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Abstract: The measurement of medical service accessibility is typically based on driving or Euclidean
distance. However, in most non-emergency cases, public transport is the travel mode used by
the public to access medical services. Yet, there has been little evaluation of the public transport
system-based inequality of medical service accessibility. This work uses massive real smart card
data (SCD) and an improved potential model to estimate the public transport-based medical service
accessibility in Beijing, China. These real SCD data are used to calculate travel costs in terms of
time and distance, and medical service accessibility is estimated using an improved potential model.
The spatiotemporal variations and patterns of medical service accessibility are explored, and the
results show that it is unevenly spatiotemporally distributed across the study area. For example,
medical service accessibility in urban areas is higher than that in suburban areas, accessibility during
peak periods is higher than that during off-peak periods, and accessibility on weekends is generally
higher than that on weekdays. To explore the association of medical service accessibility with socio-
economic factors, the relationship between accessibility and house price is investigated via a spatial
econometric analysis. The results show that, at a global level, house price is positively correlated with
medical service accessibility. In particular, the medical service accessibility of a higher-priced spatial
housing unit is lower than that of its neighboring spatial units, owing to the positive spatial spillover
effect of house price. This work sheds new light on the inequality of medical service accessibility
from the perspective of public transport, which may benefit urban policymakers and planners.

Keywords: accessibility; medical service; inequality; smart card data

1. Introduction

Medical services are an integral part of urban public service systems. Access to med-
ical services plays an important role in supporting public health and well-being for the
development of sustainable cities. Furthermore, the adequacy and spatial distribution of
medical resources directly affects the physical health of urban residents. As urbanization
accelerates, urban extent increases and urban infrastructures expand to the periphery of
a city, and thus the living space of people continues to spread to the surrounding areas.
This is particularly true in a first-tier city such as Beijing, which has a large population.
Consequently, it is becoming increasingly important to ensure that there is an even spatial
distribution of urban facilities, including medical facilities, in large cities to provide the pub-
lic with equal accessibility to these services. To this end, the Chinese government has made
efforts to rationalize the allocation of medical resources, with the aim of providing equal
access to medical services for the public, including vulnerable groups and low-income
groups. This has included the implementation of policies on medical price supervision, all
medical security recommendations, and diagnosis and treatment systems [1]. Beijing is
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a megacity, with a large population and hospitals. Despite the great efforts dedicated to
providing equal medical accessibility, the high house price and the imbalanced distribution
of the healthcare resources in Beijing could make the inequality of medical accessibility
very serious in the city.

Many studies have evaluated the accessibility of medical services [2–4]. However,
lacking data on transportation networks or the computational power of geographical
information systems, most previous works calculated the travel costs (distance) to medical
facilities using Euclidean or Manhattan distance based on vector maps [5]. However,
public transport is the most common travel mode used by people in large cities, such as
Beijing and Hong Kong. It is also normal and reasonable that, in most non-emergency
situations, people who live in large cities access medical facilities by public transport. It
would, therefore, be more accurate to calculate medical service accessibility in terms of the
travel costs of using public transport systems.

In recent years, the acquisition of big data has become easier and ubiquitous owing
to advances in information technology. Various types of big data, such as mobile phone
signaling data and Global Positioning System (GPS) trajectory data, have been widely
used in various fields [6,7]. However, despite the increasing availability of smart card data
(SCD), which comprise data of passenger tap-ins and tap-outs at subway or bus stations,
there has been little evaluation of medical service accessibility in terms of public transport
system use.

When considering public transport as a travel mode to access medical services, the
following basic questions arise. How can public transport-based accessibility to medical
services be quantified differently from previous studies based on driving or Euclidean
distance? How is public transport-based accessibility to medical services distributed in
space and time? Are there inequities in public transport-based accessibility to medical
services? Finally, how is public transport-based accessibility to medical services associated
with the house price?

To answer these questions, a case study is conducted of Beijing, China. A large
volume of SCD were collected and are used to calculate the travel costs of public transport-
based travel to medical service facilities, and an improved potential model is applied to
evaluate medical service accessibility via the 6th Ring Road in Beijing. A comparison is
made between the proposed method in this study and a traditional method in a previous
study, and the spatiotemporal patterns of public transport-based medical accessibility
are explored to determine, for example, when and where the accessibility is high or low,
and why this is so. The spatiotemporal inequality in public transport-based medical
accessibility is determined at a high resolution. House price in Beijing is used as the proxy
of socioeconomic context, and its relationship with medical accessibility is evaluated from
local and global perspectives using spatial econometric analysis. This study combines a
public medical-accessibility evaluation model with real SCD to comprehensively consider
the spatiotemporal dynamics of accessibility patterns. The findings may contribute to the
development of sustainable transport systems to enhance medical service accessibility in
smart cities.

