
or chronic activity on the mitochondrial protein import sys-
tem in aging muscle. Using a CCAmodel, Ljubicic and Hood
[14] observed an attenuated change in protein import
systems (TIM17, TIM23, and mtHSP70) in aging skeletal
muscle following 7 days of CCA, whereas the same markers
were significantly elevated by CCA in young muscle. In addi-
tion, Joseph and colleagues have shown that the increase in
protein import with CCA is correspondingly reduced in aged
muscle [168]. Thus, while the import process is not affected
with age basally, the adaptive potential in response to exercise
appears to be reduced.

5. Conclusion

Mitochondrial quality control in aging skeletal muscle is
regulated via mitochondrial biogenesis and mitochondrial
turnover; however, the regulation of these processes seems
to be less sensitive to the effects of exercise compared to that
in young, healthy muscle. Regulation of mitochondrial
quality in skeletal muscle can be also accomplished by other
cellular systems including ubiquitin proteasomal degrada-
tion, lysosomal regulation, and apoptosis. In particular, the
lysosomal system has been recently suggested as a key player
for regulating autophagy/mitophagy, as well as mitochon-
drial energy balance [194]. Indeed, a key component of
lysosomal biogenesis, the transcription factor TFEB, appears
to determine exercise capacity [194], and we have suggested a
coordinated function between TFEB and PGC-1α during
both denervation- [188] and CCA- (in Press) induced skele-
tal muscle remodeling, suggesting an importance of main-
taining a balance between mitochondrial biogenesis and
lysosomal system for the muscle quality control. Therefore,
it will be interesting for future studies to examine aging-
related alterations in the lysosomal system in skeletal muscle,
as well as to study how endurance and/or resistance exercise
regulates lysosomal capacity in aging muscle. These findings
will suggest a possible pharmaceutical target for improving
aging-related mitochondrial dysregulation in skeletal muscle.

It is evident that maintaining healthy mitochondrial
quality is essential for defeating aging-related muscle

dysfunction and weakness. To better understand the regula-
tion of mitochondrial quality control in aging muscle, more
studies are warranted to reveal the underlying mechanisms
behind the effects of exercise on the mitochondrial biogenesis
and turnover. Hopefully, the results will suggest the most
effective exercise strategies for attaining optimal mitochon-
drial quality in aging skeletal muscle.
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