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Data collected from omics technologies have revealed perva-
sive heterogeneity and stochasticity of molecular states within
and between phenotypes. A prominent example of such het-
erogeneity occurs between genome-wide mRNA, microRNA, and
methylation profiles from one individual tumor to another, even
within a cancer subtype. However, current methods in bioinfor-
matics, such as detecting differentially expressed genes or CpG
sites, are population-based and therefore do not effectively model
intersample diversity. Here we introduce a unified theory to quan-
tify sample-level heterogeneity that is applicable to a single omics
profile. Specifically, we simplify an omics profile to a digital repre-
sentation based on the omics profiles from a set of samples from
a reference or baseline population (e.g., normal tissues). The state
of any subprofile (e.g., expression vector for a subset of genes)
is said to be “divergent” if it lies outside the estimated support
of the baseline distribution and is consequently interpreted as
“dysregulated” relative to that baseline. We focus on two cases:
single features (e.g., individual genes) and distinguished subsets
(e.g., regulatory pathways). Notably, since the divergence analy-
sis is at the individual sample level, dysregulation can be analyzed
probabilistically; for example, one can estimate the probability
that a gene or pathway is divergent in some population. Finally,
the reduction in complexity facilitates a more “personalized” and
biologically interpretable analysis of variation, as illustrated by
experiments involving tissue characterization, disease detection
and progression, and disease–pathway associations.

stochasticity | digitization | dysregulation | cancer | precision medicine

In recent decades, technological advances have enabled global
profiling of genetic variants, RNA species, epigenetic marks,

proteins, metabolites, and other previously unknown molecular
features, enabling the characterization of complex biological sys-
tems over distinct molecular domains. These high-dimensional
measurements have been made on thousands of samples and are
collectively referred to as omics data. Through complex com-
putational and statistical analyses of these data from different
cell types and tissues, across individuals and model organisms,
and from diseased and healthy conditions, we have substan-
tially enhanced our understanding of molecular mechanisms
underlying cell functioning, tissue organization, and organism
development. These data are also beginning to impact clinical
practice for complex diseases (1–3).

Nevertheless, omics data have yet to significantly inform the
standard of care, as was expected when introduced. In part,
this limitation arises from insufficient genome-wide characteriza-
tion of normal variation, impeding progress toward determining
whether a single omics profile reflects molecular dysregulation
that is indicative of a complex disease. The use of deviation
from a normal range is already widely used clinically for low-
dimensional laboratory tests and biomarkers, risk assessment,
disease diagnosis and prognosis, and therapy selection. Similar
approaches are now needed for omics data modalities. Notably,
efforts to monitor large-scale omics data in the population are
now underway (4). Methods to quantify genome-wide variation,
especially techniques to determine where an omics profile falls

relative to a baseline, may be essential to fully realize the poten-
tial of high-dimensional omics assays; in principle, they pro-
vide unprecedented quantification of normal and disease-specific
variation, which can inform clinical approaches for diagnosis and
prevention of complex diseases.

To develop this high-dimensional analogue to low-dimensional
clinical tests, we present a unified framework to characterize
normal and nonnormal variation by quantizing high-resolution
measurements into a few discrete states based on divergence
from a baseline. This simplified data representation is intended
to capture most of the important biological information neces-
sary to characterize phenotypes of interest. Briefly, suppose we
are given a particular subset of omics features, for example the
expression levels of any set of genes; important special cases are
a single gene or a functional get set. Suppose also that sam-
ple observations of this subset are available from a population
declared as the baseline. Then the realization of this subset of
features in any sample profile is said to be “divergent” if it lies
outside the support of the baseline probability distribution. For
instance, if the phenotypes of interest are cancers of a particular
tissue, then a natural “baseline” population is normal samples
from that tissue. However, if the goal is to determine the unique
features of gene regulation in particular (normal) tissue, the
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baseline could be all other tissues types combined. The novelty
of our framework is that it applies to any subset of features and
to any new profile by itself.