The remainder of this paper is structured as follows. Section 2 reviews previous studies
on the calculation of medical service accessibility from different perspectives. Section 3
presents the study area and the data processed in this work. Section 4 details the methods
used in this study, such as spatial autocorrelation analysis and an improved potential
model for the estimation of medical service accessibility. The results and a discussion are
provided in Section 5, followed by conclusions in Section 6.

2. Literature Review

Accessibility is a difficult concept to define. According to Gould, accessibility is a
“slippery notion . . . [as it is] one of those common terms that everyone uses until faced with
the problem of defining and measuring it” [8]. Therefore, many studies have calculated
accessibility from different perspectives. The gravity model is one of the common methods
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used, and was pioneered by Hansen [9], who defined accessibility as the size of the
opportunity for interaction and applied this to urban resource planning. Weibull [10] used
Hansen’s definition [9] to consider the supply and demand competition among consumers,
and introduced a population scale factor to improve the original gravity model.

Since these early studies, a large body of literature has accumulated on the analysis of
spatial accessibility, which considers the effect of supply and demand on accessibility on a
point scale. This approach has gradually emerged as a spatially rational reference basis for
the assessment of urban public facilities and equality of access to resources. The two-step
floating catchment area (2SFCA) method and potential model are examples of this approach,
and have become the main methods for researching spatial accessibility in the field of
public services. 2SFCA allows comparisons to be made across different locations [11] and,
according to Luo and Wang, “is a special case of a gravity model of spatial interaction that
was developed to measure spatial accessibility to primary care physicians” [12,13]. Wang,
Du [4] first proposed the concept of observed hospital accessibility (OHA) and used an
enhanced 2SFCA (E2SFCA) method and taxi trip data to evaluate OHA. The E2SFCA and
variable two-step flowing catchment area (V2SFCA) methods may both work well in this
study. Nevertheless, the major objective of our study is to verify the usability of the real
public transportation big data in evaluating the inequality of medical accessibility in space
and time, in which the overall trend of the study results will not be influenced by using the
improved potential models [2,14]. The potential model comprehensively considers spatial
barriers (time, distance, and so on) and the needs of residents, and accurately reflects
residents’ access to facility resources in research units of smaller spatial scales than those
used in 2SFCA [15].

At present, the potential model is more commonly used than 2SFCA to evaluate
the accessibility of medical services. Salze, Banos [16] recognized that the calculation of
accessibility combined with travel behavior better reflects reality, and used the potential
model to analyze differences in accessibility to food outlets in different areas of a city.
Peng, Zhang [17] comprehensively considered the important role of a transportation
network in logistics activities and improved the potential model to evaluate the radiation
scope of a logistics park. Moreover, considering multiple transportation modes is more
accurate to measure the comprehensive accessibility [18,19]. Nevertheless, our study aims
to demonstrate the spatiotemporal variations and patterns of medical service accessibility
that only consider public transport, which is important to explore the social well-being and
inequity from a particular angle.

Notably, the potential model combines the spatial effects of supply and demand with
their own gravitational scale, comprehensively evaluates accessibility, and can combine
actual-travel big data with a travel friction coefficient, which is ideal for the analysis
of smart transportation-card data. However, the existing improved potential model for
accessibility analysis has several flaws. For example, the travel friction coefficient is largely
estimated from previous research methods, which only consider Euclidean distance or
travel time. Moreover, travel costs are estimated based on the shortest path or travel time
from the road network, not based on real transportation data [15]. Furthermore, it does not
account for the fact that accessibility generally has strong socio-economic characteristics, as
different regions or groups have various levels of access to public service facilities.

Notably, researchers have found that low-income individuals who live in affordable
housing have the lowest accessibility levels and they have the highest risk of social exclu-
sion and isolation in disadvantaged spaces [20]. Mavoa, Witten [21] analyzed the spatial
differences in medical accessibility between various groups in Turkey, and found that
there was spatial inequality in accessibility to medical treatment for urban residents of
different ages, incomes, immigration status, and medical enrolment status. Kawakami,
Winkleby [22] compared the differences in living services and resource access between
different levels of communities in Switzerland, and they found that low-deprivation neigh-
borhoods had a significantly lower prevalence than high-deprivation neighborhoods. Other
studies have explored the root causes of unbalanced access to medical services in China
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by collecting socioeconomic indicators and using geographic-weighted regression [1]. Tao
and Shen [23] compared the difference in accessibility to medical treatment between the
household registration population and the floating population in urban areas, and found
that the former had better medical treatment accessibility than the latter. Guo, Chang [24]
used Hong Kong as a research object to analyze whether the wealth of residential areas
affected residents’ access to urban facilities and found that poorer areas had more oppor-
tunities to access certain services than wealthy areas, not less. Zhao, Liu [25] confirmed
that the proportion of the floating population in a community is related to the accessibility
of community medical care, and revealed the unequal layout of urban facilities. Finally,
although some previous studies on urban facility accessibility have analyzed spatial in-
equality, they used conventional spatial models, which do not take spatial autocorrelation
and spatial spillover effects into consideration, and thus may lead to biased estimates [26].

