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Abstract

CLEC5A/MDL-1, a member of the myeloid C-type lectin family expressed on macrophages and neutrophils, is critical for
dengue virus (DV)-induced hemorrhagic fever and shock syndrome in Stat12/2 mice and ConA-treated wild type mice.
However, whether CLEC5A is involved in the pathogenesis of viral encephalitis has not yet been investigated. To investigate
the role of CLEC5A to regulate JEV-induced neuroinflammation, antagonistic anti-CLEC5A mAb and CLEC5A-deficient mice
were generated. We find that Japanese encephalitis virus (JEV) directly interacts with CLEC5A and induces DAP12
phosphorylation in macrophages. In addition, JEV activates macrophages to secrete proinflammatory cytokines and
chemokines, which are dramatically reduced in JEV-infected Clec5a2/2 macrophages. Although blockade of CLEC5A cannot
inhibit JEV infection of neurons and astrocytes, anti-CLEC5A mAb inhibits JEV-induced proinflammatory cytokine release
from microglia and prevents bystander damage to neuronal cells. Moreover, JEV causes blood-brain barrier (BBB)
disintegrity and lethality in STAT1-deficient (Stat12/2) mice, whereas peripheral administration of anti-CLEC5A mAb reduces
infiltration of virus-harboring leukocytes into the central nervous system (CNS), restores BBB integrity, attenuates
neuroinflammation, and protects mice from JEV-induced lethality. Moreover, all surviving mice develop protective humoral
and cellular immunity against JEV infection. These observations demonstrate the critical role of CLEC5A in the pathogenesis
of Japanese encephalitis, and identify CLEC5A as a target for the development of new treatments to reduce virus-induced
brain damage.
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Introduction

The Flavivirus genus includes the mosquito-borne dengue,

Japanese encephalitis and yellow fever viruses [1], infections of

which can result in clinical syndromes such as hemorrhagic fever

and encephalitis. There are four serotypes of dengue virus (DV),

which can give rise to severe hemorrhagic syndrome (dengue

hemorrhagic fever/DHF) and capillary leakage induced-hypovo-

lemic shock (dengue shock syndrome/DSS) [2]. On the other

hand, the Japanese encephalitis virus (JEV) serological group,

which includes West Nile virus (WNV) and St. Louis encephalitis

virus, is a major contributor to the occurrence of viral encephalitis

worldwide [3], with 50,000 new cases and 15,000 deaths per

annum [4]. JEV is the most prevalent cause of encephalitis and

although both inactivated [5] and live-attenuated [6] JEV vaccines

have been used in Asia for decades, these are not completely

effective against all the clinical isolates [7], and there are still

,35,000 reported cases of Japanese encephalitis (JE) resulting in

10,000 deaths each year [8]. Unlike DHF and DSS, JE victims

experience permanent neuropsychiatric sequelae, including per-

sistent motor defects and severe cognitive and language impair-

ments [9]. However, the molecular pathogenesis of JEV infection

is still unclear.

JEV-specific infiltrating T lymphocytes and JEV-neutralizing

IgM and IgG are believed to play major roles in the recovery and

clearance of the virus, while microglia were shown to secret

massive amounts of cytokines following JEV infection [10]. While

JEV infects and kills neuron directly [11], viral replication within

microglia/glia leads indirect neuronal killing via secretion of

cytokines (such as TNF-a) and soluble mediators to cause neuronal

death [11]. One of the key factors in indirect neuronal cell death

during JE is the uncontrolled overactivation of microglia cells [12].

However, the molecular mechanism of JEV-induced microglia

activation is unclear, thus we are interested to identify the key

PLoS Pathogens | www.plospathogens.org 1 April 2012 | Volume 8 | Issue 4 | e1002655

Program for Genomic Medicine at National Yang-Ming University (NSC99-3112-B-010-015). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.



molecule to regulate JEV-induced proinflammatory cytokine

release from microglia. This information may help in the

development of specific treatments for JEV-induced neuroinflam-

mation.

CLEC5A (also known as myeloid DAP12-associating lectin

(MDL-1) [13]) contains a C-type lectin-like fold similar to the

natural-killer T-cell C-type lectin domains, and associates with a

12-kDa DNAX-activating protein (DAP12) [14] on myeloid cells

such as monocytes, macrophages and neutrophils, but not

monocyte-derived dendritic cells. Moreover, we have shown

dengue virus (DV) can bind and activate CLEC5A and induce

the phosphorylation of DAP12 [15], which is responsible for

CLEC5A/MDL-1-mediated signaling [13]. Unlike conventional

C-type lectin receptors (CLRs), such as DC-SIGN/CLEC4L,

DC-SIGNR/CLEC4M, and mannose receptor/CLEC13D/

CD206 [16], which are all involved in dengue virus (DV) entry

into target cells, CLEC5A regulates virus-induced proinflamma-

tory cytokine release from macrophages [15]. In addition,

blockade of CLEC5A can prevent autoimmune inflammation in

collagen-induced arthritis via downregulating osteoclast activa-

tion, suppressing cell infiltration of joints, and attenuating

proinflammatory cytokine release [17]. These observations

indicate that CLEC5A is a critical molecule to regulate

inflammatory reactions triggered by pathogens and autoantigens.

We thereby went on to determine whether CLEC5A is involved

in JEV-induced proinflammatory cytokine release from microglia

and bystander neuronal damage. Here, we demonstrate that JEV

infects and replicates in peripheral macrophages and microglia.

Moreover, blockade of CLEC5A dramatically reduces bystander

neuronal damage and JEV-induced proinflammatory cytokine

secretion from macrophages and microglia. Furthermore, pe-

ripheral administration of anti-CLEC5A mAb attenuates neuro-

nal cell death, inhibits JEV-bearing infiltrating cells into CNS,

and restores the expression of tight junction proteins and BBB

integrity. These results suggest that CLEC5A is a promising

therapeutic target to control neuroinflammation during viral

encephalitis.

Results

JEV activates macrophages to secrete proinflammatory
cytokines via CLEC5A

Reverse-transcription PCR (RT-PCR) using cDNA templates

from the human microglial cell line CHME3, macrophage-like cell

line U937, and CD14+-derived macrophages (MoM) revealed the

presence of a dominant transcript (CLEC5A) and an alternatively

spliced variant (CLEC5A_S) lacking 23 amino acid (aa) residues

within the stalk region of CLEC5A (Figure S1A & S1B). Similarly,

murine CLEC5A_S (mCLEC5A_S) lacks 25 aa from the

corresponding region of murine CLEC5A (mCLEC5A) [18].

ELISA showed that human CLEC5A and mCLEC5A, but not

the alternatively spliced variants or structurally related members of

the CLEC family, are able to interact with JEV (Figure 1A). The

differential abilities of CLEC5A and CLEC5A_S to bind JEV

were further confirmed by immunoprecipitation (Figure S1C).

This observation demonstrates that the stalk region of CLEC5A

plays a critical role in binding to JEV. Incubation of macrophages

with JEV was shown to induce the phosphorylation of DAP12

(Figure S1D), a CLEC5A-associated adaptor protein with an

ITAM motif contributing to signal transduction. While UV-

inactivated JEV-induced DAP12 phosphorylation lasted for only

2 h, DAP12 phosphorylation was detectable for at least 24 h

following infection with live JEV, indicating DAP12 phosphory-

lation is enhanced by JEV replication (Figure 1B). Compared to

live JEV, UV-inactivated JEV only induced transient DAP12

phosphorylation and low amounts (less than 50 pg/ml) of TNF-a
and IL-6 secretion (data not shown). This indicates that virus

particles released from JEV-infected macrophages can continually

activate DAP12 and induce cytokine release. Furthermore,

knockdown of CLEC5A using the short hairpin RNA (shRNA)

pLL3.7/CLEC5A [15] abolished DAP12 phosphorylation (Figure

S1E), suggesting that JEV-triggered DAP12 phosphorylation is

mediated via CLEC5A.

We further investigated whether JEV could also infect and

activate human CD14+-monocyte derived macrophages (MoM).

Although JEV was found to be less efficient than DV in infecting

macrophages, only JEV infected the human neuroblastoma cell

line HTB11 (Figure S2A), suggesting that JEV is both myelotropic

and neurotropic. Moreover, JEV activates MoM to secret

proinflammatory cytokines, and anti-CLEC5A mAb blocked the

release of TNF-a and MCP-1 but not IFN-a, from JEV-infected

MoM (Figure 1C) and murine bone marrow-derived macrophages

(BMM) from Stat12/2 mice (Figure S2B&S2C). The critical role of

CLEC5A in JEV infection was further confirmed by incubating

JEV with BMM derived from Stat12/2/Clec5a2/2 mice (Figure

S3). Compared to Stat12/2/Clec5a+/+ mice, BMM from Stat12/2/

Clec5a2/2 mice secreted significantly less TNF-a and MCP-1 in

response to JEV infection, while levels of IFN-a secretion were

very similar (Figure 1D). These findings further confirm the critical

role of CLEC5A in the JEV-induced inflammatory reaction.

