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The present study proposes a fuzzy mathematical model of HIV infection consisting of a linear fuzzy differential equations (FDEs)
system describing the ambiguous immune cells level and the viral load which are due to the intrinsic fuzziness of the immune
system’s strength in HIV-infected patients. The immune cells in question are considered CD4+ T-cells and cytotoxic T-lymphocytes
(CTLs). The dynamic behavior of the immune cells level and the viral load within the three groups of patients with weak, moderate,
and strong immune systems are analyzed and compared. Moreover, the approximate explicit solutions of the proposed model are
derived using a fitting-based method. In particular, a fuzzy control function indicating the drug dosage is incorporated into the
proposed model and a fuzzy optimal control problem (FOCP) minimizing both the viral load and the drug costs is constructed.
An optimality condition is achieved as a fuzzy boundary value problem (FBVP). In addition, the optimal fuzzy control function is
completely characterized and a numerical solution for the optimality system is computed.

1. Introduction

Usage of fuzzy differential equations is a natural way to
model dynamical systems under uncertainty [1]. For exam-
ple these equations are used to modeling the cell growth and
dynamic of population [2], dry friction [3], tumor growth
[4], and the phenomenon of nuclear disintegration [5]
under uncertainty. In [6], transition from HIV to AIDS (the
acquired immunodeficiency syndrome) is described through
a mathematical model with fuzzy transference rate correlated
with the viral load and CD4+ T-cells level by rule bases.
Moreover, in [7], the authors have proposed a methodology
combining a macroscopic HIV-positive population model,
which is a differential equation system whose transference
rate from asymptomatic to symptomatic population is found
through a fuzzy rule-based system, with an individual
microscopic model to study the evolution of positive HIV
population for manifestation of AIDS. In [8], a fuzzy delay
differential equation is proposed to model HIV infection,
assuming that there exists delay between the infection of a
CD4+ T-cell by the virus and the production of new virus
particles. In this model, the delay and the clearance rate of
HIV particles are fuzzy numbers where correlation between

them is restated by rule bases. However, it should be noted
that the whole parameters of a model such as the production
and clearance rate of viruses and immune cells can be
the source of uncertainty. In real world, there are various
HIV-infected patients with different strengths of immune
system causing uncertainty as to the immune cells level and
the viral load during the different stages of the disease. A
number of mathematical models have been formulated to
describe various aspects of the interaction between HIV
and the immune cells. The basic and simple model of HIV
infection that contains three state variables: healthy CD4+
T-cells, infected CD4+ T-cells, and viruses, is presented by
Perelson et al. [9], and more complicated models containing
other parts of the immune system such as the cytotoxic T-
lymphocyte and the macrophages are presented in [10] and
references therein. None of these models can mirror the
mentioned uncertainties proposing a mathematical model
with fuzzy parameters which could reflect such ambiguities
would be desirable.

One of the earliest suggestions to define the concept of
differentiability for fuzzy mappings and, in consequence, to
study fuzzy differential equations is the Hukuhara derivative
[11]. Nevertheless, the solution of fuzzy differential equation
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interpreted by Hukuhara derivative became fuzzier as time
goes by [12]. Hence, the fuzzy solution behaves quite
differently from the crisp solution. In order to overcome
this difficulty, a more general definition of derivative for
fuzzy-number-valued functions, which is called the strongly
generalized differentiability, has been introduced and many
papers have been published in this field (see, e.g., [1, 2,
5, 13–17] and references therein). In [13] a generalization
of the Hukuhara differentiability to the case of interval-
valued functions is introduced and the local existence and
uniqueness of solutions for the interval differential equations
are obtained under this type of differentiability.

