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Abstract Neutrophils are well known for their role in infec-
tion and inflammatory disease and are first responders at sites
of infection or injury. Platelets have an established role in
hemostasis and thrombosis and are first responders at sites
of vascular damage. However, neutrophils are increasingly
recognized for their role in thrombosis, while the
immunemodulatory properties of platelets are being increas-
ingly studied. Platelets and neutrophils interact during infec-
tion, inflammation and thrombosis and modulate each other’s
functions. This review will discuss the consequences of plate-
let–neutrophil interactions in infection, thrombosis, athero-
sclerosis and tissue injury and repair.
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Introduction

Platelets are anuclear cell fragments that circulate in healthy
humans at about 150,000–400,000 per microliter blood.
Platelets are well known for their role in thrombosis and he-
mostasis. Inherited or acquired defects in platelet count and/or
function can be associated with bleeding complications.
Conversely, platelets are key players in thrombotic disease
and drugs inhibiting platelet function are vital in treatment
and prevention of arterial thrombotic diseases such as

myocardial infarction and stroke. Recent studies show that
platelets have many functions beyond physiological or patho-
logical thrombus formation. They play a role in inflammation,
are effectors of injury in a variety of pulmonary disorders and
syndromes, facilitate tissue repair and act in the growth and
development of metastases of various cancers (Xu et al. 2016).
Although platelets can exert some of their functions individu-
ally, it is increasingly recognized that interactions between
platelets and other circulating cell types are crucial for many
of their functions. In this review, I will address the interaction
of platelets with neutrophils and the role of this interaction in
inflammation and infection, thrombosis, atherosclerosis and
tissue injury and repair.

Platelet-neutrophil complexes

It has been long known that circulating platelet–neutrophil
complexes are present in a wide range of inflammatory con-
ditions including bacterial infections and sepsis (Gawaz et al.
1995), inflammatory bowel disease (Pamuk et al. 2006), sickle
cell disease (Polanowska-Grabowska et al. 2010), atheroscle-
rosis and coronary syndromes (Ott et al. 1996; Maugeri et al.
2014) and pulmonary inflammatory syndromes (Gresele et al.
1993; Caudrillier et al. 2012). Platelets interact with neutro-
phils by multiple interactions including platelet P-selectin
binding to neutrophil P-selectin glycoprotein ligand-1
(PSGL-1) (Hamburger and McEver 1990; Moore et al.
1995) and platelet glycoprotein Ibα binding to neutrophil
MAC-1 (Simon et al. 2000). P-selectin exposure on the plate-
let surface requires platelet activation. Indeed, platelet–neutro-
phil complexes have been used as markers for platelet activa-
tion and, surprisingly, these complexes appear better markers
of in vivo platelet activation compared to direct assessment of
platelet P-selectin expression (Michelson et al. 2001). The
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generation of platelet–neutrophil complexes in vivo is facili-
tated by margination of platelets and neutrophils to the periph-
ery of blood vessels as a consequence of displacement of
erythrocytes to the central part of the vessels (Goldsmith and
Spain 1984; Goldsmith et al. 1999). This margination process
greatly enhances the possibility of collisions between neutro-
phils and platelets. Stable platelet–neutrophil complexes re-
quire platelet activation that may occur in solution but
could also occur as a result of platelet adhesion to activated
endothelial cells or a vascular injury. Platelets are capable of
adhering to activated or injured endothelium from flowing
blood and the efficacy of platelet adhesion actually increases
with increasing shear rate (Remuzzi et al. 1985; Houdijk et al.
1986). The unique biophysical properties of the interaction of
platelet glycoprotein Ibα with collagen- or endothelial cell-
bound von Willebrand factor (VWF) underlie shear stress-
mediated enhancement of platelet deposition (Ciciliano et al.
2015). In contrast, neutrophils, although able to adhere to
activated endothelial cells, become less efficient in adhering
with increasing shear (Kuijper et al. 1996). Platelets therefore
facilitate neutrophil adhesion to activated or injured endothe-
lium at higher shear and thereby promote leucocyte transmi-
gration across the endothelium. A recent study showed that
neutrophil adhesion to activated platelets proceeds via long
membrane protrusions that extend from adhered platelets
and are formed under conditions of flow both in vitro and
in vivo (Tersteeg et al. 2014). These elongated membrane
structures (referred to as flow-induced protrusions or
FLIPRs) were shown to bind neutrophils in a P-selectin/
PSGL-1-dependent manner. This interaction led to neutrophil
activation and transfer of microparticles from the FLIPR to the
neutrophil. Interestingly, the authors suggested that neutro-
phil–platelet microparticle complexes may also occur
in vivo, and that part of the previously reported neutrophil–
platelet complexes are in fact neutrophil–platelet microparticle
complexes. In the following sections, I will address functional
consequences of platelet–neutrophil interactions.