Blockade of CLEC5A inhibits JEV-induced neuronal death
in mixed glial cell culture

Since astrocytes (glial cells) and microglia (cerebral residential

macrophages) are major sources of proinflammatory cytokines

during cerebral inflammation [11,12,19], we went on to

investigate the role of CLEC5A in JEV-induced neuroinflamma-

tion in Stat12/2 microglia and mixed glia cells. We found that

CLEC5A is expressed on microglia (Figure 2A) as determined by

immunohistochemistry staining. We further isolated the mononu-

clear cells (including hematopoietic and non-hematopoietic cells)

by Percoll-gradient centrifugation [20] from naı̈ve mice to

Author Summary

Japanese encephalitis (JE) is one of the most common
forms of viral encephalitis worldwide, and the common
complication post viral encephalitis is permanent neuro-
psychiatric sequelae resulting from severe neuroinflamma-
tion. However, specific treatment to inhibit JEV-induced
neuroinflammation is not available. We found that JEV
interacts directly with CLEC5A, a C-type lectin expressed
on the myeloid cell surface. This observation led to two
major findings; first, we demonstrate that JEV activates
macrophages and microglia via CLEC5A, and blockade of
CLEC5A reduces bystander neuronal damage and JEV-
induced proinflammatory cytokine secretion from macro-
phages and microglia. Second, peripheral administration of
anti-CLEC5A mAb does not only inhibit JEV-induced BBB
permeability, but also reduces the numbers of activated
microglia and cell infiltration into the CNS. The attenuation
of neuronal damage and reduced viral load correlate with
the suppression of inflammatory cytokines TNF-a, IL-6, IL-
18, and MCP-1 in the CNS. Our studies provide new
insights into the molecular mechanism of neuroinflamma-
tion, and reveal a possible strategy to control neuroin-
flammation during viral encephalitis.
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Figure 1. JEV interacts with CLEC5A and induces cytokine secretion via CLEC5A. (A) Interaction of JEV with human and murine CLEC5A.Fc
fusion proteins was determined by ELISA. Anti-E Ab is a positive control to confirm the capture of JEV particles; HuIgG1: human IgG1. Data are
expressed as means 6 s.e.m. for three independent experiments; two-tailed Student’s t-tests were performed. (B) The kinetics of DAP12
phosphorylation induced by JEV (m.o.i. = 2) and ultraviolet-inactivated JEV (UV-JEV) in human macrophages were determined by western blotting
(h.p.i., hours post infection). The intensities of pDAP12 bands were quantified with MetaMorph software (Molecular Devices) and its relative intensity
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determine cell lineages expressing CLEC5A. We found CLEC5A

is expressed on the surface of F4/80+ tissue macrophages (90%),

CD11b+ myeloid cells (65%), and CD45+ cells (50%; predomi-

nantly in CD45low hematopoeitic) (Figure 2B).

Due to the resistance of wild type mice to JEV infection,

previous studies in relation to JEV-induced brain damage have

utilized intracranial (i.c.) injection of JEV to deliver virus directly

to the CNS [21,22]. However, this approach causes mechanical

damage to the BBB and thus cannot be used to address the

mechanisms of JEV-induced changes in BBB permeability and the

associated entry of virus into the CNS. Since Stat12/2 mice are

sensitive to JEV infection even without i.c. puncture, and are able

to develop protective immunity after JEV challenge, these animals

provide a useful model to test the protective effects of vaccines

against JEV and other pathogens which are unable to infect wild

type mice. We set up microglia (95% purity) and mixed glial cell

(approximately 85% astrocytes and 10% microglia) cultures from

Stat12/2 mice to assess the potential involvement of CLEC5A in

regulating cerebral inflammation and neuronal death after JEV

infection (Figure S4). Immuno-staining with a mAb to JEV

nonstructural protein 3 (NS3) showed that ,30% of mixed glial

cells and ,10% of microglia were infected with JEV. However,

anti-CLEC5A mAb was unable to inhibit either NS3 expression

(Figure 2C) or virus replication (Figure 2D), suggesting that

CLEC5A was not involved in JEV entry into these cells.

It has been reported that both JEV-infected astrocytes and

microglia release multiple bio-active factors, thereby giving rise to

secondary glial activation and neuronal injury [11,12]. We

therefore investigated the release of proinflammatory cytokines

from JEV-infected neurons, mixed glia and microglia cultures.

Cells were preincubated with anti-CLEC5A mAb for 1 h, followed

by incubation with JEV at 37uC for 1 h, and supernatants were

harvested to determine cytokine release at 24 h post-infection. We

found that TNF-a and MCP-1 were produced primarily by

microglia, and abundant IL-6 was released by JEV-infected mixed

glia (Figure 2E), while JEV-infected neurons only released trace

amount of these cytokines (Figure 2E). This observation is in

accord with a previous report that JEV-infected astrocytes produce

IL-6, but not TNF-a [11]. In our study, pre-incubation with the

anti-CLEC5A mAb mediated significant reductions in cytokine

release (Figure 2E); we therefore investigated whether anti-

CLEC5A mAb could prevent neuronal death during JEV

infection. Direct incubation of neurons with JEV caused 40% cell

damage (live cell count reduced from 171623 to 93627)

(Figure 2F), while UV-irradiated conditioned media (in the

absence of anti-CLEC5A mAb) from JEV-infected mixed glia

(UV-JEVCM; from Figure 2E) caused 80% cell damage (from

162619 to 2767 live cells) (Figure 2G). This indicated that soluble

mediators released from JEV-infected mixed glia are more toxic

than JEV per se to neurons. In addition, anti-CLEC5A mAb

protected approximately 50% of neurons from UV-JEVCM-

induced cell damage (from 162619 to 76612 live cells), but was

ineffective in protecting neurons from direct JEV infection

(Figure 2F). Previous studies demonstrated that TNF-a released

by microglia plays a critical role in JEV-associated neurotoxicity

[11], while MCP-1 secreted by microglia can recruit inflammatory

cells to cause neuronal damage [12]. Therefore, the anti-CLEC5A

mAb-mediated protective effect may occur via blocking the release

of TNF-a, MCP-1, and other yet-defined bio-active factors from

JEV-infected mixed glial cells and microglia.

CLEC5A regulates JEV–induced BBB disintegrity
While wild type mice only respond to high dose JEV challenge

(16105 pfu/mouse) with intracranial (i.c.) puncture (Figure S5A),

Stat12/2 mice are sensitive to low dose JEV-induced lethality

without the need for i.c. puncture (Figure S5B). Thus Stat12/2

mice were used as an in vivo model system to test whether anti-

CLEC5A mAb could maintain BBB integrity, which is known to

be damaged by virus-induced neuroinflammation [23,24]. Chang-

es in BBB integrity over time following JEV challenge, as revealed

by 99mTc-DTPA brain SPECT/CT imaging, showed that JEV

infection gave rise to increased BBB permeability from day 3 to

day 7 post infection (Figure 3A&B). This effect was reduced

(during day 3 to day 5) and normal BBB permeability was restored

on day 7 in response to treatment with anti-CLEC5A mAb. The

integrity of the BBB after anti-CLEC5A mAb treatment on day 7

was further confirmed by the Evans blue assay (Figure 3C). Since

tight junctions are critical in the regulation of BBB permeability,

and their disruption is a hallmark of CNS abnormalities [25], we

measured the expression of tight junction proteins (such as ZO-1,

Occludin and Claudins) and of adhesion molecules (such as JAM-1

and ICAM-1) known to be important for recruitment of

inflammatory cells. In JEV-infected mice (treated with isotype

mAb), the expression of ZO-1, Occludin, Claudin-1, and Claudin-

5 was downregulated, while the expression of ICAM-1 was

upregulated. However, the expression of junctional adhesion

molecule (JAM-1) was not changed after JEV infection (Figure 3D).

Interestingly, anti-CLEC5A mAb restored the expression of tight

junction proteins and suppressed JEV-induced upregulation

ICAM-1 (Figure 3D). Moreover, the increased BBB permeability

in JEV-infected mice was accompanied by perivascular cuffing,

while anti-CLEC5A mAb reduced the numbers of infiltrating foci

(Figure 3E). This demonstrates that peripheral administration of

anti-CLEC5A mAb is able to restore BBB integrity to prevent cell

infiltration.

Blockade of CLEC5A attenuates myeloid cell infiltration
into CNS

We further isolated mononuclear cells (MNCs) from the JEV-

infected Stat12/2 mice brain by Percoll gradient [20] to analyze

the cell lineages. At day 5 after JEV infection, most of the

infiltrating cells are F4/80+CD11b+ myeloid cells (left column,

Figure 4A). Peripheral administration of anti-CLEC5A mAb

efficiently inhibits the infiltration of F4/80+ CD11b+ myeloid cells

(right column, Figure 4A).