In this study, we analyze the inequality of medical service accessibility using real
SCD, the improved potential model, and spatial econometrics analysis in medical service
accessibility data are considered.

3. Study Area and Data Processing
3.1. Study Area and Spatial Unit

The built area within the 6th Ring Road in Beijing was selected as the study area
(Figure 1a). Beijing, the capital of China, is a world-famous and modern international city.
It is located in Hebei Province on the northern part of the North China Plain. It is adjacent
to Tianjin in the east and the west is adjacent to Hebei. Beijing has 16 administrative
districts and a total population of 21 million within an area of 16,410.54 km2.

Figure 1. (a) Study area within the 6th Ring Road in Beijing, China; (b) expanded study area, showing its 2745 hexagonal
(1 km × 1 km) spatial units.

A hexagonal study unit was used and the study grid area contains a total of 2745 units
within the 6th Ring Road (Figure 1b). A hexagonal grid was selected because it covers an
area with more regularly sized hexagonal cells than a raster grid. Moreover, hexagonal
cells are closer in shape to circles than to rectangular cells, and suffer from less orientation
bias and sampling bias from edge effects than other cell shapes [27]. Furthermore, the
authors of [28] suggested that an appropriate geographic unit for delineating service areas
should represent 10 minutes’ walking distance (e.g., 1 km) and areas that contain a bus
stop or subway station. Thus, the spatial resolution of the study grid is 1 km × 1 km.

3.2. Datasets and Data Processing

Four types of data are used, namely (1) hospital service data, (2) SCD, (3) population
data, and (4) house price data.
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3.2.1. Hospitals Service Data

By the end of 2016, there were 9773 medical institutions, 117,041 sickbeds, and
299,460 health workers in Beijing [29]. We collected the address details of 192 hospi-
tals in the study area from Amap (www.amap.com, accessed on 7 March 2021) and then
geocoded these addresses using the Amap application programming interface to obtain the
coordinates of each hospital. To quantify the scale of hospitals, we obtained the number of
sickbeds in each hospital from the Beijing Municipal Commission of Health and Family
Planning Information Center [30] and used these data as a measure of hospital size. In
China, hospitals are classified into three classes according to their ability to provide medical
and related services (e.g., medical care, education, and academic research), namely, Class
I (primary), Class II (secondary), and Class III (tertiary) [31]. The classes of hospitals and
the number of sickbeds in these hospitals across the study area are shown in Figure 2a,b,
respectively.

Figure 2. The spatial distribution of the 192 hospitals in the study area colored by (a) their class and (b) their number
of sickbeds.

Figure 2 shows that, the higher the class of a hospital, the more sickbeds it contains. In
the following subsection, we estimate medical accessibility using the number of sickbeds of
these hospitals as an indicator of their medical service capability. The number of sickbeds
in a hospital is a key factor that is used to estimate the level of a hospital, which is itself an
important factor in the ability of a hospital to attract patients [3,32–34].

3.2.2. SCD

SCD from Beijing are used to identify origin and destination matrices and calculate
travel costs. The SC dataset consists of 30,620,366 bus and subway travel trips from 11 April
to 17 April 2016 (seven consecutive days in an entire week) in Beijing. The dataset contains
information on the coordinates and schedules of tap-in–tap-out stations, travel cost time,
and travel line code (Table 1). In addition, to ensure data quality and optimize computing
efficiency, all of the SC records were cleaned by removing empty records, or records of
alighting at invalid stations or of trips with a travel cost time that was too short. In addition,
some records have system errors or a travel period that is not within the operating time
period, and these records were also removed. Furthermore, some buses do not stop at their
exact parking location, causing the latitude and longitude of the boarding and alighting
station data to shift. To amend such errors, we use the line code and alighting time to
estimate the boarding and alighting bus stations. To protect the privacy of passengers,
records within each half hour are merged into a single record, which is shown as NUM
in Table 1.

www.amap.com
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Table 1. Smart card data format.