Platelet–neutrophil interactions in inflammation
and infection

Neutrophils are key first responders to sites of injury and
infection and are increasingly recognized as actors in chronic
inflammatory states (Deniset and Kubes 2016; Soehnlein et al.
2017). Neutrophils combat invading pathogens by a combina-
tion of phagocytosis, generation of reactive oxygen species
and release of neutrophil extracellular traps (NETs). The plate-
let–neutrophil interplay is key in all these inflammatory re-
sponses, as it helps localizing platelets to inflammatory sites,
potentiates production of oxygen radicals and is key in neu-
trophil activation to release NETs (Page and Pitchford 2013).

It has been shown that neutrophils continuously patrol the
vasculature for activated platelets to initiate inflammatory re-
sponses (Sreeramkumar et al. 2014). Activated platelets are
crucial in neutrophil-mediated inflammatory responses, as de-
pletion of either cell type decreases mortality in models of
pathological inflammation including acute lung injury
(Looney et al. 2009) and sepsis (Sreeramkumar et al. 2014).
Interactions between P-selectin and PSGL-1 and glycoprotein
Ibα and MAC-1 have been shown to drive platelet–neutrophil
interactions under inflammatory conditions (Sreeramkumar
et al. 2014; Wang et al. 2017). Interestingly, while depletion
of platelets decreases neutrophil recruitment under inflamma-
tory conditions, the reverse is also true (Clark et al. 2007;
Sreeramkumar et al. 2014). Thus, the observation that platelet
influx is also decreased when neutrophils are depleted sug-
gests that the model that neutrophils scan inflammatory sites
for activated platelets might be too simplified.

Besides a role in neutrophil localization, activated platelets
initiate or amplify various neutrophil responses including
phagocytosis and production of oxygen radicals and produc-
tion of NETs. Such responses are initiated by direct contact
but also by release of soluble mediators such as CCL5 and
platelet factor 4 (von Hundelshausen et al. 2005; Pervushina
et al. 2004). Conversely, neutrophils also release soluble me-
diators such as cathepsin G and elastase that enhance platelet
responses by activation of protease-activated receptors on
platelets (Selak 1992; Sambrano et al. 2000; Mihara et al.
2013). Interestingly, these neutrophil-derived enzymes are al-
so negative regulators of platelet adhesion as they may
proteolyse VWF (Bonnefoy and Legrand 2000).