It has been shown that CD11b+/CD45+ cells contribute to the

pathogenesis of West Nile virus (WNV) encephalitis [26], thus

triple-color staining (CD11b/CD11c/CD45) was used to gate the

CD11c2 population to distinguish residential microglia (R1) and

infiltrating myeloid cells (R1) (Figure 4B). To determine the source

of CD45+CD11b+ myeloid cells, carboxyfluorescein succinimidyl

ester (CFSE) was injected into peritoneum (i.p.) at day 2 post JEV

to that of the band of respective corresponding DAP12 and are shown under each picture. (C) Different amounts of antibody 0.1 mg (2 mg/ml;
0.013 mM), 1 mg (20 mg/ml; 0.13 mM) and 10 mg (200 mg/ml; 1.3 mM) were incubated with MoM before addition of JEV. Dose-dependent inhibition of
cytokine release from JEV-infected MoM by anti-CLEC5A mAbs (clones: 2B8H11, 6E11A8, 7F3G2) were determined using ELISAs at 48 h post infection.
mIgG1 was used as an isotype control. (D) Bone marrow-derived macrophages (56105 cells/well) from Clec5A2/2 Stat12/2 and Clec5A+/+ Stat12/2

mice were infected with JEV (m.o.i. = 2) and supernatants were harvested at 48 hr after JEV infection for cytokine measurement. Data were collected
and expressed as mean 6 s.e.m. from at least three independent experiments. Two-tailed Student’s t-tests were performed.
doi:10.1371/journal.ppat.1002655.g001
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Figure 2. Blockade of CLEC5A inhibits neuronal death induced by supernatant from JEV-infected Stat12/2 murine mixed glial cell
culture. (A) Tissue sections of human perilesional brain cortex from glioblastoma multiforme were stained with CLEC5A mAb (20 mg/ml) and isotype
control. CLEC5A staining was observed under a light microscope (Nikon) and photographed. (B) Detection of CLEC5A+ cells in F4/80+, CD11b+ and

CLEC5A Regulates JEV-Induced Neuroinflammation
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infection to trace the migration of CFSE+ cells (Figure S6A). All

the peripheral blood cells were labeled with CFSE at day 5 post

infection whether treated with isotype or anti-CLEC5A mAb

(Figure S6B). In addition, intraperitoneal injection of CFSE was

unable to label CNS MNCs without intracranial (i.c.) puncture

(mode III, Figure S7B), nor when i.c. puncture was performed at 2

days after i.p. injection of CFSE (mode II, Figure S7B), even

though simultaneous CFSE i.p. injection and i.c. puncture (mode

I, Figure S7B) can label intracranial MNCs weakly. This indicates

that CFSE is either degraded or excreted within 48 hours.

We then analyzed the intracranial MNCs isolated from JEV-

infected Stat12/2 mice (Figure 4B). We found that approximately

56104 and 1.56103 CD45+ cells were found in Percoll-gradient

purified MNCs from mice treated with isotype and anti-CLEC5A

mAb, respectively. Moreover, anti-CLEC5A mAb was able to

suppress the infiltration of CD11b+CD45hi cells (R1) into CNS, as

well as the proliferation of CD11b+CD45low cells (R2) after JEV

infection (upper row, Figure 4B). It is interesting to note that all the

CD11b+CD45low cells are CFSE negative, while most of the

CD11b+CD45hi cells are CFSE positive (lower row, Figure 4B).

These results suggested that the CD11b+CD11c2CD45hi popula-

tion (R1) are the infiltrating inflammatory myeloid cells from

peripheral blood, while the CD11b+CD11c2CD45low (R2) are the

resident microglia.

It has been demonstrated that CD45+CD11b+Ly6Chi cells have

properties of inflammatory monocytes [27], and CLE-

C5A+CD11b+Gr1+ cells are responsible for DV-induced septic

shock in ConA-primed mice [28], thus we further characterized

CD45+ populations by detecting the expression of CLEC5A and

Gr1 (comprising Ly6C and Ly6G). We found that all the

CD45hiCD11b+ population expresses Ly6C, while 15% of the

CD45hiCD11b+ population also expresses Ly6G (Figure 4C).

Moreover, CLEC5A is highly expressed in CD45hiCD11b+

infiltrating inflammatory myeloid cells (45%), while only 5% of

CD45lowCD11b+ cells express CLEC5A (Figure 4D). This

observation suggests that the majority of the infiltrating inflam-

matory cells are CD45hiCD11b+Ly6C+CLEC5A+, while periph-

eral administration of anti-CLEC5A mAb efficiently reduces the

numbers of inflammatory myeloid cells and suppresses the

proliferation of resident macrophages in the CNS (R2).

Blockade of CLEC5A attenuates CNS inflammation
To determine whether anti-CLEC5A mAb can suppress brain

inflammation, viral load was measured in the sera and tissue

extracts collected from mice at day 3 and day 5–7 post JEV

infection. Short term viremia was observed at day 3 post infection,

with all the viruses being cleared from peripheral blood at day 5–7

post infection (Figure 5A). In contrast, JEV titers in spleen and

brain were maintained at a high level from day 3 to day 7 post

infection. Anti-CLEC5A mAb reduced viral load in the brain at

day 5–7 (p = 0.009) but was ineffective in spleen (Figure 5A),

correlating with reduced NS3 expression in the brain at day 5 post

infection (Figure 5B). While JEV infection increased the numbers

of MNCs in brain (from 0.8–16104 to 1–26105/brain), anti-

CLEC5A mAb reduced the numbers of MNCs (2–36104/brain)

and NS3-bearing infiltrating myeloid cells (R1) and microglia (R2)

(Figure 5C). To further confirm the replication of JEV in R1 and

R2 populations, reverse-transcription PCR was used to quantitate

the JEV copy numbers in each population after sorting by FACS

(Figure 5D). As shown in Figure 5D, inflammatory myeloid cells

(R1) bear higher copies of viral RNA than resident microglia (R2).

This result suggests that anti-CLEC5A mAb is able to reduce

neuroinflammation by suppressing the infiltration of JEV-positive

myeloid inflammatory cells into CNS.

We also found that JEV induced the release of TNF-a, IL-6,

MCP-1 and IL-18 into the peripheral blood and CSF at day 5–7

post infection, whereas anti-CLEC5A mAb caused significant

suppression of cytokine levels (Figure 5E&F). Since TNF-a and IL-

18 are responsible for the cytotoxic and inflammatory responses in

a variety of neuropathological conditions [12,19,29,30], and

MCP-1 is a potent chemoattractant for monocytes and dendritic

cells [31], reduced cytokine levels in the CNS following anti-

CLEC5A mAb treatment would be expected to limit neuronal

damage. We found that the populations of TNF-a+ (Figure 5G,

upper panel) and IL-6+ (data not shown) CD11b+/F4/80+ cells

(infiltrated monocytes and resident microglia), as well as IL-6+

(Figure 5G, lower panel) and TNF-a+ (data not shown) CD11b+/

CD45+ (R1 and R2) cells were also reduced in JEV-infected mice

following anti-CLEC5A mAb treatment at day 5–7 post infection.

Thus, even though peripheral administration of anti-CLEC5A

mAb is unable to inhibit viral replication, it can reduce viral load

and attenuate inflammation in the CNS via inhibition of cellular

infiltration and proinflammatory cytokine secretion.

Anti-CLEC5A mAb reduces neuron damage and reduces
astrocytosis

At day 5 post JEV infection, ischemic, shrunken and damaged

neurons and Purkinje cells were observed in the cortical region of

the cerebrum (Figure 6A, middle upper panel) and cerebellum

(Figure 6B, middle lower panel), respectively. The JEV-induced

pathological changes were inhibited by anti-CLEC5A mAb

(Figure 6A, right upper & lower panels). Moreover, JEV infection

caused astrocytosis, an abnormal increase in the number of

astrocytes due to the destruction of nearby neurons in the CNS, in

cerebrum and cerebellum as determined by glial fibrillary acidic

protein (GFAP) staining (Figure 6B). Upregulation of GFAP and

increased astrocyte proliferation in cerebrum (Figure 6B; middle

upper panel) and cerebellum (Figure 6B; middle lower panel) were

CD45+ mononuclear cells isolated from naı̈ve murine brain. (C) Viral antigen NS3 (red; cells counterstained with Hoechst (blue)) was detected in JEV-
infected microglia or mixed glia (m.o.i. = 5) in the presence of anti-CLEC5A mAb (clone: 3E3G4; 200 mg/ml, 1.3 mM) at 48 h post infection. Scale bars,
50 mm. (D) The kinetics of virus replication were unaffected by anti-CLEC5A mAb (3E3G4). Viral titers in culture supernatants were determined by
plaque assay. Data were collected from three independent experiments. (E) anti-CLEC5A mAb (clone: 3E3G4; 200 mg/ml, 1.3 mM) were incubated with
mixed glia or microglia before addition of JEV. Cytokine secretion from JEV-infected mixed glia and microglia was harvested and analyzed by ELISA at
48 h p.i.. (F) An immunocytochemical analysis (anti-tubulin b III isoform mAb) shows the morphology of JEV-infected neurons (m.o.i. = 5) in the
presence of anti-CLEC5A mAb or isotype matched control at 24 h post JEV infection. (G) An immunocytochemical analysis (anti-tubulin b III isoform
mAb) shows the morphology of neurons after incubation with UV-inactivated conditioned medium (CM) from JEV-infected mixed glia (UV-JEVCM)
(m.o.i. = 5), in the presence of isotype matched control (UV-isotype_JEVCM) or anti-CLEC5A mAb (UV-CLEC5A mAb_JEVCM) for 24 h. The morphology
of neurons was observed by immunocytochemical staining with anti-Tubulin b III isoform Ab (TU20), and visualized under a light microscope (Nikon).
Five fields of views were randomly photographed, and the numbers of live neurons were counted and represented as mean 6 s.e.m. (under each
picture) for three independent experiments. Significance compared to mock treatment was tested using a two-tailed Student’s t-test (Figure 2F). In
Figure 2G, the P,0.0001 indicates a significant difference in UV-MOCK CM vs. UV-JEVCM; P = 0.0007 indicates a significant difference in UV-Isotype
JEVCM vs. UV-CLEC5A mAb JEVCM.
doi:10.1371/journal.ppat.1002655.g002
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observed in mice treated with an isotype-matched control

antibody, while anti-CLEC5A mAb downregulated reactive

astrocytosis substantially (Figure 6B, right upper & lower panels).