Column Name Meaning Data Format

LINE_CODE Bus/subway line number 1

ON_LON Longitude of boarding station 116.225941

ON_LAT Latitude of boarding station 39.915451

OFF_LON Longitude of alighting station 116.231219

OFF_LAT Latitude of alighting station 39.906253

ON_TIME Boarding time 12 April 2016 0630

OFF_TIME Alighting time 12 April 2016 0800

COST_TIME Travel cost 99

NUM Number of people traveling 3

In Beijing, in 2016, the subway system comprised of 18 lines and 278 stations, and the
public bus service comprised 1574 lines and 42,024 stations, and almost all bus and subway
stations were located within the 6th Ring Road in Beijing. Public (e.g., metro and bus)
transport in Beijing accounted for 49.3% of total commuter transportation, and was the
most common travel mode for people in Beijing [35]. The boarding and alighting locations
for bus and subway stations are typically distributed along roads (Figure 3a,b), making the
data suitable for examining the characteristics of hospital access behavior [4].

Figure 3. The distribution of public transport stations in Beijing: (a) bus stops; (b) subway stations.

As mentioned in Section 3.1, the spatial unit grid ensured that all spatial units had one
matched bus stop or subway station. To identify the origin and destination matrices of the
trips (Figure 4), we created a ring buffer at a distance of 800 m, as multiple tests have shown
that a buffer zone of this size results in almost all hospitals having one matched bus stop
or subway station [36]. Therefore, alighting stations (red points) that were 0–800 m from
hospital coordinates were identified as representing trips to a hospital. Boarding stations
located within the area of a spatial unit were identified as trips departing that spatial unit.
In addition, to analyze temporal variations in medical service accessibility, we considered
three time periods on weekdays and on weekends, as characterized by the Beijing Traffic
Management Bureau: a morning peak period (between 07:00 and 09:00), an off-peak period
(between 09:30 and 16:30), and an evening peak period (17:00 and 20:00). The first period is
the beginning of the peak period in the morning, when many office workers and students
visit doctors before their workday or school day begins. During the second period, most
of the people who visit doctors have no constraints on their time. The third period is the
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peak time in the evening, when most of the people who visit doctors have finished work or
school [6].

Figure 4. The schematic diagram of the derived origin and destination matrix (where OD = origin–destination, O–ID = origin
identifier, D–ID = destination identifier).

After identifying the origin and destination of the trips during these time periods, we
merged the trips that had the same records, and finally derived a total of 9,538,435 origin–
destination trips from 11 April to 17 April 2016.

3.2.3. Population and Housing Price Data

The population data of China were downloaded from WorldPop (https://www.
worldpop.org/geodata/summary?id=5777, accessed on 7 March 2021), where the 2016
population is aggregated in grids of 100 m × 100 m. The population in each spatial unit
(see Section 3.1) is obtained by performing a bilinear resampling method. Figure 5a shows
the population distribution in each spatial unit in the study area. In general, the population
in an area (e.g., hexagonal grid unit) indicates potential patients [4].

Figure 5. The spatial distribution of (a) population and (b) the house price of each spatial unit.

Several studies have shown that economic inequality may lead to inequality of access
to medical services [20,24]. In addition, house prices in an area can reflect, to some extent,
the economic level of the residents in an area. Thus, house price data were obtained from
the website of “Lianjia” (http://bj.lianjia.com/, accessed on 7 March 2021), a well-known
real estate company in China, which divides the study area into 8000 communities. We
conduct a spatial join analysis of these data to assign a house price to each spatial unit in
the study area (Figure 5b), as the house price of a spatial unit can be used to represent the
potential income of residents within the unit.

4. Methodology

The main objectives of this study are to quantify real public-transport commuting
data-based (i.e., SCD-based) accessibility to medical services, determine the spatiotemporal
distribution of this public transport-based accessibility to medical services, prove that
there is inequality of access to medical services, and understand the relationship between
socio-economic factors and medical service accessibility. This section presents details on

https://www.worldpop.org/geodata/summary?id=5777
https://www.worldpop.org/geodata/summary?id=5777
http://bj.lianjia.com/
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the methodology used in this study (see Figure 6). First, data processing was performed, as
briefly introduced in Section 3.2. Second, we quantitatively calculated the medical service
accessibility by fitting the improved potential model. Last, we evaluated the inequality of
medical service accessibility by using spatial econometrics analyses.

Figure 6. Workflow of the research.

4.1. Measuring Medical Accessibility Based on Transport Mode

The potential model, which was developed from the gravity model, is a classic model
for studying spatial interactions between an economy and society. However, the traditional
potential model only considers the supply side, and overlooks the competition between
different demand points that share the same facility for limited resources. Thus, it may limit
the accuracy of an accessibility calculation. That is, when facilities of the same size serve
different numbers of people, the calculation will yield the same accessibility. To solve this
problem, Guagliardo [37] considered a so-called population impact factor as the demand
side to improve the traditional potential model. We use this improved potential model,
which is formulated as follows:

Ai =
n

∑
j=1

Aij =
n

∑
j=1

Mj

Dβ
ijVj

(1)