First-order linear fuzzy differential equations are one of
the simplest fuzzy differential equations which may appear
in many applications. However, the form of such an equation
is very simple, it raises many problems since under different
fuzzy differential equation concepts, the behavior of the
solutions is different (depending on the interpretation used).
This type of equations has been studied by many researchers.
For example, the general form of the solutions for the
first-order fuzzy differential equations with crisp coefficients
under the generalized differentiability concept is presented in
[14]. Moreover, an operator method is proposed for solving
a class of first- and second-order linear fuzzy differential
equations under the assumption of strongly generalized dif-
ferentiability which is constructed based on their equivalent
integral forms [15]. The existence and uniqueness of the
solutions has been demonstrated for a first-order linear fuzzy
differential equation with impulses subject to boundary
value conditions, and the explicit solutions are obtained
by calculating the solutions on each level set [16]. The
generalized Euler approximation method is applied to solve
numerically fuzzy differential equations under generalized
differentiability [17]. A number of works in these fields have
dealt with the linear fuzzy differential dynamical systems.
For instance, in [18], a complex number representation of
the α-level sets of the linear first-order fuzzy differential
dynamical systems where the initial condition is described by
a vector of fuzzy numbers is presented and the solutions are
obtained under such representation. Using this approach, a
method is proposed to find the solutions of a class of linear
differential dynamical systems with fuzzy matrices [19] and
the proposed method is extended to provide the solutions
of linear matrix differential dynamical systems with fuzzy
matrices [20].

Classical control system is described by a differential
equation. However, uncertainty is inherit in most dynamic
systems. The concept of fuzzy optimal control was presented
by Komolov et al. [21] in 1979. Since then, many researchers
have studied this type of problems. In [22], fuzzy differential
equations are generalized to be fuzzy set control differential
equations (FSCDEs) and the problem of stability and
controllability of FSCDE are presented. Furthermore, some
properties of the fuzzy solution for the linear FSCDE as well
as the necessary and sufficient optimality conditions for a
linear fuzzy time optimal control problem are obtained in
[23].

In this paper, we model the uncertain behaviors of CD4+
T-cells and CTLs level and the viral load in different patients

by a system of linear fuzzy differential equations and analyze
the optimal control regarding minimizing both the viral load
and drug costs.

Following a preliminary introduction, in Section 3, a
system of linear differential equations with fuzzy parameters
describing the ambiguous behaviors of CD4+ T- cells and
CTLs level and the HIV viral load in patients with a weak,
moderate and strong immune system is introduced. More-
over, a method for finding explicit solutions to the proposed
model is introduced in this section. Some authors have used
mathematical models for HIV infection in conjunction with
control theory to achieve appropriate goals. Although the
proposed model is simple, it can be used to investigate
the effects of antiretroviral therapy in preventing the HIV
progression. Section 4 is devoted to the latter topic. The last
section deals with the conclusion.

2. Preliminaries

In this section, we give some definitions and introduce the
necessary notations which will be used throughout the paper.
See, for example, [12].

Definition 1. (fuzzy set, α-level set, and fuzzy number) A
fuzzy set ũ in Rn is defined as a set of all pairs (x,μũ (x)) ∈
Rn × [0, 1] for some function μũ : Rn → [0, 1], which is
called the membership function of ũ, and μũ(x) is interpreted
as the membership grade of a element x in the fuzzy set ũ.
We define [ũ]α = {x ∈ R | μũ(x) ≥ α} the α-level set of ũ,
with 0 < α ≤ 1. For α = 0, the support of ũ is defined as
[ũ]0 = supp(ũ) = cl{ x ∈ R | μũ(x) > 0}, where cl denotes
the closure of a subset. A fuzzy set ũ in R is called a fuzzy
number in R if

(i) μũ is upper semicontinuous on R,

(ii) ũ is a convex fuzzy set, that is, μũ(λx + (1 − λ)y) ≥
min{μũ(x),μũ(y)}, for all x, y ∈ R, λ ∈ [0, 1],

(iii) μũ is normal, that is, there exists a unique x0 ∈ R such
that μũ(x0) = 1,

(iv) the support of ũ is compact.

Example 2. The normal level of CD4+ T-cells in blood, that
is: “close to 1000 cells/μL,” can be represented as a fuzzy set ũ
with a membership function defined as μũ(x) = exp(−β(x −
1000)2) where β is a positive real number. It is easy to see that

[ũ]α = [1000 −
√

−β−1 lnα, 1000 +
√

−β−1 lnα]. The mem-

bership function μũ(·) with β = 0.0005 and [ũ]α are shown
in Figure 1. Note that [ũ]0 = (−∞, +∞); hence, ũ is not a
fuzzy number.