Platelet interactions have been shown to enhance the
phagocytic capacity of neutrophils towards various bacteria
in vitro (Assinger et al. 2011; Peters et al. 1999; Hurley
et al. 2015). In addition, thrombocytopenia increases the bac-
terial load in animal models of bacterial infection (de
Stoppelaar et al. 2014; van den Boogaard et al. 2015). In
addition, platelets may enhance the release of reactive oxygen
species and myeloperoxidase further contributing to pathogen
killing (Zalavary et al. 1996; Gros et al. 2015b). However,
under certain experimental conditions, platelets down-
regulate the oxidative burst and the action of platelets in the
inflammatory response and therefore appears context-
dependent (Lecut et al. 2012). Platelets are also key in the
formation of neutrophil extracellular traps (NETs) (von
Bruhl et al. 2012; Clark et al. 2007). NETs are extracellular
webs generated upon neutrophil activation, consisting of neu-
trophil DNA with various proteins such as histones attached
(Brinkmann et al. 2004). NETs capture and kill pathogens
directly and inactivate virulence factors by elastase present
within the NET. Platelet-mediated NET formation requires
platelet–neutrophil interactions by P-selectin/PSGL-1 interac-
tions or by binding of neutrophil β2 integrins with GPIbα or
αIIbβ3 on the platelet (Jenne et al. 2013; Etulain et al. 2015;
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Caudrillier et al. 2012; Carestia et al. 2016). In experimental
sepsis models, activation of platelet TLR4 was shown to be
key in the generation of NETs (Clark et al. 2007).
Furthermore, platelets stimulate neutrophil transmigration
over the endothelium, likely by a combination of assisting
neutrophil adhesion to the endothelium and enhancing endo-
thelial cell permeability (Gros et al. 2015a). Finally, platelets
stimulate the formation of various leukotrienes by neutrophils
in an intriguing mechanism involving transfer of the arachi-
donic acid metabolite 12-HETE from platelet to neutrophils,
which further process this molecule to bioactive leukotrienes
(Marcus et al. 1984, 1987, 1988). This transcellular arachi-
donic acid pathway presumably requires platelet–neutrophil
contact given the key role of P-selectin in this process
(Maugeri et al. 1994). Leukotrienes such as LTC4, LTD4,
LTE4, LTB4 and 12- and 20-diHETE have various down-
stream effects including enhancement of vascular permeabil-
ity, modulation of smooth muscle cell contractility and
chemo-attraction (Peters-Golden and Henderson 2007).
Interestingly, the transcellular arachidonic acid metabolism is
bidirectional, as platelets also use arachidonic acid released
from neutrophils to increase 12-HETE production
(McCulloch et al. 1992).

Platelet–neutrophil interactions in thrombosis

Animal models of thrombosis have demonstrated a key role of
neutrophils in venous and arterial thrombosis. In a model of
venous thrombosis induced by flow restriction, leukocytes
(predominantly neutrophils) have been shown to crawl along
and adhere to the surface of (activated) endothelial cells, even-
tually forming an almost continuous layer on the vascular
endothelium (von Bruhl et al. 2012). These leukocytes have
been demonstrated to initiate and propagate venous thrombo-
sis in this model. Similarly, neutrophils have been shown to be
the first responding cells in response to arterial injury induced
by a laser (Darbousset et al. 2012). However, in other models,
platelets were the first responding cells, with leukocyte influx
critically dependent on deposited platelets (Palabrica et al.
1992; Gross et al. 2005). Although it has been long recognized
that leukocytes contribute to activation of coagulation in
thrombosis, the mechanisms involved are still incompletely
understood. Importantly, a recent study using a mouse model
of spontaneous venous thrombosis found that neutrophil de-
pletion did not affect thrombosis development despite the ob-
servation that neutrophils were abundant within the thrombus,
indicating that the role of neutrophils in thrombosis may be
context-dependent (Heestermans et al. 2016).

At least three distinct mechanisms may be involved in
platelet-dependent, neutrophil-mediated induction of throm-
bosis. First, neutrophils have been demonstrated to transfer
tissue factor, the physiological initiator of coagulation, to

platelets during thrombus formation in vitro (Giesen et al.
1999). This transfer proceeds via TF-containing microparti-
cles derived from neutrophils and is dependent on TF and
microparticle CD15 (Rauch et al. 2000). Also in vivo, TF-
bearing microparticles have been shown to be incorporated
into thrombi early after vascular injury and to drive thrombus
formation (Gross et al. 2005). During thrombus formation, TF
requires ‘decryption’, i.e., transformation from a circulating
non-coagulant, to a thrombus-associated coagulant form
(Chen and Hogg 2013). Decryption requires thiol isomerase
activity by, for example, protein disulfide isomerase.