Vj =
m

∑
k=1

Pk

Dβ
kj

(2)

where Ai represents the sum of the potentials generated by demand points i from all of the
supply locations in the system, Aij is the potential generated by the supply point j to the
demand point i when the travel friction coefficient is β, Mj represents the scale of resources
provided by supply point j, Dβ is the travel resistance factor (distance or time) from point i
to point j when the travel friction coefficient is β, Vj represents the population impact factor
of the supply point on the previous basis, Pk is the number of service demand population
of the demand point k, and Dkj is the distance cost of the demand point k and the facility j.
When the travel cost decreases, β decreases and Ai increases accordingly [5].
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β is estimated from travel costs (i.e., travel distance and time), which are derived
based on the SCD as follows:

nij =

{
t−β1
ij

D−β2
ij

(3)

where nij represents the number of population flows from demand point i to the supply
point j, tij represents the travel time between demand point i and supply point j, and Dij
indicates the Euclidean distance from demand point i to supply point j. Incorporating the
actual travel time into the travel cost generates an accessibility calculation result that is
closer to the real-life situation.

4.2. Spatial Autocorrelation

According to Tobler [38], “all attribute values on a geographic surface are related
to each other, but closer values are more strongly related than are more distant ones”.
According to the first law of geography, geographical data may be non-independent and
related to each other because of spatial interaction and spatial diffusion [1]. In addition,
medical service accessibility may exhibit the features of spatial autocorrelation [3]. To fur-
ther explore the inequality of medical service accessibility, spatial autocorrelation analyses
of accessibilities are applied, based on the above calculations. We test the spatial autocorre-
lation based on Moran’s I [39] and generate a local indicators for spatial association (LISA)
cluster map. The formula of Moran’s I is stated below:

I =
n ∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)
S0 ∑n

i=1(xi − x)2 (4)

S0 =
n

∑
i=1

n

∑
j=1

wij (5)

where S0 is the standard deviation of the sample and wij is the spatial weight matrix, which
in this study is the adjacent distance matrix. The matrix is normalized such that its largest
eigenvalue is 1. xi and xj represent the observed values (medical service accessibility) of
areas i and j, respectively, and x is the mean of the observed values. The value of Moran’s I
ranges between −1 and 1 [39]. If the value of Moran’s I is greater than 0, this indicates that
there is a positive spatial autocorrelation; that is, a high value is adjacent to high values. If
the value of Moran’s I is less than 0, there is a negative spatial autocorrelation; that is, a
high value is adjacent to low values. If the value of Moran’s I is close to 0, the spatial spread
of data is random, without any spatial autocorrelation. The Z-score is used to determine the
standard deviation, where a score of <−1.65 or >+1.65 indicates a 90% confidence level, a
score of <−1.96 or >+1.96 indicates a 95% confidence level, and a score of <−2.58 or >+2.58
represents a 99% confidence level [40]. The Z-score is the most frequently used statistical
indicator for the test of significance of Moran’s I [41,42], and is calculated as follows:

Z =
I − E(I)√

VAR(I)
(6)

4.3. Spatial Durbin Model

We also take into account that house prices in an area (i.e., the potential income
of residents in an area) may be an essential factor affecting the inequality of medical
accessibility [3,43]. In a normal linear regression, the coefficients may reflect how medical
service accessibility would change when there are changes in house prices. The indirect
effects are always zero in this case. However, in spatial autoregression, the effects of a
change in house prices on medical service accessibility are spatially spread [26,44]. To show
that medical service accessibility is associated with the socio-economic context of the built
environment, we use a spatial regression model to analyze the relationship between house
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prices and accessibility during different time periods [45]. We test the spatial regression
model based on the spatial Durbin model, which takes the following form:

Yit = α + ρ
n

∑
j=1

WijYit + βXi + θ
n

∑
j=1

WijXj + εi (7)

where i is the spatial units; j is a spatial unit adjacent to i, where j 6= I; Y is the dependent
variable, which is the discrete coefficient of medical service accessibility; α is the intercept
term; Wij is a spatial weight matrix [46]; t indicates different time periods; and ρ is a
spatial scalar parameter, which has three possible scenarios. When ρ = 0, there is no
endogenous spatial interaction; that is, medical service accessibility is not associated with
the spatial relationship among house prices in each spatial unit. When ρ > 0, the medical
service accessibility in a spatial unit tends to match that of neighboring spatial units, and
there is a positive spatial agglomeration. When ρ < 0, the medical service accessibility
shows a dispersed spatial-distribution pattern. Xj is a k vector of explanatory factors, β
is the coefficient of the explanatory variable, θ is the coefficient of the spatial endogenous
interaction term WijXj of the explanatory variable, and εi is the error term [47]. Based on
Equation (9), the spatial Durbin model (SDM) is used as the base model, and is defined
as follows:

lnAccessibilityit = α + ρ
n

∑
j=1

WijlnAccessibilityit + βlnHouse pricei + θ
n

∑
j=1

WijlnHouse pricej + εi (8)