The set of all fuzzy numbers in R is denoted by F(R).
From (i)–(iv), it follows that if ũ belongs to F(R) then the
α -level set [ũ]α is a nonempty compact interval for all α ∈
[0, 1]. The notation [ũ]α = [uα,uα] denotes explicitly the α-
level set of ũ. Triangular fuzzy numbers are one of the most
commonly used fuzzy numbers. The membership function
of a triangular fuzzy number ũ is completely characterized
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Figure 1: The membership function of the fuzzy set of real numbers “close to 1000” and its α-level set.

with the peak (or center) m, left width σ ≥ 0, and right width
β ≥ 0 and has the following form:

μũ(x) =
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⎩

1− m− x

σ
, if m− σ ≤ x < m,

1− x −m

β
, if m ≤ x ≤ m + β,

0, otherwise,

(1)

and we use the notation ũ = (m, σ ,β). A triangular fuzzy
number ũ = (m, σ ,β) is named a symmetric triangular
fuzzy number if its left width and right width are equal and
we denote it by ũ = (m, σ), for brevity. Some examples
of triangular and symmetric triangular fuzzy numbers are
depicted in Figures 2 and 3, respectively. We consider a crisp
number a ∈ R as a symmetric triangular fuzzy number
a = (a, 0).

Let f be a real-valued mapping on Rn. Assume ũ j ,
j = 1, . . . ,n are fuzzy numbers in R. Using the extension
principle, we can define ˜Y = f (ũ1, . . . , ũn) as a fuzzy set in
R such that

μ
˜Y

(

y
)

=

⎧

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪

⎩

sup min
{

μũ1 (x1), . . . ,μũn(xn) |
(x1, . . . , xn)∈ f −1

(

y
)}

, if f −1
(

y
)

/=φ,

0, if f −1
(

y
) = φ.

(2)

Example 3. Let f (x) = λx be a linear function. Suppose ũ ∈
F(R), and let ˜Y = f (ũ). Then, using the extension principle,
we obtain μ

˜Y (y) = sup{μũ(x) | y = λx} = μũ(y/λ). Especial-
ly, if λ = −1, then we write f (ũ) = Θũ and we have μΘũ(y) =
μũ(−y).

Theorem 4. Let f be a real-valued mapping on Rn, and let ũ j ,
j = 1, . . . ,n, be fuzzy numbers in R. Then, [ f (ũ1, . . . , ũn)]α =
f ([ũ1]α, . . . , [ũn]α) where f (ũ1, . . . , ũn) is defined by the
extension principle and f ([ũ1]α, . . . , [ũn]α) = { f (u1, . . . ,un) |
u 1 ∈ [ũ1] α, . . . ,un ∈ [ũn] α}.

1

0
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Figure 2: The fuzzy numbers ũ = (4, 4, 1) (- - -), ṽ = (3, 1, 4) (—),
�max{ũ, ṽ} (◦◦), and ˜min{ũ, ṽ} (∗∗).
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Figure 3: The fuzzy numbers ũ = (−1, 1) (—), ṽ = (2, 2/3) (- - -) ,
ũΘHṽ (· · · ), and ũ⊗Z ṽ (–·–).

Proof (see [12]). The above theorem defines arithmetic oper-
ations of fuzzy numbers in terms of their α-level sets
by [ũ ⊕ ṽ]α = [uα + vα,uα + vα], [ũ Θ ṽ]α = [uα −
vα,uα − vα], and [ũ ⊗ ṽ]α = [min{uαvα,uαvα,uαvα,uαvα},
max{uαvα,uαvα,uαvα,uαvα}], where ⊕, Θ, and ⊗ denote the
addition, minus, and multiplication operators on F(R), resp-
ectively. Moreover, [Θ ũ]α = [−uα,−uα].

Definition 5 (fuzzy max, fuzzy min, fuzzy inequality, and
the weighted center of gravity). Let ũ, ṽ ∈ F(R), and
f (x, y) = max{x, y}. Then, the maximum of ũ and ṽ is
defined by f (ũ, ṽ) and applying the extension principle.
Similarly, setting f (x, y) = min{x, y}, then f (ũ, ṽ) defines
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the minimum of ũ and ṽ. We denote the maximum and
the minimum of ũ and ṽ by �max{ũ, ṽ} and ˜min{ũ, ṽ},
respectively. The notation “≤̃” will be used for the inequality
relation between fuzzy numbers ũ and ṽ and is defined as
ũ ≤̃ ṽ ⇔ m˜in{ũ, ṽ} = ũ. Moreover, the quantity of fuzzy
number ũ can be given by its weighted center of gravity
(WCOG) defined as u = ∫ 1

0 α(uα + uα)dα, where the weights
are the membership degrees.