The ‘blood-borne’ TF concept challenges the dogma that
tissue factor is normally not located on cells in contact with
blood and the source and quantity of blood borne TF is subject
to ongoing debate (Butenas et al. 2005; Cimmino et al. 2011).
For example, while some have found that platelets contain TF
(Muller et al. 2003; Schwertz et al. 2006; Panes et al. 2007;
Camera et al. 2003), others failed to reproduce these findings
(Bouchard et al. 2010; Osterud and Olsen 2013). Distinct
mechanisms for platelet TF expression have been proposed:
(1) acquisition from leukocyte-derived microparticles (Giesen
et al. 1999), (2) storage in platelet α granules (Muller et al.
2003) and (3) de novo synthesis from mRNA stored within
the (anucleate) platelet (Schwertz et al. 2006). However, all
these findings have been questioned with reference to an in-
adequate methodology used in these studies. Similarly, the
finding that neutrophils synthesize and may transfer tissue
factor (Giesen et al. 1999) has been challenged (Osterud
et al. 2000). Nevertheless, it is likely that blood-borne TF
contributes to initiation and propagation of thrombosis given
protection of mice lacking TF specifically on myeloid cells
(von Bruhl et al. 2012). Furthermore, the association between
thrombotic diseases and elevated levels of TF-bearing micro-
particles in blood are consistent with a role of blood-borne TF
in thrombosis (Zwicker et al. 2011).

A second mechanism by which the platelet–neutrophil axis
contributes to initiation and propagation of thrombosis is
through generation of NETs (Fuchs et al. 2010; Brill et al.
2012). NETs have been directly implicated in thrombosis as
prevention of NET formation using mice deficient in PAD4
(Martinod et al. 2013), which cannot undergo the histone
modification required for chromatin decondensation in NET
formation and disintegration of NETs by DNAse (Fuchs et al.
2010) reduced the thrombus load in mouse models. Also,
NETs have been demonstrated in human thrombi (Stakos
et al. 2015; Savchenko et al. 2014) and NET components
including nucleosomes, histones and cell-free DNA are ele-
vated in patients with thrombotic disease (vanMontfoort et al.
2013; Jimenez-Alcazar et al. 2017), although it has not been
established whether this is a consequence of the event or that
in humans elevated NET components indicate a risk for a
future thrombotic event. NETs appear to drive thrombus for-
mation by multiple mechanisms including TF-mediated
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initiation of coagulation, FXII-mediated initiation of coagula-
tion, adhesion of platelets, recruitment of platelet adhesive
proteins such as VWF, recruitment of red blood cells and
inhibition of clot breakdown (Martinod and Wagner 2014;
Gould et al. 2015). Although it has been well established that
NETs support thrombin generation in vitro and in vivo, the
mechanisms involved are incompletely understood and partly
controversial. A recent study found that NET components but
not NETs themselves, are procoagulant in vitro (Noubouossie
et al. 2017). Indeed, a number of studies have shown activa-
tion or amplification of coagulation by cell-free DNA but part
of these results have been challenged as procoagulant effects
of isolated DNA appear to be related to activators co-purified
with the DNA, notably silica particles (Smith et al. 2017). In
addition, histones have been shown to drive thrombin gener-
ation and inhibit protein C-mediated anticoagulant responses
(Ammollo et al. 2011).