Divergence is a sample property. In contrast, putative discrim-
inating sets of features, such as “differentially expressed genes,”
are defined in terms of population-level distributions. For exam-
ple, given two classes or phenotypes, a gene is differentially
expressed if its distribution differs in the two classes. However,
knowing the status of a molecular feature in the context of pop-
ulations may say very little about the status of that feature for
a particular individual. Divergence then enables the prospec-
tive analysis of individual samples, as required for applications
to precision and personalized medicine. It also enables a proba-
bilistic analysis at the phenotype level, where the probability that
a specific feature (say gene), or set of features (say pathway), is
divergent is a well-defined concept. Phenotypes can then be char-
acterized based on the corresponding divergence probabilities
and predicted for unlabeled samples by examining the diver-
gent set. This approach can be applied to any high-dimensional
omics dataset, yielding simplified matrices of digitized values
that can be analyzed statistically at the feature, sample, or
phenotype level.

Deviation from a “normal” range is a form of “outlier analy-
sis” and as such is related to other work in statistics and genomics
(5–12). All of these previous studies involve single features and
require standardization of a new sample with respect to multi-
ple other samples from the same class. In contrast, divergence
applies to any subprofile, and its determination does not require
the availability of other samples from the same class (e.g., disease
type); in fact, a new sample profile need not even be labeled. The
only normalization is within-sample ranking, and all comparisons
with baseline samples occur in the rank space.

Methods
The notion of “divergence” is general: Let U be a random variable assuming
values in a space U and let P0 be a reference or baseline distribution on U
with support supp(P0)⊂U . Then a value u∈U is divergent if u /∈ supp(P0).
By definition, if U has distribution P0, then the probability of observing a
divergent value is zero; the interest is in quantizing U when it follows alter-
native distributions and to compare quantized values among alternatives.
We are going to apply this to functions U constructed from rank-normalized
individual omics profiles. The supports will be estimated from data.

An omics profile is a vector X = (Xj , j∈J ) where the index set J and
the values assumed by individual features Xj depend on the particular data
modality determined by the measurement technology. Typically, the fea-
tures are states, counts, or concentrations of biomolecular species. In this
paper, we consider gene expression (microarray and RNA-sequencing) and
DNA methylation (microarray). This framework is directly applicable to other
types of measurements, including single-cell data and other omics modali-
ties (e.g., microRNA and protein expression). Here, for gene expression, J
is the set of genes and Xj is either a microarray value or RNA-seq count for
gene j (“bulk” mRNA); in the case of methylation, J is a set of CpG sites and
Xj is the “β value” (see SI Appendix).

Quantiles. In our experiments, each individual profile is transformed into
quantile space: Each element of the profile is replaced by its normalized
rank with respect to the other elements in the same profile. Define

Qj = Qj(X) =
|{i∈J : 0<Xi ≤Xj}|
|{i∈J : 0<Xi}|

. [1]

This definition returns a value 0≤Qj ≤ 1 and implies a separate treatment
of ties at 0 (e.g., “nonexpressed genes”). If Xj = 0, then Qj = 0, and positive
quantiles are accrued only from positive Xjs. This is important for some data
modalities, especially gene expression from RNA-seq, for which the many
ties that typically occur at 0 may offset standard definitions of quantiles,
assigning large quantile values to possibly small, nonzero, expression num-
bers. Importantly, this definition of quantiles is sample-based (i.e., they are
computed across variables measured for a single subject), not population-
or cohort-based.

Divergence. Suppose we are given a reference joint probability distribution
P0 of (Xj , j∈J ) associated with some baseline phenotype. Of course, in prac-
tice, we only observe samples from this distribution where each sample is
an omics profile from a single data modality, and the choice of reference
phenotype depends on the particular study and data modality. As will be
seen in Results, the baseline phenotype need not be a single tissue type or a
disease-free phenotype and can be any population that is meaningful under
the analysis carried out.

Given an omics profile X and a subset S⊂J , we will apply the defi-
nition of divergence to the random vector US = QS(X) = (Qj(X), j∈ S). We
will focus on single features S = {j} (e.g., single genes) and on sets S
with 1�|S|� |J | (e.g., gene pathways). Let m = |S|, so that US takes
values in [0, 1]m. We describe below how the support US

0 ⊂ [0, 1]m of US

can be estimated from the data, resulting in a set ÛS
0 that is explic-

itly defined. When presented with a new sample X, we define a binary
variable by

Z =

{
1 if QS(X) /∈ ÛS

0 ,

0 otherwise .