Example 6. Two triangular fuzzy numbers ũ = (4, 4, 1), ṽ =
(3, 1, 4) and their maximum and minimum are shown in
Figure 2. Moreover, if ũ = (m, σ ,β), then the WCOG of ũ
is u = ∫ 1

0 α[2m + (1− α)(σ − β)]dα = m + 1/6(σ − β).

Applying Theorem 4, we get [m˜in(ũ, ṽ)]α =
min{[ũ]α,[ṽ]α} = [min{uα,vα}, min{uα,vα}]; hence, ũ≤̃ṽ ⇔
uα ≤ vα, uα ≤ vα, for all α ∈ [0, 1].

Definition 7 (H-difference and Z-product). Let ũ, ṽ ∈ F(R).
If there exists z̃ ∈ F(R) such that ũ = ṽ ⊕ z̃, then z̃ is called
the H-difference of ũ and ṽ and it is denoted by ũ ΘH ṽ.
Moreover, if there exist z̃ ∈ F(R) such that z̃ ⊗ ṽ −1 = ũ,
then we call it the Z-product of ũ and ṽ and we denote it by
z̃ = ũ ⊗Z ṽ.

Note that the Z-product of fuzzy numbers is a new
concept which is introduced in this paper for the first time.
It is easy to see that [ũ ΘH ṽ]α = [uα − vα,uα − vα] and
[ũ ⊗Z ṽ]α = [uαvα,uαvα], if ũ ≤̃ (0, 0) and (0, 0) ≤̃ ṽ.

Example 8. Let ũ = (−1, 1) and ṽ = (2, 2/3). A straightfor-
ward calculation shows [ũ ΘH ṽ]α = [−3− 1/3(1− α),−3 +
1/3(1 − α)]; hence, ũ ΘH ṽ = (−3, 1/3). Furthermore, we
obtain [ũ⊗Zṽ]α = [−8/3 + 2/3α2,−8/3α + 2/3α2] which is
valid α-level set of a fuzzy number (not a triangular fuzzy
number). The fuzzy numbers ũ, ṽ and their H-difference and
Z-product are shown in Figure 3, for the sake of clarity.

Definition 9 (the strongly generalized differentiability). Let
x̃ : (a, b) → F(R) be a fuzzy function and t0 ∈ (a, b). We say
that. x̃ is differentiable at t0 if it exists an element ˙̃x(t0) ∈
F(R) such that, for all h > 0 sufficiently near to 0,

(i) there are x̃(t0 + h)ΘH x̃(t0) and x̃(t0)ΘH x̃(t0 −
h) and the limits limh→ 0+ (x̃(t0 + h)ΘH x̃(t0)/h) =
limh→ 0+ (x̃(t0)ΘH x̃(t0 − h)/h) = ˙̃x(t0) or

(ii) there are x̃(t0 − h)ΘH x̃(t0) and x̃(t0)ΘH x̃(t0 + h)
and the limits limh→ 0+ (x̃(t0)ΘHx̃(t0 + h)/ − h) =
limh→ 0+ (x̃(t0 − h)ΘHx̃(t0)/ − h) = ˙̃x(t0), where the
limits are taken in the metric D defined as D(ũ, ṽ) =
supα∈[0,1] max{|uα − vα|, |uα − vα|}, for all ũ, ṽ ∈
F(R).

Theorem 10. If x̃(t) is differentiable in the first form (i), then

xα(t) and xα(t) are differentiable functions and [ ˙̃x(t)]
α =

[ẋα(t), ẋα(t)]. If x̃(t) is differentiable in the second form (ii),

then xα(t) and xα(t) are differentiable functions and [ ˙̃x(t)]
α =

[ẋα(t), ẋα(t)].