A third mechanism linking the platelet–neutrophil axis to
thrombosis relates to neutrophil constituents modulating he-
mostasis. For instance, neutrophil cathepsin G and elastase
inactivate natural anticoagulant systems including tissue fac-
tor pathway inhibitor, thrombomodulin and antithrombin (von
Bruhl et al. 2012; MacGregor et al. 1997; Jordan et al. 1989).
In addition, neutrophil oxidants inactivate thrombomodulin
and ADAMTS13 (Glaser et al. 1992; Wang et al. 2015), while
VWF modification by neutrophil oxidants renders it resistant
to ADAMTS13 cleavage (Chen et al. 2010). Finally, neutro-
phil peptides (α defensins) have also been shown to inhibit
VWF cleavage by ADAMTS13 (Pillai et al. 2016). Thus,
inactivation of key anticoagulant systems and inhibition of
ADAMTS13-mediated regulation of VWF-dependent throm-
bus formation all contribute to procoagulant effects of neutro-
phils. However, neutrophil cathepsin G and elastase are able
to proteolyse VWF, which may compensate for the defect in
ADAMTS13-mediated cleavage (Bonnefoy and Legrand
2000; Raife et al. 2009).

Platelet–neutrophil interactions in atherosclerosis

Platelets have long been implicated in acute coronary events.
Their key role is evidenced by the success of platelet inhibi-
tory drug in treatment and prevention of acute arterial throm-
botic events (Jamasbi et al. 2017). Additionally, platelets have
been implicated in atherogenesis and platelet adhesion to ac-
tivated endothelium is a very early event in the process of
atherogenesis and drives subsequent proinflammatory re-
sponses leading to plaque formation (Gawaz et al. 2005).
Attraction of leukocytes, particularly monocytes, to the devel-
oping atherosclerotic lesion has also long been recognized as a
key event in atherogenesis (Gistera and Hansson 2017).
Platelets facilitate monocyte adhesion to and transmigration
through the endothelial cell layer and facilitate the formation

of foam cells from these macrophages. The role of the neutro-
phil in atherogenesis has long escaped attention due to the
pivotal role of monocytes in the process. However, several
lines of evidence suggest neutrophils and platelet–neutrophil
interactions to also be key players in atherogenesis and acute
coronary events. Firstly, neutrophil counts are predictors of
future coronary events (Shah et al. 2017; Horne et al. 2005)
and local neutrophil accumulation is associated with the out-
come of a coronary event (Distelmaier et al. 2014). Secondly,
animal models have shown NET formation in the developing
atherosclerotic lesion (Warnatsch et al. 2015), while inhibition
of PAD4 (which is required for NET formation) decreased the
size of the atherosclerotic lesion indicating that NET forma-
tion is a driver of atherogenesis (Knight et al. 2014). Indeed, in
humans, NET components have been associated with the se-
verity of atherosclerosis and the future risk of cardiac events
(Borissoff et al. 2013). Finally, NETs have been identified in
coronary thrombi obtained during thrombectomy or from pa-
tients with stent thrombosis (Mangold et al. 2015; Riegger
et al. 2016). It is incompletely understood how NETs drive
atherogenesis but mechanisms may include activation of
plasmacytoid dendritic cells resulting in a type I interferon
response (Doring et al. 2012), activation of macrophages that
subsequently release inflammatory cytokines (Warnatsch et al.
2015), or enhancement of endothelial dysfunction (Carmona-
Rivera et al. 2015).

Platelet–neutrophil interactions in tissue injury
and repair

Sterile tissue injury as for example encountered in injury by
toxins (Miyakawa et al. 2015), ischemia/reperfusion injury
(Tamura et al. 2012), or sterile traumatic injury (Slaba et al.
2015) results in recruitment of platelets in response to endo-
thelial injury. Neutrophils are also recruited to sites of sterile
injury and consequent platelet–neutrophil interactions will
contribute to exacerbation of injury or to repair, depending
on the context.