We will then say that the set S is divergent (for the considered sample) if
and only if Z = 1.

Support Estimation. The support of the random vector US = QS(X) under
P0 is estimated by a “covering” of the observed baseline samples. Cover-
ing methods for the estimation of the support of a multivariate density
were introduced in ref. 13, with a goal similar to ours of detecting abnor-
mal behavior. The estimator ÛS

0 that we propose is a variation of the
one proposed in that paper. Let d be a metric on [0, 1]m (we will use
the Euclidean distance). Assume that n0 independent and identically dis-
tributed (i.i.d.) samples of X are observed under P0, resulting in i.i.d. samples
US(1), . . . , US(n0); these are now n0 points in [0, 1]m. We will define an
increasing sequence of empirical supports indexed by a “smoothing” param-
eter γ ∈ [0, 1]; the determination of γ is described later. Let l = l(γ) = [γn0],
the greatest integer less than or equal to γn0. For each k∈{1, . . . , n0}, let rk

denote the distance between US(k) and its lth nearest neighbor. We define

ÛS
0 = [0, 1]

m ∩
n0⋃

k=1

B(US(k), rk), [2]

where B(US(k), rk) denotes the closed ball of center US(k) and radius rk. In
other terms, a point u∈ [0, 1]m belongs to ÛS

0 if and only if there exists
k∈{1, . . . , n0} such that US(k) is closer to u than to its lth nearest neighbor.
The smoothing parameter γ corresponds to the “bandwidth” in multivariate
density estimation (14), and our estimator, based on nearest neighbor dis-
tances, implements what is commonly referred as an “adaptive bandwidth”
method in this literature.

The estimate of the support in Eq. 2 is very conservative: Every sub-
profile S is nondivergent for every sample from the baseline population.
This is unrealistic, not only in view of possible outliers among the base-
line samples, but also because these baseline samples may in fact contain
a small proportion of nonbaseline cell types. Another drawback is that γ
is yet to be specified. We address these two issues simultaneously. Again,
let r1, ..., rn0 be the radii of the balls centered at baseline samples. Now
let r̄ be the 95th percentile of these radii. Instead of covering all of
the baseline samples, we remove the 5% for which rk > r̄ before com-
puting the support. That is, the support is constructed as in Eq. 2 but
with the union over all k = 1, ..., n0 replaced by the union over {k : rk ≤
r̄}. Notice that some “left-out” samples may still lie in the support, but
in general some will not, and therefore, some features will be declared
divergent for some baseline samples. The smaller is γ, the more baseline
divergence.

For m = 1, say S = {j}, the estimated support is simply a union of inter-
vals centered at the quantile values of a subset of baseline samples with
interval lengths determined by γ. In nearly all cases of interest, this union
is itself an interval; that is, there are no “gaps.” Making this assumption (or
replacing the support by its convex hull), it suffices to compute its upper and
lower bounds. This can be done by first computing the smallest and largest
values among the (retained) baseline samples Uj(k) for rk ≤ r̄, denoted
respectively by mj and Mj , and then estimating the baseline support of

feature j by Û j
0 = [l0j , u0

j ]⊂ [0, 1], where l0j = max(0, mj − d1) [respectively,

u0
j = min(1, Mj + d2)] and d1 (respectively, d2) is the distance from the small-

est sample (respectively, the largest) to its lth nearest neighbor among the
retained baseline samples.
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An example of the estimated support for two genes (|S|= 2) and γ= .1
is shown in Fig. 1. The data are gene expression values for 50 samples
of normal breast tissue, and the two genes—“ERP1” and “BIRC5”—are
clearly correlated. Since there are n0 = 50 normal samples, the estimated
support is the union of 47 disks, where the radius of the disk cen-
tered at each pair of quantile values is the Euclidean distance to its fifth
nearest neighbor ([.1(50)] = 5). The extent of coverage obviously depends
on γ.