Proof (see [17]). Consider the following fuzzy initial value
problem:

˙̃x(t) = f (t, x̃(t)), x̃(0) = x̃0, (3)

where f : I × F(R) → F(R) is a fuzzy function and
x̃0 ∈ F(R). Let [ f (t, x̃)]α = [ f

α
(t, xα, xα), fα(t, xα, xα)]. From

Theorem 10, if we consider x̃(t) by using the derivative in the
first form (i), then the solution of problem (3) is obtained
by solving the following system of ordinary differential equa-
tions:

ẋα(t) = fα
(

t, xα(t), xα(t)
)

, xα(0) = x0α,

ẋα(t) = fα
(

t, xα(t), xα(t)
)

, xα(0) = x0α,
(4)

and ensuring that [xα(t), xα(t)] and [ẋα(t), ẋα(t)] are valid α-
level sets. Moreover, if we consider x̃(t) by using the deriv-
ative in the second form (ii), then the solution of problem
(3) is obtained by solving the following system of ordinary
differential equations,

ẋα(t) = fα
(

t, xα(t), xα(t)
)

, xα(0) = x0α,

ẋα(t) = fα
(

t, xα(t), xα(t)
)

, xα(0) = x0α,
(5)

and ensuring that [xα(t), xα(t)] and [ẋα(t), ẋα(t)] are valid α-
level sets.

The integral of fuzzy function x̃(t) using the Riemann
integral concept can be defined as follows.

Definition 11. The integral of a fuzzy mapping x̃ : [a, b] →
F(R) is defined levelwise by

[
∫ b

a
x̃(t)dt

]α

=
[
∫ b

a
xα(t)dt,

∫ b

a
xα(t)dt

]

. (6)

Note that if x̃ : [a, b] → F(R) is continuous in the metric D,
then it is integrable, that is,

∫ b
a x̃(t)dt ∈ F(R).

Example 12. Define the fuzzy mapping x̃ : [0, 0.5] → F(R)

by x̃(t) = (t, sinπt, cosπt). Then, [
∫ b
a x̃(t)dt]

α = [
∫ 0.5

0 ( t −
(1− α) sinπt )dt,

∫ 0.5
0 ( t + (1− α) cosπt)dt] = [0.125− (1−

α)π−1, 0.125 + (1− α)π−1]; hence,
∫ b
a x̃(t)dt = (0.125,π−1).

3. Linear Fuzzy Model of HIV Infection

HIV infection can be characterized as a disease of the
immune system, with progressive depletion of defensive
cells, resulting in immunosuppression and susceptibility to
opportunistic infections. CD4+ T-cells, CTLs, and the virus
particles play important roles in HIV infection. CD4+ T-
cells are a fundamental component of the human immune
response system. These cells can be considered “messengers”
or the command centers of the immune system, and they
signal other immune cells that an invader is to be fought. The
immune response cells, or cytotoxic lymphocytes (CTLs), are
the cells that respond to this message and set out to eliminate
infection by killing infected cells. HIV can infect a number of
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cells in the body however, its main target is the CD4+ T-cells.
HIV enters these cells by a complex process and begins to
replicate, then the new virus particles are released by bursting
the infected cells. CD4+ T-cells are generated from sources
within the body and are lost either by having finite life span
or by bursting during the proliferation of HIV, which leads
to a drop in the number of these cells, after infection and
an accelerated decrease during the later stages of the disease
that signals the onset AIDS. In accordance with experimental
findings, too high a level of HIV impairs establishment
of a lasting CTL response. This is a delicate task, since
CD4+ T-cell population, which plays an essential role in
stimulation of immune response, depletes dramatically with
raising the HIV load. The rate of CD4+ T-cells depletion
varies greatly from patient to patient, depending on the
strength or weakness of the immune system. More precisely,
a stronger immune system leads to a lower rate of CD4+ T-
cells depletion and vice versa. We have a similar argument
about the proliferation rate of HIV particles. Therefore, the
levels of the immune cells as well as the HIV viral load during
the different stages of the disease can be considered as fuzzy
quantities. According to these descriptions, the interaction of
HIV with the immune system can be modeled by a system of
linear differential equations with fuzzy parameters as follows:

˙̃x = ˜λΘσ̃ ⊗ x̃Θc̃ ⊗ ṽ,

˙̃v = ˜k ⊗ ṽΘã⊗ z̃,

˙̃z = ˜h⊗ x̃Θτ̃ ⊗ ṽ,

(7)

where the fuzzy functions x̃(t), z̃(t), and ṽ(t) indicate the
level of CD4+ T-cells, CTLs, and the HIV viral load at
time t, respectively. Most of the terms in the model have
straightforward interpretations as follows.