Thus, peripheral administration of anti-CLEC5A not only

suppresses neuroinflammation, but also increases the survival of

neuronal and Purkinje cells.

Blockade of CLEC5A prevents JEV-induced lethality and
allows development of adaptive immunity against JEV

Investigation of the ability of anti-CLEC5A mAb to protect

Stat12/2 mice from JEV-induced lethality revealed that 50% of

Stat12/2 mice that succumbed to JEV infection died in the early

stages (6 days post infection), and all the mice died within 9 days

post infection. In contrast, administration of anti-CLEC5A mAb

from day 0 (150 mg/mouse on days 0, 2, 4, 6, and 8) protected

mice from early lethality (80% survival), and ,50% mice survived

for at least 16 days post infection (Figure 7A). We went on to

determine whether administration of anti-CLEC5A mAb inhibited

adaptive immunity against JEV. All the mice that survived JEV-

induced lethality were found to have sero-conversion from day 12

post infection (Figure 7B), suggesting that suppression of JEV-

induced inflammation by anti-CLEC5A mAb did not prevent

development of humoral immunity against the virus. This was

further confirmed by plaque reduction neutralization tests

(PRNT), where serum from surviving mice efficiently neutralized

JEV infection (Figure 7C). In addition, the proinflammatory

cytokine levels at day 7–9 post infection were much lower in the

sera of asymptomatic mice (Figure 7D). These mice also exhibited

JEV-specific T-cell responses; high levels of IFN-c were released

from JEV-challenged splenocytes, while IFN-c was almost

undetectable in cells from uninfected mice under the same

conditions (Figure 7E). It is interesting to note that virus was

cleared from the spleen and CNS at day 21 post infection in

surviving mice (Figure 7F), suggesting that the host can eradicate

JEV after anti-CLEC5A mAb treatment. Thus, blockade of

CLEC5A can suppress proinflammatory reactions without inter-

fering with the development of anti-JEV immunity, making

CLEC5A a promising target for the treatment of flaviviral

infections in the future.

Discussion

There is growing evidence that microglial cell activation

contributes to neuronal damage and neurodegenerative diseases

[32]. Following pathogen invasion, these cells play a role in the

clearance of cell debris from damaged tissue, but also secret

inflammatory cytokines, which are key mediators of the neurode-

generation associated with both acute and chronic CNS

pathologies [33]. Our observation that blockade of CLEC5A on

microglia attenuates the neuronal damage caused by the

supernatants from mixed glia culture in vitro further demonstrates

the contribution of microglia to JEV-induced neuronal death.

Moreover, peripheral administration of anti-CLEC5A mAb was

found to preserve BBB integrity, inhibit cellular infiltration into the

brain, and reduce neuronal death in vivo. This may be attributed

the fact that the anti-CLEC5A mAb can enter the CNS when the

permeability of BBB is increased during the acute stage of

infection, where intracranial anti-CLEC5A mAb can inhibit

microglia activation and attenuate neuroinflammation.

Although JEV can directly infect neurons and cause cell

damage, the soluble mediators from CLEC5A+-activated microg-

lia and infiltrating myeloid cells seem to be the major cause of

neuron damage (bystander neuronal damage), since the inhibition

of JEV-induced neuroinflammation by anti-CLEC5A mAb does

not arise from interactions with cells, such as astrocytes and

gangliocytes in the CNS, or from prevention of neuron damage

caused by direct JEV infection. Even though anti-CLEC5A mAb

has relatively mild inhibitory effects on cytokine release in JEV-

infected macrophages (Figure 1) and microglia (Figure 2), it can

inhibit the permeability change of BBB (Figure 3), reduce cell

infiltration into the CNS (Figure 3 & 4) and protect mice from

JEV-induced lethality. This may due to the blocking effect of anti-

CLEC5A mAb to inhibit the release of yet-discovered soluble

mediators which are critical to control BBB permeability and

neuronal death. The alternative is that anti-CLEC5A mAb can

inhibit the infiltration of CLEC5A+ MNCs which are pathogenic

to CNS, thus suppressing neuronal inflammation and reducing

lethality. The possibility of a direct effect on MNCs is supported by

the observation that DV can activate CLEC5A+ CD11b+Gr-1+

immature myeloid cells to induce shock in ConA-treated mice

[28]. Finally, anti-CLEC5A mAb may block the interaction of

CLEC5A+ cells with endogenous ligands to reduce neuroinflam-

mation. It has been shown that CLEC5A is critical for collagen-

induced autoimmune arthritis (CIA), and CLEC5A-deficient mice

are resistant to CIA. This observation suggests that the yet-

characterized CLEC5A endogenous ligand(s) is (are) able to

activate CLEC5A+ cells to induce inflammatory reactions [17].

Therefore, the peripheral administration of anti-CLEC5A mAb

may inhibit JEV-induced inflammation via blocking multiple

pathways.

It is interesting to note that anti-CLEC5A mAb is able to inhibit

the secretion of IL-18, which is one of the key factors responsible

for neuroinflammation and neurodegeneration [29]. IL-18

enhances caspase-1 expression and induces the production of

matrix metalloproteinase (MMPs) and other proinflammatory

cytokines such as TNF-a and IL-1b [34,35]. Upregulation of IL-

18 was detected in the sera and CNS of JEV-infected mice, thus

the potent protective effects of anti-CLEC5A mAb in JEV-induced

neuroinflammation can be attributed, at least in part, to inhibition

of IL-18 secretion in the periphery and in the CNS; i.e., CLEC5A

Figure 3. Effect of anti-CLEC5A mAb on dynamic changes in the BBB during JEV infection. (A) Stat12/2 mice were injected intravenously
with 99mTc-DTPA to enable brain SPECT/CT imaging, before (D0) or after JEV challenge (100 pfu/mouse), in the presence of anti-CLECA5 mAb (3E3G4)
or an isotype matched control. Antibody (150 mg/mouse) was administrated intraperitoneally on days 0, 2, 4, 6 and 8 to determine any protection
effects in reduction to BBB permeability. Image datasets were reconstructed using the ordered-subset expectation maximization algorithm with
standard-mode parameters. (B) The extent of BBB breakdown was calculated as the ratio of the mean counts/pixel in the region of the brain with the
greatest accumulation of radiotracer divided by the mean counts/pixel in the neck muscle (b/m ratio). (C) Changes in BBB permeability at day 7 post
JEV infection (100 pfu/mouse) were determined by Evans Blue assay. (D) Brains of JEV-infected mice (n = 5) with isotype control or anti-CLEC5A Ab
treatment were harvested at day 5 and day 9 post infection to analyze the expression of transcripts encoding tight junction proteins and adhesion
molecules by quantitative real-time PCR. For tight junction proteins, y-axis units represent the expression level of each target gene relative to mock
control after internal control normalization; the expression level of adhesion molecules is displayed as fold increase relative to mock control. Two-
tailed Student’s t-tests were performed. (E) H&E staining of murine cerebral cortex at day 5 after JEV infection revealed the inhibitory effect of anti-
CLEC5A mAb on perivascular cuffing. Scale bars, 200 mm. Five random fields of views in medium power field (original magnification (OM)6200) were
photographed, and the numbers of foci and vessel cross sections in each sample were counted, summed up and represented as mean 6 s.e.m.
(under each picture) of four independent experiments.
doi:10.1371/journal.ppat.1002655.g003
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Figure 4. Effect of anti-CLEC5A mAb on recruitment of immune cells into the CNS during JEV-infection. (A) Flow cytometry analysis of
mononuclear cells (MNCs) isolated from JEV-infected murine brain tissue with isotype control or anti-CLEC5A mAb treatment at day 5 post infection;
cell populations were determined by staining specific cell surface markers. (B) MNCs were further characterized by determining expression levels of
CD45 in the CD11b+CD11c2 population to distinguish inflammatory myeloid cells from peripheral (R1, CD45hi) and resident microglia (R2, CD45low),
respectively (upper panel). Recruitment of CD11b+CD45+ cells into brain of JEV-infected mice was tracked by in vivo labeling of blood cells with
fluorescent dye CFSE. (C) Analysis of the CD45+CD11b+ population for Ly6C and Ly6G expression revealed the major Ly6C+ and minor Ly6G+

populations in CD11b+CD45hi peripheral inflammatory myeloid cells. The percentages indicate the specific region in CD11b+-gated cells (the
collected CD11b+ cells in the isotype group and CLEC5A mAb treatment group are approximately 25,000 cells and 1,000 cells, respectively.) Three
independent experiments with three mice per group were performed and representative FACS plots are shown. (D) CLEC5A expression in peripheral
inflammatory myeloid cells (R1-gated; CD11c2CD11b+CD45hi) and residential microglia (R2-gated; CD11c2CD11b+CD45low) isolated from JEV-infected
murine brain.
doi:10.1371/journal.ppat.1002655.g004
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is a critical to regulator of neuroinflammation during JEV

infection.