We will apply the definition of divergence in two scenarios: (i) All single
features are considered, so divergence is determined for S = {j} for every
j∈J ; (ii) divergence is applied to collections of sets S1, ..., SN—for example,
pathways or functional gene sets (FGSs)—where the sets may be overlap-
ping and of different dimensions. In our experiments, we use FGSs retrieved
from the Broad Institute Molecular Signature Database (MSigDB) (15). The
divergent set is denoted by D(X) = {j : Zj 6=0}, where D⊂J in case i and
D⊂{1, · · · , N} in case ii. In all cases, D is a random set—that is, is sample-
dependent. For single features, where the supports are intervals [l0j , u0

j ], the
definition can be refined:

Zj =


−1, if Qj(X)< l0j
1, if Qj(X)> u0

j

0, otherwise
.

We will then say that j is lower divergent if Zj =−1 and upper divergent if
Zj = 1, and let Dl(X) = {j : Zj =−1} and Du(X) = {j : Zj = 1} denote the set
of lower divergent and upper divergent features.

Parameters. Returning to the choice of γ, a natural way to control the level
of baseline divergence is to limit on the average fraction α of divergent fea-
tures in the baseline population, namely E0

(
|D|
M

)
, where M = |J | for single

features and M = N for a family of N subsets. We then select the smallest
γ, which achieves this fraction α, where the same γ is used for every sup-
port estimator. Therefore, once α is fixed, there are no other parameters to
specify. This is because α determines γ and γ determines the radii r1, ..., rn0 ,
which in turn determine the estimated supports. In our experiments with
single-feature divergence, we select α≡ .01; with functional gene sets, we
take either α= .01 or α= .001 (see Results).

Fig. 1. 2D baseline support. Fifty normal samples (blue points) and 50 lumi-
nal A samples (red stars) were chosen at random from The Cancer Genome
Atlas (TCGA) breast cancer data. The area of support computed using the
normal samples is shown by the gray shade; the samples falling outside the
support are declared divergent.

Results
Divergence of Tumor Profiles from a Normal Baseline. We measured
|D|, the degree of divergence, for single features in gene expres-
sion (microarray and RNA-seq) and DNA methylation profiles
of tumor samples from various tissues, using the corresponding
normal counterpart as the baseline. We also measured |D| at
the gene set level using data from The Cancer Genome Atlas
(TCGA) (16) and the MSigDB Hallmark FGS collection; again,
the baseline is normal tissue. As described in Methods, for any
given sample profile, a set of features S is defined as divergent
if the assumed quantile value(s) fall outside the estimated base-
line support.

In measuring the extent of divergence in tumor samples, for
each tissue and omics data type, half of the available normal sam-
ples were randomly selected to estimate the baseline support.
Then divergence was determined for the left-out normal and all
tumor samples (see SI Appendix, Methods for details).

Overall, for single features, typically thousands are divergent
in tumors for both gene expression and DNA methylation, irre-
spective of the platform used to generate the data and the
tissue type. In all cases, the difference in the level of divergence
between normal and tumor samples in each tissue and platform
cohort is highly significant (Wilcoxon P value < 10−6; see Fig.
2). In fact, the differences in |D| are sufficiently large to allow
for near-perfect separation without even taking into considera-
tion the identity of the features in D. Similar results were also
obtained for additional tumor types, as measured by RNA-seq
in TCGA or using other microarray platforms (see SI Appendix,
Fig. S1 A–C). The same pattern persisted when the divergent set
D was replaced by the upper and lower divergent sets Du and Dl .

Turning to the divergence of gene sets, the divergent set D
is now a sample-specific set of pathways. For the breast cancer
subtypes, the sizes |D| for our TCGA samples are shown in Fig.
2B. As with single features, this sample statistic appears to be
highly discriminating in separating normal and tumor samples.
In fact, training a linear support vector machine (SVM) classifier
(effectively just thresholding the size of D) on half the data from
each group and testing on the other half yields test accuracies
99.2%, 100%, 100%, 100%, 98.3%, 99.5%, respectively, for nor-
mal vs. luminal A, luminal B, basal-like, HER2-enriched, ER+,
and ER– tumors.