For example, acetaminophen-induced liver injury results in
an influx of platelets and neutrophils in the liver microcircu-
lation (Miyakawa et al. 2015). Depletion of either platelets or
neutrophils decreases hepatocellular injury (Liu et al. 2006;
Miyakawa et al. 2015). As depletion of platelets also de-
creases neutrophil influx, it may be that platelet–neutrophil
crosstalk is involved in driving acetaminophen-induced liver
injury. Of note, although it has been demonstrated that neu-
trophil depletion decreases acetaminophen-induced hepato-
cellular injury, these results have been questioned (Jaeschke
and Liu 2007) and it has been suggested that neutrophils do
not directly contribute to injury but are only involved in tissue
repair following acetaminophen intoxication (Williams et al.
2014). Similarly, platelets have been shown to drive
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neutrophil-mediated liver damage following acute alpha-
naphthylisothiocyanate intoxication (Sullivan et al. 2010).

Platelets and neutrophils have been implicated as drivers of
ischemia/reperfusion injury in liver (Yadav et al. 1999), kid-
ney (Jansen et al. 2017), heart (Bonaventura et al. 2016) and
lungs (Sayah et al. 2015) and platelet–neutrophil crosstalk
has been suggested to be an important contributor of injury.
Recent studies have shown NET formation to contribute to
ischemia/reperfusion injury as inhibitors of NET formation
or NET degradation byDNAse reduced injury in experimental
animal models (Nakazawa et al. 2017; Sayah et al. 2015; Ge
et al. 2015; Huang et al. 2015). Such studies indicate that
NETs are not only involved in infection and thrombosis but
also reinforces the notion that NETs drive non-infectious, non-
thrombotic disease (Jorch and Kubes 2017). The exact mech-
anisms by which NETs drive ischemia/reperfusion injury are
unknown but part of themechanismmay involve intravascular
thrombus formation, as inhibitors of coagulation activation
have also been shown to reduce ischemia/reperfusion injury
(Okajima et al. 2002; Tillet et al. 2015). Studies in humans
have also shown the formation of NETs in transplanted lungs
and it has been suggested that NET formation could lead to
acute graft failure (Sayah et al. 2015).

Platelets trigger the release of NETs in a model of experi-
mental transfusion-associated acute lung injury and thereby
aggravate disease (Caudrillier et al. 2012). Pulmonary injury
was substantially decreased by NET degradation by DNAse,
platelet inhibition or an anti-histone antibody. Importantly,
these interventions improved survival from ~50% to 100%
in this model.

Platelet–neutrophil interactions have been shown to facili-
tate repair in a model of heat-induced liver injury (Slaba et al.
2015). Specifically, it was shown that platelets immediately
attached to the endothelium adjacent to the site of injury in a
αIIbβ3-dependent manner. These platelets were required for
subsequent neutrophil influx and these neutrophils assisted in
the wound-healing response. Importantly, very few NETs
were generated in this model, showing that platelet–neutrophil
interactions that are physiologically relevant do not necessar-
ily lead to formation of NETs.

Platelets are well known to be required for liver regenera-
tion following partial hepatectomy and it has been suggested
that growth factors stored within platelet granules drive
platelet-mediated liver regeneration (Lesurtel et al. 2006;
Starlinger and Assinger 2016; Starlinger et al. 2014; Matsuo
et al. 2008). However, since both neutrophils and platelets are
required for liver regeneration following partial hepatectomy
(Selzner et al. 2003; Lesurtel et al. 2006), it has been sug-
gested that the mechanism by which platelets stimulate liver
regeneration may be through leukocyte recruitment, similar to
that demonstrated in the model of thermal liver injury (Lisman
and Porte 2016).

Finally, NETs have also been demonstrated to contribute to
organ injury in sepsis (Czaikoski et al. 2016), which may in
part be due to deleterious effects of NET formation and sub-
sequent intravascular coagulation on the microcirculation
(McDonald et al. 2017). Treatment with DNAse also reduced
organ damage in this setting (Czaikoski et al. 2016).

The platelet–neutrophil interaction: a therapeutic
target?