The marginal effect of a variable cannot be directly obtained from the coefficient of the
estimation of regression of a spatial measurement, as the coefficient is part of the recursive
computation of marginal effects. This a very complex computation, and the coefficients
alone cannot describe the effect of this change in accessibility. Therefore, it is necessary
to calculate the direct and indirect effects of the estimation model to quantify the spatial
spillover effects. By rewriting the SDM with indirect and direct effects as

Yit =
(

I − ρWij
)−1
(

βXi + θ
n

∑
j=1

WijXj + εi

)
(9)

where εi is a rest term containing the intercept and the error terms, the matrix of partial
derivatives of the expected value of Yit with respect to the kth explanatory variable of Xi in
unit 1 up to unit N in time x becomes the following:

(
∂yit
∂X1k

, ∂yit
∂X2k

, · · · ∂yit
∂XNk

)
= [I − ρW]−1

 βk · · · Wijθk
· · · · · · · · ·

Wijθk · · · θk


= [I − ρW]−1[βk + Wijθk

] (10)

There are non-diagonal terms present owing to the exogenous parameter βk, the
endogenous spatial lag parameter (ρ), and the exogenous spatial lag parameter (θk). The
average value of the diagonal elements represents the direct effect, whereas the average
value of the non-diagonal elements represents the indirect effect (spatial spillover effect),
and the sum of the direct effect and the indirect effect is the total effect. Elhorst [48]
proposed the use of the maximum likelihood (ML) method to estimate the static spatial
model. In this study, we also use the ML method to estimate the model.

5. Results and Discussion
5.1. Attenuation Parameter Results of Travel Time and Euclidean Distance

Figure 7a,b report the statistical results for the relationship between the number of
potential patients and travel time, and for the relationship between the number of potential
patients and Euclidean distance, respectively. These figures show that increased travel time
and travel distance reduce the attractiveness of a hospital to people. It is similar pattern
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between potential patients and travel time/distance. It can be seen that potential patients
rarely choose hospitals with a travel time of more than 3 h or a distance of more than 30 km
(approximately 1.5 h of driving). As mentioned in Section 4.1, we assume that, even within
the service catchment of the hospital, increasing travel costs would reduce its attractiveness
to people, and would in turn reduce the supply capacity of the hospital service. Thus, these
visualization results preliminarily support our assumptions.

Figure 7. The relationship between potential patients and (a) travel costs and (b) travel time.

We now calculate the attenuation parameters based on the exponential function to
further test our hypothesis. The results show that the R2 values of travel time and Euclidean
distance are 0.87 and 0.80, respectively, which indicates that there are good correlations
between travel time and the number of potential patients, and between Euclidean distance
and the number of potential patients, when these data are fitted by an exponential function.

5.2. Spatiotemporal Medical Service Accessibility

Using attenuation parameters, hospital attraction, and Euclidean distance based on
a vector map between each population grid unit and hospitals, we estimate the medical
service accessibility for each spatial unit. Figure 8 shows the static distribution of overall
medical accessibility in the study area. To further compare the visualized temporal differ-
ences in the medical service accessibility in the study area, we use the quantile method to
classify the value of medical service accessibility into ten levels, and then normalize them.
A white spatial unit indicates the lowest value of medical service accessibility, and the
deepest red spatial unit indicates the highest value of medical service accessibility. Overall,
the medical accessibility of residents in spatial grid units varies greatly among different
locations in the study area. The level of accessibility decreases as the distance from the city
center increases, and the level of accessibility in the eastern area is higher than that in the
western area.

Figure 8. Distribution of medical accessibility in the study area.

Medical service accessibility is also analyzed by considering changes that occur
throughout the day. There is considerable temporal variation in the attractiveness of
hospitals because the desirability of attending one hospital from another spatial unit in
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the study area changes substantially throughout the day, which also affects the equality of
accessibility to medical services. To further comprehend the spatiotemporally of medical
service accessibility, we classify medical service accessibility into three time periods on
weekdays and weekends (a morning peak (from 07:00 to 09:00), an off-peak period (from
09:30 to 16:30), and an evening peak (from 17:00 to 20:00)), as shown in Figure 9.