Probabilities of Divergence Across Populations. We estimated the
probability P(Zj =1|Y = y)=P(j ∈D|Y = y) that a sample
from phenotype y is divergent. We did this both for single
features j and for gene sets Sj , and for both breast cancer
molecular subtypes in TCGA and a large variety of normal
samples from distinct tissue types obtained from the GTEx
project (17). All probability estimates are relative frequencies in
training data.

For single features, we compared ternary feature-level diver-
gence profiles between luminal A and luminal B breast cancer.
For most genes, luminal B samples are more likely to be diver-
gent than luminal A tumors. In particular, almost all of the genes
identified as significantly “differentially divergent” (χ2 test, Bon-
ferroni corrected P value ≤ 0.05) and had higher probabilities of
divergence in luminal B (see Fig. 3A). Of note, our finding of a
greater degree of dysregulation (i.e., greater divergence from the
baseline) associated with luminal B is consistent with the more
aggressive behavior of this subtype compared with luminal A,
characterized by multiple factors portending a poorer progno-
sis, including higher grade, larger size, and spreading to lymph
nodes (18–20).

We also analyzed RNA-Seq data from GTEx to identify genes
showing highly tissue-specific expression patterns. To this end,
we compared divergence probabilities between a given normal
tissue of interest, say T , and the remaining ones. First, we
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Fig. 2. Degree of divergence in tumor and normal sample populations. (A) Single features for RNA-seq gene expression, CpG methylation, and microarray
expression. (B) The 50 FGSs in MSigDB “Hallmark” collection. Note that, by design, the level of divergence in the normal populations is extremely small. In
both cases, divergence is learned from a separate normal population.

computed a multitissue baseline profile from 50% of available
non-T samples, and then, estimated divergence probabilities
separately from all of the T samples and the remaining half
of non-T samples. For example, to identify prostate-specific
genes, we used half of nonprostate samples pooled together
to estimate a nonprostate baseline. This analysis yielded 433
prostate-specific significant genes (Bonferroni-adjusted P value
≤ 0.05), encompassing many known prostate markers including
KLK3 (a.k.a. the prostate specific antigen; see Fig. 3B). Then,
we reversed the roles: We took tissue T as the baseline, with
support estimated from 50% of the T samples and probabili-

ties estimated as described above. This reverse approach also
identified phenotype-specific genes (see SI Appendix, Figs. S2
and S3).

For gene sets, we considered the breast cancer subtypes and
the 50 Hallmark gene sets. Since we are estimating only a limited
number of supports, we imposed virtually zero normal diver-
gence by selecting α= .001, with the risk of underestimating
cancer subtype divergence probabilities if in fact the normal
breast samples are contaminated. Fig. 4 shows a heat map of the
probabilities of divergence for each of the 50 pathways. The full
table of values is in SI Appendix, Table S1.
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Fig. 3. Differentially divergent genes between tumor phenotypes. (A) Scatter plot of divergence probabilities of genes for 231 luminal A and 127 luminal
B breast cancer samples in TCGA. After Bonferroni correction, 941 genes (blue triangles) have an adjusted P value ≤ 0.05 for a χ2 test comparing the two
subtypes using ternary digitized data. Among these, the genes with the smallest P values are labeled. (B) Scatter plot of divergence probabilities of genes
for 106 prostate and 4216 nonprostate samples in Genotype-Tissue Expression (GTEx) with respect to a nonprostate baseline. After Bonferroni correction,
433 genes (blue triangles) have an adjusted P value ≤ 0.05 in a χ2 test comparing the two groups. The 20 genes with the smallest P values and higher
divergence probability in prostate are labeled.
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Fig. 4. Divergent probabilities for Hallmark FGSs. The heat map shows
the divergence probabilities, as coded in the color scheme above, for the
Hallmark FGS collection across breast cancer phenotypes.