After anti-CLEC5A mAb treatment, approximately 50% of

JEV-infected Stat12/2 mice became asymptomatic and survived

for at least 21 days post infection, while the others remained weak

and died gradually within 12 days. While the titers of the

neutralizing antibody were similar in the weak and asymptomatic

groups (Figure 7C), the proinflammatory cytokine levels at 7–9

days post infection were much lower in the sera of asymptomatic

mice (Figure 7D). This indicates that JEV-induced neuroinflam-

mation is the key parameter in predicting the outcome of JEV

infection [19], and that effective suppression of neuroinflammation

in the acute stage is critical to increasing survival and preventing

neurological sequelae. This observation also suggests that

administration of anti-JEV antiserum to patients during the acute

stage of infection may be futile, and this argument is supported by

the observation that injection of a neutralizing cross-reactive mAb

against JEV E protein causes early death in JEV-infected mice

[36]. Even though the direct relevance of this Stat12/2 mouse

model in relation to human infection with JEV needs to be further

confirmed, data for in vivo protection of CLEC5A mAbs still shed

light on its therapeutic potential for blocking neuroinflammation.

Previous studies have shown that CLEC5A can interact with all

the four serotypes of DV [15,37], and here we have demonstrated

that CLEC5A also interacts with JEV (Figure 1A), but not with

other viruses such as influenza virus and EV-71 (Figure S8). In

addition, anti-CLEC5A mAb can inhibit inflammatory reactions

in human macrophages in response to the structurally related West

Nile virus (WNV) (Figure S9). Thus, CLEC5A may play a critical

role in the pathogenesis of all the flaviviral infections.

This study has clearly demonstrated that infiltration of

inflammatory cells into CNS correlates with increased BBB

permeability, suggesting that BBB integrity has a critical role in

limiting JEV-induced CNS inflammation. CLEC5A+ microglia

and infiltrating myeloid cells appear to be essential for JEV-

induced inflammation of the CNS and neurological sequelae, and

anti-CLEC5A mAb efficiently suppressed the release of proin-

flammatory cytokines from microglia and macrophages, restored

BBB integrity and increased survival after JEV infection in mice.

The critical role of CLEC5A in JEV infection was further

confirmed by using Stat12/2Clec5a2/2 mice, which are resistant to

JEV challenge (Figure S10). Together with our previous

observations that anti-CLEC5A mAb is able to prevent DV-

induced systemic vascular permeability and protect mice against

DV-induced lethal diseases [15]_ENREF_5, the data presented

here indicate that CLEC5A plays critical roles in the pathogenesis

of flaviviral infections via regulating vascular permeability and

suppressing myeloid cell activation.

Like most members of C-type lectin, their exogenous and

endogenous ligands are not identified yet. Since crystal structure of

CLEC5A reveals that CLEC5A forms homodimer on cell surface

[37], thus the binding of JEV to CLEC5A.Fc may similar to JEV

to CLEC5A on cell surface, though cells may also expressed other

C-type lectin to increase binding affinity. Recently, we have

developed an innate immunity receptor-based ELISA (IIR-EIA) to

determine the polysaccharide profiling [38] and dengue receptor

[15] based on C-type lectin.Fc fusion proteins, thus the

identification of CLEC5A as a JEV recognition receptor further

suggests that IIR-EIA is an useful tool to identify lectin ligands in

the future.

Materials and Methods

Ethics statement
Human monocytes were obtained from healthy donors at the

Taipei Blood Center of the Taiwan Blood Services Foundation,

under a protocol (PM-99-TP-075) approved by the IRB of the

Clinical Center of the Department of Health, Taiwan. Written

informed consent was obtained from all donors.

All animal studies were performed according to the animal

study protocol approved by the Animal Experimental Committee

of National Yang-Ming University, and in accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the Taiwanese Council of Agriculture.

The animal protocol was approved by the Institutional Animal

Care and Use Committee (IACUC) of National Yang-Ming

University (IACUC #1000519). All surgery was performed under

sodium pentobarbital anesthesia, and every effort was made to

minimize suffering.

Reagents
Chemical reagents were purchased from Sigma, culture media/

supplements from Invitrogen GIBCO and growth factors from

R&D Systems. Anti-CD14 microbeads were from Miltenyi Biotec

GmbH, while antibodies for FACS analysis were from BD

Pharmingen. Other antibodies were from Upstate Biotechnology

(anti-phosphotyrosine, clone 4G10), Santa Cruz (anti-human

DAP12 & anti-F4/80), Millipore (anti-tubulin b III isoform (TU-

20) mAb), and Cell Signaling (anti-glial fibrillary acidic protein).

Virus
The neurovirulent (RP-9) strain of Japanese encephalitis virus

(JEV), used for both in vitro and in vivo studies, was generated

from a Taiwanese isolate, NT109 [39]. Aedes albopictus C6/36 cells

and the baby hamster kidney fibroblast cell line BHK-21 were

used for viral propagation and viral titer determination, respec-

tively. Viral particles were purified from JEV-infected C6/36 cell

supernatant by sucrose gradient centrifugation (1/10 volume of

the 35% (v/v) sucrose buffer (10 mM Tris-HCL pH 7.5, 100 mM

NaCl and 1 mM EDTA), followed by ultra-centrifuging at

32,000 rpm for 3.5 hr, and resuspending the viral pellet in

0.5 ml PBS after removing the supernatant thoroughly.

Figure 5. Anti-CLEC5A mAb reduces viral load in the CNS and attenuates CNS inflammation. (A) Viral titer was determined by plaque
assay for sera and tissue homogenates from JEV infected mice with or without anti-CLEC5A mAb treatment (two-tailed Student’s t-tests). (B) The
extent of NS3 expression in the cortex was diminished after peripheral administration of anti-CLEC5A mAb at day 5 post JEV infection. Scale bars,
50 mm. Five random fields of views in medium power field (original magnification (OM)6200) were photographed, and the numbers of NS3+ cells in
each sample were counted, summed up and represented as mean 6 s.e.m. (under each picture) of four independent experiments. (C) Numbers of
NS3+ leukocytes (CD45hiCD11b+ and CD45midCD11b+) in JEV-infected brain were significantly reduced by administration of anti-CLEC5A mAb at day 5
post JEV infection. (D) Quantification of viral copies in CD45hiCD11b+ (R1) and CD45lowCD11b+ (R2) cells sorted from the brain of JEV-infected mice.
The average of total cell numbers in R1 and R2 were approximately 56104 and 26104, respectively, in the isotype treated group. Q-PCR assay was
performed on total RNA from each population and normalized with its respective internal control. Data were collected from four independent
experiments. Two-tailed Student’s t-tests were performed. Cytokines levels in the sera (E) and CSF (F) were measured by ELISA at day 5–7 post JEV
infection. The effects of CLEC5A mAb (3E3G4) and isotype control were compared using two-tailed Student’s t-tests. (G) Intracellular TNF-a and IL-6
were detected in CD11b+ gated F4/80+ and CD45+ cells isolated from JEV-infected brain by flow cytometry.
doi:10.1371/journal.ppat.1002655.g005
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CLEC5A-virus interaction
Human and murine pcDNA3.1 CLEC5A.Fc DNA constructs

were transfected into 293 FreeStyle cells (Invitrogen), and the

recombinant proteins were purified with Protein A beads. To

determine the CLEC5A-JEV interaction by ELISA, sucrose-

cushion-purified JEV particles (56106 pfu) were coated on

microtiter plates, and bound CLEC5A.Fc fusion proteins

(0.05 mg/mL; 100 mL/well) were detected with HRP-conjugated

anti-human IgG (Fc) (Jackson Immunoresearch) using 3,39,5,59-

tetramethylbenzidine (TMB) (BD Pharmingen) as substrate. For

Figure 6. Anti-CLEC5A mAb rescues JEV-induced neuronal damage. (A): JEV-induced pathological changes were examined by H&E staining.
Arrowheads indicate dysmrophic neurons in the cerebral cortex (upper panel) and damaged Purkinje cells in the cerebellum (lower panel), scale bars,
200 mm. (B) Neuronal damage induced-astrogliosis was characterized by GFAP staining, scale bars, 50 mm. For (A) and (B), tissues were harvested at
day 5 post JEV infection. Five random fields of views in medium power field (original magnification (OM)6200) were photographed, and the numbers
of dysmorphic neurons or GFAP+ cells in cerebral cortex and cerebellum in each sample were counted, summed up and represented as mean 6
s.e.m. (under each picture) of four independent experiments.
doi:10.1371/journal.ppat.1002655.g006
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Figure 7. Anti-CLEC5A mAb protects mice from JEV-induced lethality. (A) Survival of Stat12/2 mice (8–10 weeks) was monitored for 16 days
after intraperitoneal inoculation of JEV (100 pfu/mice); data were collected from four independent experiments and are shown as Kaplan–Meier
survival curves with log rank test; n = 20 for each group. (B) Titers of anti-JEV specific IgM and IgG antibodies in murine sera were determined by