Figure 9. Medical service accessibility in different time periods, where (a,c,e) show the weekday
dynamic accessibility and (b,d,f) show the weekend dynamic accessibility.
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The visualization results show that the spatial accessibility of medical services at
different times varies in temporal dimensions. Medical service accessibility on weekends
is better than that on weekdays, and that during peak periods is better than that during
off-peak periods. In addition, on weekdays and weekends, medical service accessibility is
highest during the morning peak period, while the most inconvenient time for potential
patients to visit a doctor is during the off-peak period. Furthermore, the dynamic distri-
bution of medical service accessibility has similar characteristics, and grid units with the
highest level of accessibility are mainly located within the most central area in the 6th Ring
Road. In contrast, the medical service accessibility is poor during all time periods for those
potential patients living in non-central areas within the study area. However, some areas,
such as in the northeast and southeast of the study area, have medical service accessibilities
that are quite different from those of their surrounding areas.

5.3. Inequality Evaluation of Medical Service Accessibility

Table 2 provides the Moran’s I results of our medical service accessibility data for
different time periods. As shown, Moran’s I is statistically significant for both static and
dynamic values of medical service accessibilities within the study area. The values of
Moran’s I for the accessibility of the medical services are larger than 0 and fluctuate within
the range of 0.096–0.191, and the p-value and Z-scores (see Table 2) show that the confidence
level of spatial autocorrelation is 99%. These data support our assumption that there is an
obvious positive spatial autocorrelation in medical service accessibility.

Table 2. Indicators related to the Moran’s I of hospitals.

Time Period Accessibility Z-Score p-Value

Overall 0.187 13.4147 0.01 **

Weekday morning peak 0.136 14.3514 0.01 **

Weekday off-peak 0.096 5.9416 0.02 *

Weekday evening peak 0.135 15.6096 0.01 **

Weekend morning peak 0.191 17.9121 0.01 **

Weekend off-peak 0.136 13.2672 0.01 **

Weekend evening peak 0.135 17.3546 0.01 **
Standard errors are in parentheses, ** p < 0.05, * p < 0.1.

The Moran’s I value calculated for medical service accessibility in weekday off-peak
periods is lower than the other values, indicating that, during these times, the spatial
correlation of medical service accessibility is relatively weak. This may indicate that people
randomly or actively choose their preferred hospitals during these times, unrestricted by
working hours. In contrast, the weekend morning peak accessibility has the highest value
of Moran’s I (0.191), which shows that, during this time, there is a significant correlation
between residents and hospitals in a spatial unit, across the entire study area. Finally, some
spatial units are in better locations, yet have worse accessibility to hospitals, especially in
the weekend peak periods.

Figure 10 shows the LISA cluster maps developed from the spatial autocorrelation
analysis. Red areas indicate high aggregation and blue areas indicate low aggregation.
Our visualization results show that medical service accessibility displays high and low
aggregation. From the results of different time periods, it can be seen that there are similar
spatial distributions and trends for high- and low-value aggregation areas in the spatial
autocorrelation analysis. Low-aggregation areas are distributed in suburban regions and
high-aggregation areas are distributed in central regions in the study area, which indicates
that there is an imbalanced distribution of medical resources and services across different
areas. Notably, medical resources are extremely abundant in central regions, but scarce in
suburban regions.
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Figure 10. Local indicators for spatial association cluster maps of hospital accessibility. (a) Moran’s
I of the overall patterns in accessibility; (b,d,f) Moran’s I of weekday accessibility in different time
periods; and (c,e,g) Moran’s I of weekend accessibility in different periods.
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Table 3 reports the regression results for the relationship between medical service
accessibility and house price during different time periods, generated by the SDM with
the ML estimation and deviation correction. As mentioned in Section 4.2, the regression
coefficient of spatial measurement is part of the recursive computation of marginal effects,
which has no special explanatory significance. Therefore, we measure the spillover effects
of marginal effects to explain the regression results in Table 3.

Table 3. Spatial Durbin model of medical accessibility and house price. A, overall medical service accessibility; WDMPA,
weekday morning peak accessibility; WDOPA, weekday off-peak accessibility; WDEPA, weekday evening peak accessibility;
WEMPA, weekend morning peak accessibility; WEOPA, weekend off-peak accessibility; WEEPA, weekend evening
peak accessibility.

Variables
(1) (2) (3) (4) (5) (6) (7)

A WDMPA WDOPA WDEPA WEMPA WEOPA WEEPA

ln(house price) −0.006 *
(0.003)

−0.039 ***
(0.012)

−0.018 **
(0.009)

−0.024 **
(0.010)

−0.073 ***
(0.022)

−0.037 ***
(0.014)

−0.051 **
(0.020)

W × ln(house price) −0.009 ***
(0.001)

−0.067 ***
(0.004)

−0.026 ***
(0.008)

−0.038 ***
(0.004)

−0.121 ***
(0.010)

−0.055 ***
(0.005)

−0.063 ***
(0.006)

Constant 0.09 ***
(0.035)

0.675 ***
(0.123)

0.265 ***
(0.093)

0.374 ***
(0.104)

1.189 ***
(0.234)

0.563 ***
(0.143)

0.655 ***
(0.201)

Observations 2745

Standard errors are in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

In Tables 3 and 4, A indicates overall medical service accessibility, WDMPA is weekday
morning peak accessibility, WDOPA is weekday off-peak accessibility, WDEPA is weekday
evening peak accessibility, WEMPA is weekend morning peak accessibility, WEOPA is
weekend off-peak accessibility, and WEEPA is weekend evening peak accessibility.