In addition, given the large differences in divergent probabil-
ities observed among subtypes for certain pathways, we built a
single decision tree to distinguish between luminal A and luminal
B subtypes using half the samples for learning the tree and the
other half for estimating the accuracy. Each question in the tree
is of the form “Is pathway X divergent?”, where X can be any
of the 50 hallmark pathways. This experiment in classification is
merely an illustration of the different types of analysis that can
be performed within our framework; more accurate trees could
be induced by regarding α as a parameter to be optimized in
cross-validation. Notice the considerable gain in interpretability
that can be achieved with multidimensional divergence relative
to black box predictors: Even using only three pathways, the test
accuracy is 81% (see Fig. 5).

Comparing Divergence Profiles Across Tissue Types. We also used
the GTEx data to compare normal samples across tissue types.
For each tissue, we randomly selected half of the samples as
the baseline and then computed the divergence sets for the
left-out samples from the same tissue as well as all of the sam-
ples from other tissues. Fig. 6 shows the results obtained for
two tissue subtypes used as the baseline (breast and skin) on a
selection of seven tissue subtypes. As expected, in all cases, the

remaining samples of the tissue subtype declared as the baseline
showed the least divergence, while the samples from the different
subtypes displayed varying degrees of divergence; SI Appendix,
Fig. S4 shows additional results with the full list of available
GTEx tissues.

The relative degrees of divergence depend on how related the
tissue types are Samples from other tissues that share common
cell types with the baseline have fewer divergent features (e.g.,
breast and adipose tissue in Fig. 6A) than those that do not (e.g.,
skin and brain in Fig. 6B). This suggests that tissue-specific gene
expression baselines could be used to predict the tissue type of
samples of unknown type. To test this hypothesis, we analyzed
48 tissue types in GTEx, deriving tissue-specific baselines using
50 randomly selected samples from each tissue type and then
classifying the tissue-type of the remaining samples. A sample
is classified as the tissue type that provides the smallest num-
ber of divergent genes. In general, accuracies above 90% were
observed. Moreover, incorrect predictions of tissue type always
reflected cell type composition and tissue origin. For instance,
the fact that virtually all misclassified breast samples were labeled
as adipose tissue might be expected since the mammary glands
contain substantial amounts of adipose cells. Similarly, differ-
ent regions of the brain share the same embryological origin and
cellular types (see SI Appendix, Fig. S5).

Comparison of Divergence Profiles Between Disease Phenotypes.
Next, we considered the effect of the divergence transform on
unsupervised learning. In particular, we compared the results of
spectral clustering for the quantile data and the ternary data.
As above, all normal (baseline) and tumor samples were taken
from TCGA, and the mean fraction of normal divergence was
controlled at α= .01 relative to the entire transcriptome. Sam-
ples were randomly and evenly divided into training and test.
Based on the training data, we determined the 100 most dif-
ferentially expressed genes for the four breast cancer subtypes
(luminal A, luminal B, HER2-enriched, and basal-like); we used
the Kruskal–Wallis test for the quantile data and the χ2 test for
the ternary data. We applied spectral clustering to the aggre-
gated training data, both quantile and ternary. In both cases,
we obtain two major, well-separated clusters, one dominated by
basal-like samples and the other by non–basal-like samples (see
Fig. 7). Clearly, by this criterion, the discriminating information
is retained in the divergence profiles.

Furthermore, we compared divergence profiles across multi-
ple clinically relevant, and progressively more pathogenic, can-
cer phenotypes. This revealed an increasing trend in average
divergence from the normal baseline, strongly suggesting that
divergence analysis can efficiently capture the global dysregula-
tion associated with cancer progression or risk factor exposure.

Fig. 5. Decision tree for separating luminal A and B breast cancer sub-
types. For each individual sample, the answer to the question is “YES” if
the indicated pathway (e.g., “G2M CHECKPOINT”) is divergent and “NO”
otherwise.
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Fig. 6. Divergence profile comparison between normal tissue types. Using
(A) breast and (B) sun-exposed skin tissue as baselines, divergence sets
are computed for multiple normal tissue subtypes available in GTEx with
RNA-seq gene expression profiles. Half of the available samples were used
to estimate a normal subtype-specific profile, and the divergence of all
remaining samples was computed with respect to this baseline.