CLEC5A Regulates JEV-Induced Neuroinflammation

PLoS Pathogens | www.plospathogens.org 13 April 2012 | Volume 8 | Issue 4 | e1002655



immunoprecipitation, 5 mg of CLEC5A.Fc fusion protein was

incubated with purified JEV particles (56106 pfu) at 4uC for 4 h

and then with 10 m1 of protein A–Sepharose beads for 2 h. The

immunocomplex was washed gently before fractionation on SDS–

PAGE, followed by transfer onto a nitrocellulose membrane and

probing with a mouse mAb specific for JEV envelope protein (E)

[39]. Immunoblots were developed with HRP-conjugated anti-

mouse IgG (Fab)92 (ab5887, Abcam), followed by enhanced

chemiluminescence detection reagents (Amersham).

Detection of DAP12 by immunoprecipitation and
immunoblotting

Macrophages (16106) were stimulated with JEV (m.o.i. = 2) for

2 h, followed by resuspension in lysis buffer (50 mM Tris-HCl

pH 7.5, 150 mM NaCl, 1% (v/v) Triton X-100, 0.1% (w/v) SDS,

5 mM EDTA, 10 mM NaF, 1 mM sodium orthovanadate, and

proteinase inhibitor cocktail (Roche)). Total cell extracts (100 mg)

were incubated with rabbit anti-DAP12 polyclonal antibody at

4uC for 4 h and then with Protein A–Sepharose for 2 h. The

immunocomplex was washed and fractionated on SDS–PAGE,

followed by transfer onto a nitrocellulose membrane and probing

with anti-phosphotyrosine antibody. Immunoblots were developed

with HRP-conjugated anti-mouse IgG (Cat. AP181P; Chemicon)

followed by enhanced chemiluminescence detection reagents (

Immobilon Western; Millipore). To determine the total amount of

DAP12 present on the blot, the membrane was stripped with Re-

Blot Plus Strong solution (Cat. 2504; Chemicon), and probed with

rabbit anti-DAP12 antibody.

Preparation of macrophages
For human macrophage preparation, peripheral blood mono-

nuclear cells (PBMCs) were isolated from the whole blood of

healthy human donors by standard density-gradient centrifugation

with Ficoll-Paque (Amersham Biosciences). After centrifugation

the buffy coat, containing leukocytes (PBMC) and platelets, was

further washed with PBS, and CD14+ cells were purified using the

VarioMACS technique with anti-CD14 microbeads (Miltenyi

Biotec GmbH). Cells were then cultured in complete RPMI 1640

medium supplemented with 10 ng/ml human M-CSF (R&D

Systems) for 6 days [15]. For preparation of murine bone marrow-

derived macrophages, bone marrow cells were isolated from

femurs and tibias and cultured in RPMI 1640 complete medium

supplemented with 10% (v/v) fetal calf serum (FCS) and 10 ng /

ml of recombinant mouse M-CSF (R&D Systems) for 6–8 days. At

day 7, the expression of F4/80 (murine macrophage marker) was

examined by fluorescence-activated cell sorting; .90% of cells

were F4/80+ under these culture conditions.

Preparation of primary murine neuron and glial cultures
Primary neuron, mixed glia and microglia cultures were

prepared from the cerebral cortexes of 1-day-old wild-type or

Stat12/2 mice (C57BL/6 background) as previously described

[11,40]. In brief, pooled dissected cortexes were digested in papain

solution (1.5 mM CaCl2, 0.5 mM EDTA, 0.6 mg/ml papain,

0.05 mg/ml DNase I, and 0.2 mg/ml cysteine in Hanks’ balanced

salt solution) at 37uC for 20 min to dissociate the cells. After

centrifugation at 2006g for 5 min, cells were plated on poly-L-

lysine coated (20 mg/ml) dishes. For cortical neuron cultures, cells

were plated in minimal essential medium supplemented with 10%

(v/v) FBS and 10% (v/v) horse serum. One day after seeding, the

culture medium was replaced with neurobasal medium supple-

mented with B27, followed by addition of cytosine arabinoside

(10 mM) on the third and fourth days to inhibit non-neuronal cell

division in vitro. The neuron cultures were used for subsequent

experiments after 10–12 days. For mixed glia culture, cells were

maintained in DMEM/F12 supplemented with 10% (v/v) FCS;

medium was replenished 4 days after plating and changed every 3

days. Cells usually reached confluence within 12–14 days after

plating. For microglia cultures, the confluent mixed glial cells were

incubated with mild trypsin solution (0.25% (w/v) trypsin, 1 mM

EDTA) diluted 1:4 in DMEM/F12 for 30 min at 37uC to detach

the upper layer of astrocytes; 10% (v/v) FCS-containing DMEM/

F12 medium was then added to inactivate trypsin and the

detached astrocytes were aspirated from the mixed glia cultures.

The remaining cells (i.e., microglia) were harvested by incubation

with 0.25% (w/v) trypsin solution with vigorous pipetting for

5 min and then were resuspended in DMEM-F12 with 10% (v/v)

FCS for at least 2 weeks. Cell identity was determined by

immunocytochemical staining using antibodies against tubulin b
III isoform, (TU20; Millipore) for neurons, glial fibrillary acidic

protein (GFAP; Cell Signaling) for astrocytes, and F4/80 for

microglia (Santa Cruz Biotechnology). Mixed glial cultures

contained ,85% astrocytes and ,10% microglia. Neurons and

microglia were .95% pure (Figure S5).

Infection of cells with virus
Human CD14+-monocyte derived macrophages (MoM), mu-

rine bone-marrow derived macrophages (BMoM), murine mixed

glia and microglial cells were mock-infected or infected with JEV

at a multiplicity of infection 5 (m.o.i. = 5). Culture supernatants

were harvested to determine virus titer and cytokine secretion by

plaque assay and ELISA (R&D Systems), respectively. Condi-

tioned media (CM) from mock or JEV-infected mixed glia were

collected and UV-irradiated (254 nm) to inactivate virus. UV-

irradiated CM (UV-JEVCM) was mixed with fresh neurobasal

medium supplemented with B27, before incubation with neuron

cells prior to cytotoxicity assays.

Generation of antagonistic anti-CLEC5A mAbs
Breeder mice (BALB/c strain) were maintained in the standard

animal facility of the National Yang-Ming University. For the

production of mAbs, mice were immunized with purified

recombinant CLEC5A.Fc fusion protein (five doses of 50 mg per

mouse). Lymphocytes from the spleens of immunized mice were

fused with mouse myeloma NS-1 cells in the presence of 50% (v/v)

polyethylene glycol (PEG1450; Sigma). Fused cells were cultured

in HAT selection medium and the medium was refreshed after one

week. About 2 weeks after fusion, culture supernatants were

screened by ELISA to identify the candidate clones for further

analysis by limiting dilution. Anti-CLEC5A mAbs were selected by

ELISA-based differential screening, and only those recognizing

recombinant CLEC5A.Fc, but not human IgG1, were regarded as

ELISA (C) Pooled sera from surviving mice were serially diluted and analyzed using a for the plaque reduction neutralization test (PRNT); data were
collected from four independents experiments with n = 5 for each group. (D) INF-c secretion from total splenocytes of surviving mice (recovery, day
21 after JEV infection) after incubation with JEV and UV-JEV for 72 h, but not from mock infected mice. (E) The ability of IFN-c-secreting T-cell was
verified by immobilized anti-CD3 mAb to activate T cells in both mock and JEV-infected (recovery) mice. (F) Viral titers in spleen and brain isolated
from surviving mice after JEV challenge were determined by plaque assay.
doi:10.1371/journal.ppat.1002655.g007
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positive clones. A similar strategy was used to generate anti-murine

(m) CLEC5A mAbs. To select antagonistic mAbs against human

CLEC5A and murine CLEC5A, mAbs were incubated with

human macrophages and murine bone marrow-derived macro-

phages (Stat12/2), respectively, in 96-well plates (66104 cells per

well) for 30 min at 37uC, before the addition of JEV (m.o.i. = 5)

and incubation at 37uC for 2 h. After washing, cells were

incubated for a further 36 h before harvesting the supernatants

to measure TNF-a production by ELISA. mAbs capable of

inhibiting cytokine release from JEV-infected macrophages were

used as antagonistic antibodies for in vitro and in vivo assays.