Table 4. Average effects of the spatial Durbin model.

A WDMPA WDOPA WDEPA WEMPA WEOPA WEEPA

Direct effect

ln(house price) −0.010 ***
(0.0033)

−0.038 ***
(0.012)

−0.018 **
(0.009)

−0.025 **
(0.010)

−0.074 ***
(0.022)

−0.037 ***
(0.014)

−0.053 **
(0.020)

Indirect effect

ln(house price) 0.014 ***
(0.004)

0.061 ***
(0.014)

0.033 ***
(0.012)

0.044 ***
(0.013)

0.133 ***
(0.029)

0.066 ***
(0.018)

0.036
(0.047)

Total effect

ln(house price) 0.004 ***
(0.001)

0.022 ***
(0.002)

0.014 ***
(0.003)

0.020 ***
(0.003)

0.059 ***
(0.007)

0.029 ***
(0.005)

−0.017
(0.049)

Standard errors are in parentheses, *** p < 0.01, ** p < 0.05.

Table 4 presents the average effects of the SDM. Our statistical results show that,
irrespective of whether medical services accessibilities are static or dynamic, house price
has a negative direct effect on accessibility. This means that a high house price in a spatial
unit decreases the level of medical service accessibility within that unit. In contrast, the
indirect effect analysis shows that high house prices increase the level of medical service
accessibility in neighboring spatial units. This latter result indicates that the medical service
accessibility of a higher house-price spatial unit is lower than that of its neighboring spatial
units owing to the positive spatial spillover effect of house price.

Our findings reveal that house price has a negative direct effect on hospital accessibility,
but that spatial units neighboring a spatial unit with a high house price have high medical
service accessibility owing to the positive spatial spillover effect. That is, poor areas (slums,
urban villages, and so on) adjacent to high house-prices regions have high medical service
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accessibility. However, this high medical service accessibility does not radiate to low-
house-price agglomeration regions. Moreover, high- and mid-high house-price regions
benefit from high medical service accessibility owing to their spillover effects. Land finance
is one of the key indicators for assessing the performance of local governments [49,50].
Under this circumstance, house price is somehow pushed by the central government in
urban development, while those poor aggregation regions are no exception. Furthermore,
the rise in house price is one of the yardsticks for the political achievements of local
government officials, implying that local governments always seek to set up policies in
boosting economic growth. In this context, the total effect of medical services accessibility
will improve.

6. Conclusions

In this study, we evaluate the inequality of medical service accessibility in multiple
time periods using real public transport commuting data and an improved potential model.
House price is used as a proxy of socioeconomic context to systematically assess how this
affects medical service accessibility. Our statistical and visualization results show that
space, time, and housing prices all have significant effects on the inequality of medical
service accessibility. However, the visualization results show that the level of medical
service accessibility is poor at all time periods for potential patients living in non-central
areas within the study area, which implies that location has the most significant effect on
the inequality of medical service accessibility. In addition, we find that there are temporal
trends in medical service accessibility for people living in central areas, with medical
service accessibility on weekends being better than that on workdays, and that during peak
periods being better than that during off-peak periods, which means that the desirability of
attending one hospital from another spatial unit in the study area changes substantially
throughout the day. Overall, there is considerable temporal variation in the attractiveness of
hospitals, which also affects the equality of accessibility to medical services. Policymakers
may thus need to re-evaluate the current transportation network to develop an optimal
distribution of medical services in Beijing.

Moreover, our findings reveal that overall medical accessibility in Beijing is strongly
spatially correlated with house price. Spatial regression analysis of medical service acces-
sibility and house price shows that accessibility within a higher-house-price spatial unit
is lower than that in its neighboring spatial units owing to the positive spatial spillover
effect of house price. Overall, in the static regression results, people living in or nearby
high-house-price areas have higher accessibility to medical services, but those who live
in poor agglomeration regions may not even have medium-level accessibility to medical
services, which is specifically notable when considering the spatiotemporal characteristics.
This may have further exacerbated the inequality of medical services problem.

Therefore, policymakers should consider the distribution of medical services in cities
thoroughly and adopt more suitable (sustainable) development models in managing the
distribution of medical services. Briefly, local governments should carefully plan the
distribution of medical services in poor agglomeration regions. Unfortunately, this study
does not consider accessibility by private transport. Owing to data limitations, this paper
is limited to an analysis of public transport accessibility.
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