Experimental and clinical evidence for a role of platelet–neu-
trophil crosstalk in a variety of clinical conditions including
inflammation, thrombosis, atherosclerosis and tissue injury is
rapidly emerging. Agents blocking PSGL-1, P-selectin, or
MAC-1 that have pleiotropic effects that include inhibition
of platelet–neutrophil interactions have been trialed in humans
(Mertens et al. 2006; Stahli et al. 2016; Jones 2000) but are no
longer in clinical development as clinical studies did not show
a benefit of these agents. Given the key role of NETs in many
clinical situations in which the platelet–leukocyte interaction
is involved, it may be that inhibitors of NET formation or
agents aimed at dissolving NETs could reignite the interest
in agents aimed at blocking platelet–neutrophil interplay.
Indications for such agents could include venous and acute
arterial thrombosis, disseminated intravascular coagulation
and various types of NET-mediated organ injury such as
ischemia/reperfusion injury and transfusion-associated acute
lung injury. In considering targeting NETs therapeutically, it
should be remembered that NETs are likely required for fight-
ing severe infection. It has been suggested that agents
targeting NETs would be safe in the absence of overt infection
but that concomitant administration of antibiotics would be
indicated in cases of an infection (Martinod and Wagner
2014). Other diseases in which NETs have been implicated
but which have not been discussed in this review include
systemic lupus erythematosus, rheumatoid arthritis, diabetes,
vasculitis and cancer (Jorch and Kubes 2017). Whether phar-
macological targeting of NETs will be beneficial in these
chronic diseases is an open question but clearly the risk of
infection may hamper chronic use of such agents.

Inhibitors of PAD4 may have merit given the key role of
PAD4 in NET formation and the intact NET-independent anti-
inflammatory properties of PAD4-deficient neutrophils (Li
et al. 2010; Martinod and Wagner 2014). Alternatively,
DNAseI, which has been shown to efficiently clear thrombi
and decreased NET-mediated injury in experimental animal
models may have merit, particularly since DNAseI is an
FDA-approved drug (Pulmozyme, inhaled using a nebulizer
for cystic fibrosis) and has also been trialed as an intravenous
drug (Davis et al. 1999).

A clear advantage of targeting NETs in thrombotic syn-
dromes is the lack of effect of the intervention on
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Fig. 1 The mode of interaction of platelets and neutrophils and the
consequences of this interaction. Shown are the major receptor–ligand
couples involved in the platelet–neutrophil interaction (P-selectin–
PSGL1 and GPIbα–Mac-1) and pathways by which platelets enhance
leukocyte activation (by release of CCL5 and PF4) and by which
neutrophils stimulate platelet activation (by release of elastase and
cathepsin G, CathG). Downstream effects of the platelet–neutrophil

interaction include increased leucocyte phagocytic activity, increased
production of reactive oxygen species, increased transmigration of
leukocytes over the endothelial cell lining, production of various
bioactive leukotrienes, activation of coagulation via tissue factor (TF),
leukocyte-mediated tissue repair and generation of neutrophil
extracellular traps (NETs). Professional illustration by Patrick Lane,
ScEYEnce Studios
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physiological hemostasis. As bleeding is an important side
effect of current therapies for venous and arterial thrombosis
and disseminated intravascular coagulation, the development
of agents with a better risk/benefit ratio in terms of thrombotic
potency versus bleeding risk would be a significant
improvement.

Conclusions

Although platelets are traditionally seen as key players in
thrombosis and hemostasis and neutrophils as prime inflam-
matory cells, recent data demonstrate a complex interplay be-
tween these cells with important immune functions for plate-
lets and a clear role of neutrophils in thrombotic diseases. The
prime mode of interaction between platelets and neutrophils
and the downstream effects of this interaction are summarized
in Fig. 1. The mechanisms by which the platelet–neutrophil
interplay contributes to important infectious and thrombotic
pathologies are only beginning to be explored, as is the role of
these interactions in organ injury and repair. The discovery of
NETs and the demonstration of the role of NETs in infection
and thrombosis has provided clues for radical improvements
in clinical strategies to combat infection, thrombosis and other
diseases in which NETs are thought to play a role.
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