Detection of JEV replication in macrophages and
neuronal cells

To detect JEV replication in macrophages, cells were incubated

with JEV (m.o.i. = 5) for 1 h, then fixed with 1% (v/v)

paraformaldehyde and permeabilized with 0.1% (w/v) saponin,

followed by addition of anti-NS3 mAb or isotype-matched control

(mIgG1; Sigma) and then FITC-conjugated goat F(ab)9 anti-

mouse IgG. Emitted fluorescence was detected by flow cytometry

(FACSCalibur platform with CellQuest software (Becton Dick-

inson)). To determine JEV replication, murine neuronal cells were

fixed with 4% (v/v) paraformaldehyde, permeabilized with 0.5%

(v/v) Triton X-100 in PBS for 10 min and incubated with blocking

buffer (10% (w/v) BSA in PBS) before addition of anti-NS3 mAb

(20 mg/ml). After washing, cells were incubated with Cy3-

conjugated donkey anti-mouse IgG (Jackson Immuno) and

Hochest 33342 to detect NS3 and nuclei, respectively. Cover

slips were mounted and observed using an FV-1000 laser scanning

microscope (Olympus).

Immunocytochemical analysis
Cells cultured on coverslips were washed twice with PBS,

followed by incubation with 4% (v/v) paraformaldehyde for 2 h,

and then permeabilized with 0.5% (v/v) Triton X-100 for 15 min.

After washing with PBS, cells were subjected to immunocyto-

chemical staining with HISTOMOUSE-SP KIT (Zymed) accord-

ing to the supplier’s instructions. Briefly, cells were incubated with

primary antibodies (including anti-TU20 (1:300), anti-GFAP

(1:300) or anti-F4/80 (1:500) antibodies for 2 h at room

temperature, followed by incubation with biotinylated secondary

antibody and peroxidase-conjugated streptavidin. Cells were then

incubated with chromogen, and counterstained with hematoxylin

before observation under a light microscope (Nikon).

H&E and immunohistochemical staining
Mice were transcardially perfused with PBS and brains were

removed and placed in 4% (w/v) paraformaldehyde overnight at

4uC, followed by embedding in paraffin wax and processing to

generate 5-micron sagittal sections for H&E staining. Before

immunohistochemical (IHC) staining, paraffin sections were

subjected to antigen retrieval at 100uC for 20 min in 10 mM

citric acid (pH 6.0), and endogenous peroxidase activity was

quenched with 3% (v/v) H2O2 for 15 min at room temperature.

Immunohistochemical staining was performed using a HISTO-

MOUSE-SP KIT (AEC) (Zymed) together with anti-GFAP (1:300)

Ab or mouse JEV-NS3 ascites fluid (1:1000). All images were

digitized with Nikon scientific imaging software.

Administration of antibody to JEV-infected mice
Adult C57BL/6- Stat12/2 mice were used in all experimental

procedures. Groups of 8-week-old adult mice were inoculated

intraperitoneally with JEV (strain RP-9; 100 pfu per mouse) [22].

Anti-CLEC5A mAb or isotype control (150 mg per mouse) were

administrated intraperitoneally (i.p.) on days 0, 2, 4, 6 and 8 after

JEV infection, and mice were monitored daily for 16 days to assess

morbidity and mortality. All experiments were performed

according to the animal study protocol approved by the Animal

Experimental Committee of Yang-Ming University.

Isolation of mononuclear cells from the CNS and flow
cytometry analysis

Mononuclear cells (MNCs) were isolated from the brains of

mock- or JEV-infected mice as previously described [41]. Briefly,

PBS-perfused brains were homogenized in HBSS containing 1%

(v/v) FCS and minced with a scalpel before being passed through

an 18-gauge needle. Homogenates were suspended in 37% (w/v)

Percale (4 ml per brain) and overlaid onto 70% (w/v) Percoll

(4 ml) in 15 mL conical tubes; 30% (w/v) Percoll (4 ml) and HBSS

(2 ml) were added prior to centrifugation at 200 g for 40 min at

20uC. After centrifugation, cells were harvested and washed with

PBS to remove residual Percoll. The isolated MNCs were

resuspended in FACS buffer, followed by incubation with

fluorochrome–conjugated anti-CD4, CD8, B220, CD11b,

CD45, F4/80 and CLEC5A mAbs. For intracellular cytokine

staining, cells were fixed with 1% (v/v) paraformaldehyde and

permeabilized with 0.1% (w/v) saponin, before incubation with

specific antibodies. Fluorescence was detected using a FACSCa-

libur platform with CellQuest software (Becton Dickinson).

Blood-brain-barrier (BBB) permeability assay
BBB integrity was evaluated using the Evans blue assay [24].

Mice were injected intravenously with 100 ml of 1% (w/v) Evans

blue in PBS. One hour later, mice were sacrificed and

transcardially perfused with 20 ml of normal saline. Brains were

removed and photographed.

Quantitative real-time PCR analysis
Total RNA was extracted from whole mouse brains using an

RNeasy extraction kit (Qiagen) and complementary DNA (cDNA)

was synthesized by using RevertAid First Strand cDNA Synthesis

Kit (Fermentas, Life Science) according the vendor’s suggestions.

Quantitative real-time PCR analysis was performed using the

LightCycler System SW 3.5.3 (Roche Applied Science) (Fermen-

tas, Life Science), and the level of mRNA expression level was

normalized with b-2 microglobulin. Primer sequences for tight

junction proteins and adhesion molecule: ZO-1, Occludin,

Clauidn-1, Clauidn-5, JAM and ICAM-1 were synthesized as

described previously [24,42]. To quantify the viral copy numbers,

a standard curve was generated using pCR3.1/JEV-39UTR

plasmid as template (ranging from 32 pg/L to 32 mg/L; the

dilution range is equivalent to the copy number 1610 to 16107

copies). JEV specific primer: forward 59-AAGTTGAAGGAC-

CAACG-39 (nucleotide 10603–10619); reverse 59-GCATG-

TTGTTGTTTCCAC-39 (nucleotide 10789–10772) [43].

99mTc-DTPA brain SPECT/CT imaging
A FLEX Triumph preclinical imaging system (Gamma Medica-

Ideas, Inc.) was used for the small-animal SPECT/CT scan

acquisition. Each mouse was injected intravenously with

18.5 MBq (0.5 mCi)/0.5 cm3 of 99mTc-DTPA and images were

acquired 30 min after injection. The mice were scanned first by

CT for anatomic coregistration and then by a dynamic SPECT

sequence comprising 8 frames. The images were viewed and

quantified using AMIDE software (free software provided by

SourceForge). A quantitative index of BBB breakdown was
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defined as the ratio of the mean counts/pixel in the region with

disruption of BBB compared with the mean counts/pixel in the

neck muscle.

Plaque reduction neutralization test (PRNT)
To determine the titers of anti-JEV IgM and IgG, serial dilution

of JEV-infected mouse sera were added to immobilized JEV

particles (46106 pfu) on microtiter plates, and the bound anti-JEV

specific antibodies were detected with HRP-conjugated anti-

mouse IgM or anti-mouse IgG secondary antibody using TMB as

substrate. The neutralizing activities of mouse sera containing

JEV-specific antibodies were determined using a plaque reduction

neutralization test. Briefly, 100 pfu of JEV were incubated with

serial dilutions of serum samples (20-fold to 200-fold) at 37uC for

1 h, followed by overlaying the virus-serum complex onto BHK21

monolayer. After 1-h adsorption, the virus was removed and

BHK21 cells were overlaid with 1% (w/v) agarose in RPMI-1640

and incubated at 37uC for 72 h. Cells were then fixed with 10%

(w/v) formaldehyde and stained with crystal violet. The neutral-

ization effect was expressed as the percentage reduction in plaque

numbers in the presence of an anti-JEV serum compared to

plaque numbers following infection with JEV (100 pfu) alone [39].

JEV-specific T-cell responses
Total splenocytes from the mock-infected mice and the mice

that recovered from JEV infection (day 21 after JEV infection)

were isolated and seeded in 96-well (56105 /well). JEV (PFU = 10

and 30) and UV-inactivated JEV were incubated with total

splenocytes for 72 hr, followed by collecting supernatants for IFN-

c measurement. The ability of IFN-c-secreting T cells was verified

by immobilized anti-CD3 mAb to activate T cells.