For instance, gene expression divergence increased in prostate
cancer with increasing Gleason grade: the average size of the
divergent set was 883 for tumors with a primary Gleason grade of
3, 1241 for a primary Gleason grade of 4, and 1490 for a primary
Gleason grade of 5. Similar results were also observed in breast
cancer with increasing grade, in the progression from colon ade-
noma to carcinoma, and for DNA CpG methylation divergence
in lung cancer, which increased with tobacco-smoke exposure
(see SI Appendix, Fig. S6 A–D). Notably, the level of devia-
tion from the normal baseline is strongly correlated between
distinct omics modalities derived from the same biological sam-
ples, suggesting global genome-wide dysregulation in both DNA
and RNA in cancer; see, for example, the case of prostate
cancer gene expression and methylation in SI Appendix, Fig.
S7A (Spearman correlation 0.59). Repeating this analysis with
breast cancer data yielded a Spearman correlation of 0.51 (SI
Appendix, Fig. S7B). Overall, these results suggest that the diver-
gence framework is capturing a sparse yet biologically meaning-
ful snapshot of an omics sample and its dysregulation from a
healthy state, which can be observed across distinct omics data
modalities.

Discussion
Combing through large datasets to make meaningful biologi-
cal inferences has become the raison d’être for much of the
current work in bioinformatics. Often the goal is the discovery
of biomarkers or molecular signatures (e.g., gene sets) of clin-
ical utility, and a great many of these based primarily on gene
expression have been proposed over the last 15 years. However,
many high-throughput omics classifiers are learned from rela-
tively small cohorts of samples using population-level estimates
that are highly sensitive to variability, and therefore, the resulting
biomarkers are often difficult to reproduce and validate (21–
23). As a result, leveraging such “gene signatures” has proven
difficult; in fact, the majority of such biomarkers are unable
to meet the rigorous criteria required to be admitted to clini-
cal use. The work here is aimed at ameliorating some of these
barriers.

Sensitivity to platform and preprocessing is one important bar-
rier. Divergence coding begins with the initial conversion of raw
feature values to within-sample ranks to minimize preprocessing

and batch effects. This is also the first step in “quantile normal-
ization” (24) and in the work on “relative expression analysis.”
The latter includes the top scoring pair (TSP) and k-TSP algo-
rithms for distinguishing between two disease phenotypes based
on the expression ordering between two genes (25) and between
k pairs of genes (26, 27), as well as the “RankComp” approach
(28), which aims at identifying dysregulated gene pairs starting
from a pool of stable pairs precompiled using normal samples.
Within-profile rank normalization was extended to “differen-
tial variation” between pathways using Hamming distance to a
phenotype-specific rank template (29) and using the Kendall-tau
or “swap” distance between rank vectors (30, 31).

Concerning “outliers” in omics data, an early example is “Can-
cer Outlier Profile Analysis” (COPA) (6, 7) for gene expression:
First, each gene is standardized across samples from a pheno-
type of interest, and then those genes that display an outlier
profile over a subset of samples are selected. This COPA frame-
work can also be extended to model heterogeneity in integrated
data modalities, and separate gene set statistics can be applied
to determine whether outliers are enriched in multidimensional
gene sets (11).

All of the current methods to quantify dysregulation require
prior knowledge of the sample phenotypes and a population
of samples from each phenotype. Divergence is a sample-level
property that can be applied to a single sample without knowl-
edge of phenotype and thus is not directly comparable to these
methods. The approach perhaps most closely related to diver-
gence is the “Anti-Profiles” method introduced in refs. 10, 32
and applied to cancer diagnosis; genes that deviate from a nor-
mal profile are identified after standardization across samples
and after prefiltering for hypervariability with respect to normal
samples. In contrast, our method requires no across-sample stan-
dardization or prefiltering, making it amenable to the analysis of
individual samples prospectively collected. Moreover, similar to
outlier analysis, the antiprofile approach requires subsequent set
statistics for pathway analysis. Divergence applies to any subset
of features treated as a single entity using the same statistical the-
ory. Both of these differences further limit direct comparison of
divergence to the antiprofile approach.