Generation of CLEC5A KO mice
Mouse Clec5a genomic DNA, 30.7 kb in length (Ensembl

Genomics database) containing exons 1–7, was isolated from a

129/Sv genomic DNA BAC library (CITB mouse; Invitrogen, San

Diego, CA). In order to generate a targeting vector, the Clec5a

genomic DNA fragment was inserted into the pL253 plasmid

containing a neomycin resistance gene allowing antibiotic selection

in ES cells. In the targeting vector, exons 3 to 5 of Clec5a were

flanked by loxP sequences, which could then be excised upon

introduction of a Cre recombinase plasmid into the ES cells.

Excision of exons 3–5 was confirmed by Southern blot analysis of

ES cell genomic DNA, and this was followed by blastocyst injection

to generate Clec5a chimeric mice. Genotyping was performed by

PCR using the following primers: CU, 5-CCCCAGCAT-

CTTTGTTGTTT-3; FD, 5-CCAGCTAGTGGCTCAGTTCC3;

and JD, 5-TTTTCTTCCCCATCCTCTGA-3, which generated a

687-bp WT and a 798-bp knockout (KO) product, respectively. To

obtain Stat1and Clec5a double-KO mice, we crossed Clec5a KO mice

with Stat1 KO mice [44]. Interbreeding of Clec5a+/2Stat1+/2 mice

(F1) generated Clec5a+/+Stat12/2 as well as Clec5a2/2Stat12/2

double KO mice, both of which were used in this study. (Figure S4)

In situ labeling of peripheral blood cells with CFSE
The in situ labeling method was modified from that previously

described [45]. The labeling solution (30 ml of 20 of mM CFSE

(Molecular Probes, Eugene, OR)) was mixed thoroughly with

140 ml of 100% ethyl alcohol and 250 ml pyogen-free PBS to avoid

precipitation. Typically, 8 ml of labeling was injected per gram of

mouse body weight (approximately 3 mg CFSE/g) up to a

maximum of 300 ml of solution. To track leukocyte migration,

mice were injected intraperitoneally with CFSE solution on day 2

after JEV infection. Blood samples were collected from CFSE-

labeled mice to assess the labeling efficiency, and the MNCs in

brain were also harvested from perfused mice to analyze and

distinguish the infiltrating and resident cells in brain on day 5 after

JEV infection. The experimental procedures and labeling control

are shown in supplementary Fig. 6 & 7.

Statistical analysis
Standard errors of the mean (s.e.m.) were calculated and data

was analyzed using unpaired Student’s t-tests. Survival curve

comparisons were performed using log-rank tests (Prism software).

Supporting Information

Figure S1 JEV interacts with CLEC5A and induces
DAP12 phosphorylation via CLEC5A. (A) Expression of

human CLEC5A and an alternatively spliced variant (CLE-

C5A_S) in human microglial cell line (CHME3), monocytic cell

line (U937) and CD14+-monocyte derived macrophages (MoM)

was detected by RT-PCR. (B) Schematic representation of human

and murine CLEC5A. Sequence analysis of PCR products

revealed that human CLEC5A_S lacks 23 amino acids in the

stalk region (aa 48–70), while mCLEC5A_S lacks 25 amino acids

(aa 28–52) located in stalk regions due to alternative splicing. (C)

JEV–CLEC5A.Fc complexes were immunoprecipitated with

protein A–Sepharose and detected by anti-JEV envelope protein

mAb. (D) JEV-induced DAP12 phosphorylation (1 h post

infection) in human macrophages was determined by western

blotting. (E) Effects of shRNAs (pLL3.7 backbone) on inhibition of

JEV-mediated DAP12 phosphorylation were determined by

western blotting (h.p.i., hours post infection). The pLL3.7/

CLEC4L was used as a control shRNA.

(TIF)

Figure S2 JEV replicates in macrophages and induces
cytokine release. (A) Human MoM and HTB11, (a human

neuroblastoma cell line) infected with DV or JEV (m.o.i. = 5) were

subjected to flow cytometry analysis at 48 h post infection using an

antibody to nonstructural protein 3 (NS3) to detect viral antigens.

(B) Murine bone marrow-derived macrophages (BMDM) from wild

type and Stat12/2 mice were infected with JEV (m.o.i. = 5), followed

by anti JEV-NS3 mAb staining and FACS analysis. (C) BMDM

from Stat12/2 mice were infected with DV JEV (m.o.i. = 5) in the

absence or presence of different doses of anti-CLEC5A mAbs, and

supernatants were harvested at 48 h post infection for cytokine

determination by ELISA. Data were collected and expressed as

mean 6 s.e.m. from at least three independent experiments. Two-

tailed Student’s t-tests were performed.

(TIF)

Figure S3 Targeting strategy for generation of CLEC5A
KO mice and CLEC5A and STAT1 double KO mice. (A)

Targeting vector for generation of Clec5a2/2 mice. A neomycin

resistance gene cassette (NEO) was introduced into targeting

vector for positive selection; and two loxP sequences (green

triangles) flanking exons 3 to 5 allow the removal of CLEC5A

exon 3–5 using a Cre-loxP excision system. Locations of PCR

primers used for genotyping are shown under targeting vector. (B)

Genotyping by PCR using CU+FD and CU+JD primer sets for

wild type and Clec5a2/2 mouse, respectively. (C) Double KO mice

were produced by mating Clec5a+/+ Stat12/2 and Clec5a2/2

Stat1+/+ mice, and the F1 offspring were further interbred to

generate F2 offspring. (D) Determination of CLEC5A and STAT1

expression in peripheral blood cells by flow cytometry.

(TIF)
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Figure S4 Flow chart for isolation of glia cells and
mixed glia fractions from cerebral cortices. Neurons and

mixed glia were prepared from the cerebral cortices of neonatal

STAT12/2 mice, and differentiated in neurobasal medium

supplemented with B27 (Life Technologies) and DMEM/F12

(Life Technologies) supplemented with 10% (v/v) FCS, respec-

tively. Microglia were further enriched from differentiated mixed

glial cell cultures. Neurons, astrocytes and microglia were

characterized by staining with antibodies to tubulin b III isoform,

glial fibrillary acidic protein (GFAP), or F4/80, respectively.

Mixed glial cultures contained ,85% astrocytes and ,10%

microglia. The purity of neurons and microglia was .95%.

(TIF)

Figure S5 Murine models for JEV infection. (A) Wild-type

C57BL/6 mice (n = 10 per group) were challenged with various

doses of JEV (pfu) via an intraperitoneal route with intracranial

injection of 30 mL PBS simultaneously (i.p.+i.c.). (B) STAT1-

deficient mice were intraperitoneally infected with a range of doses

of JEV (n = 6 per group). All mice were monitored daily for 21

days and outcomes are shown as Kaplan–Meier survival curves

with log rank test.

(TIF)

Figure S6 In situ labeling of peripheral leukocytes with
CFSE in JEV-infected mice. (A) Schematic representation of

the procedure for in situ labeling with CFSE fluorescence dye in

JEV-infected mice. (B) Validation of CFSE labeling efficiency by

analyzing fluorescence intensity in peripheral blood leukocytes

from JEV-infected mice at 72 hr after CFSE injection (day 5 after

JEV infection).

(TIF)

Figure S7 CFSE distribution into CNS after intracranial
puncture. (A) Three modes to evaluate the distribution of CFSE

after i.p. injection to mice with or without intracranial i.c.

puncture. (B) Analysis of CFSE fluorescence in the MNCs isolated

from brain MNCs using Percoll-gradient centrifugation. MFI of

each group was shown in left panel. MFI: mean fluorescence

intensity.

(TIF)

Figure S8 Interactions of CLEC5A with viruses. Various

human viruses (56106 pfu/well) were immobilized on microtiter

plates, followed by incubation of CLEC5A.Fc (0.05 mg/ml;

100 ml/well) and HRP-conjugated goat-anti-human IgG. Specific

interactions of CLEC5A with human viruses were determined by

addition of TMB as substrate, and measurement of absorbencies at

450 nm.

(TIF)

Figure S9 WNV replicates in human macrophages and
antagonistic anti-CLEC5A mAbs inhibit WNV-induced
macrophage activation. (A) Human CD14+-monocyte derived

macrophages (MoM) infected with WNV (m.o.i. = 5) were

subjected to flow cytometry analysis at 48 hr post infection using

anti-NS3 antibody to determine WNV replication. (B) Dose-

dependent inhibition of cytokine release from WNV-infected

MoM by anti-CLEC5A mAbs (clones: 3E12A2, 3E1C1 and

9B12H4) determined by ELISA at 48 hr post infection. mIgG1

acts as an isotype matched control. Data were collected from at

least three different donors and expressed as mean 6 s.d. Two-

tailed Student’s t-tests were performed.

(TIF)

Figure S10 Stat12/2Clec5a2/2 mice are resistant to
JEV-infection. Survival of both the Stat12/2Clec5a+/+ and

Stat12/2Clec5a2/2 mice (8–10 weeks) was monitored for 21 days

after i.p. inoculation of JEV (100 pfu/mice); data were collected

from four independent experiments and are shown as Kaplan–

Meier survival curves with log rank test; n = 20 for each group.

(TIF)
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