Enormous biological variation is another barrier. It has been
consistently observed that in many disease conditions there is a
high degree of variation in the omics profiles from sample to sam-
ple. Observations of individual samples and genomic features at
high-resolution may obscure patterns of dysregulation. Further-
more, omics studies usually focus on population-level statistics
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Fig. 7. Clustering digitized data. Results of spectral clustering of Breast
TCGA RNA-seq data in (A) quantile form and (B) digitized form. The
resulting clusters discriminate basal-like samples from all other subgroups.
Digitized data preserve biological information separating the different
subtypes similarly to quantile data.
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derived from samples from two or more classes. The features
measured (e.g., transcript levels, CpG methylation) are treated
as random variables, and properties of their distributions are
estimated from the data and compared between classes of inter-
est. For instance, statistical testing is used to identify a set of
genes for which the marginal distribution is significantly altered
from one phenotype to another. In contrast, in the work here,
“differential expression” is a sample property.

Estimating of the support of a distribution in high dimen-
sions with unions of balls is a complex problem; in particular,
the accuracy will depend heavily on the “effective” number of
dimensions. When the data are supported by a neighborhood
of a small-dimensional manifold of a large-dimensional space,
our support estimator will be much more likely to resemble the
ground truth. Preliminary experiments suggest that this is indeed
the case, but this topic requires further study.

When using a small number of baseline samples, our defini-
tion of divergence will definitely lack precision and, because of
large interpoint distances, will probably err on the side of being
overconservative, with a corresponding loss of power. However,
our results show that the divergence signal is so strong in cancer
that even being overconservative allows for a large number of
out-of-support samples. A loss of power might also result from
analyzing high-dimensional subsets of features. A related issue
is the complexity of the baseline distribution, especially how to
accommodate heterogeneous baseline populations. Such popu-
lations may require refinements such as linking divergence to
covariates. This issue will also be the subject of future research.

Finally, the complexity and black box nature of many bioinfor-
matics methods often prevents reconciling the statistical findings
and decision rules with any underlying biological mechanism. In
contrast, capturing and quantifying the deviation of a disease
sample from the normal, physiologic state is directly meaningful,
inherently interpretable, and well-suited for applications to pre-
cision and personal medicine, including clinical risk assessment
and therapy selection.

Conclusion
The concept of divergence from a baseline requires making
robust and meaningful comparisons from profile to profile.
Here, we begin by converting every raw profile of interest to a
quantile space by normalizing within-sample ranks. Then, given

sufficiently many samples from a suitable baseline population,
defining divergence boils down to the ability to estimate the sup-
port of the underlying baseline probability distribution. Impor-
tantly, divergence labeling of any given sample requires no
further standardization with respect to other samples of the
same class. Estimation of the baseline support is straightforward
for scalar random variables such as individual omics features
(e.g., the expression of a single gene) since the baseline sup-
port is simply an interval; for random vectors assuming values
in an m-dimensional space (e.g., the expression of all genes in a
pathway), we have estimated the support using a metric-based
covering argument. In both cases, by construction, the diver-
gence transform provides a massive reduction in complexity. We
have demonstrated that, nonetheless, a great deal of important
biological information is preserved.

We have focused on applications to human disease, primarily
cancer. The emphasis on patient-level molecular dysregulation is
in line with many accepted paradigms of pathogenesis. Cancer is
particularly subject to such molecular heterogeneity. Stimulating
cell proliferation, inducing abnormality in metabolic pathways,
and genome instability are considered to be hallmarks of can-
cer progression and can collectively, along with many of the
remaining hallmarks, be considered dysregulation of normal cell
behavior. Therefore, a method that can quantify the presence
of dysregulation in a disease sample is directly meaningful and
appropriate for assessing risk.

The analytical framework presented here could be applied to
the study of other complex human diseases that display high lev-
els of interpersonal heterogeneity. As shown here with cancer,
we expect that genomic and epigenomic divergence are perva-
sive and that the extent of divergence is often associated with
relative gravity. Future work will center on the major challenge
of adapting a patient-level divergence profile to individualized
patient care.

Data and Code Availability
All data analyzed here are available from luigimarchionni.org/
divergence.html, and the necessary packages and code can be
obtained from github.com/wikum/DivergenceAnalysis.
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