The first equation in (7) represents the dynamics of
the concentration of CD4+ T-cells. The CD4+ T-cells are
produced from a source, such as the thymus, at a constant

rate ˜λ. Here, we have assumed that CD4+ T-cells have a finite
life-span and die at a rate σ̃ per cell. Therefore, the number of
these cells, which are lost due to natural death, is represented
through the loss term σ̃ ⊗ x̃ in the first equation. Moreover,
the CD4+ T-cell population is lost through infection by a
virus particle at a rate of c̃, and so the term c̃ ⊗ ṽ models
the rate that free viruses destroy CD4+ T-cells. The second
equation in (7) depicts the rate of change in the virus
population. An HIV particle uses a host cell to replicate

itself and thus proliferates with a growth rate ˜k. Thus, the

total amount of produced viruses is given by the term ˜k ⊗
ṽ. Infected cells are killed by CTLs, and hence viruses are
lost through an immune response. Assuming that a CTL
eliminates the virus particles at a rate ã, the number of virus
particles eliminated by the immune response is given by the
term ã⊗ z̃. The third equation in (7) describes the dynamics
of CTLs during HIV infection. A CD4+ T-cell stimulates

CTLs to proliferate at a rate ˜h. Therefore, CD4+ T-cells effect

on proliferation of CTLs is expressed by the term ˜h⊗ x̃. The
term τ̃ ⊗ ṽ takes into account loss of CTLs due to increasing

the HIV viral load where τ̃ is the rate at which the virus-
induced impairment of CD4+ T-cell function occurs.

In this paper, a patient with respect to the strength or
weakness of its immune system is considered as a patient
with the weak, moderate, or strong immune system and is
indicated by W , M, or S, respectively. The initial condition
of ṽ(0) = ṽ0 varies in different patients. For that reason,
a primary response is provoked when the immune system
encounters HIV for the first time and, in this stage, a number
of viruses depending on the strength or weakness of the
immune system are eliminated, and the proposed model
describes the changes in the immune cells level and the viral
load after this stage which is called the secondary immune
response. Therefore, a stronger immune response implies a
lower ṽ0 and vice versa. The values of the model parameters
and ṽ0 corresponding to patients W , M, and S are shown
in Figure 4 as triangular fuzzy numbers. These parameters
were chosen to be consistent with biological plausibility.
Moreover, we assume that, at time t = 0, the level of CD4+
T-cells is normal and there is no CTL-mediated immune
response in all patients, that is, x̃(0) = x̃0 = (100, 0)
and z̃(0) = z̃0 = (0, 0). We must note that x̃(t) denotes
CD4+ T-cells level in percentage at time t. The derivative
in the second form (ii) leads to solutions with decreasing
length of their support which leads us to the conclusion
that the uncertainty decreases with the time lapse which is
not consistent with real situation. Moreover, the existence
of these solutions implies that the initial conditions should
be fuzzy. Therefore, we consider only the solutions with the
derivative in the first forms (i) which are more consistent
with real situation. Consequently, as mentioned in Section 2,
the fuzzy model (7) is transformed to the following system of
ordinary differential equations (ODEs):

ẋα(t) = λα − σαxα(t)− cαvα(t),

ẋα(t) = λα − σαxα(t)− cαvα(t),

v̇α(t) = kαvα(t)− aαzα(t),

v̇α(t) = kαvα(t)− aαzα(t),

żα(t) = hαxα(t)− ταvα(t),

żα(t) = hαxα(t)− ταvα(t),

xα(0) = x0α, xα(0) = x0α,

vα(0) = v0α, vα(0) = v0α,

zα(0) = z0α, zα(0) = z0α.

(8)

For each α ∈ [0, 1], the ODEs (8) are linear; hence, the exact
solutions in discrete times are obtained using the ode45 code
in MATLAB. However, it would be appropriate to propose
explicit solutions as a function of α and t. The next section is
devoted to this topic.

3.1. The Approximate Explicit Solutions Based on a Fitting
Method. The proposed method is based on the fact that
a linear combination of suitable functions of α and t can
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Figure 4: The values of model parameters corresponding to patients W (- -), M (· · · ), and S (—).

generate the best fit to the exact values obtained by the ode45
in the least squares sense. The following discussion shows
that these functions can be exponential. The ODEs (8) can
be written in a matrix form as:

Ẋα(t) = AαXα(t) + Bα,

Xα(0) = X0α.
(9)

By the variation of constants formula for ordinary differen-
tial equations, the solution of the initial value problem (9) is
Xα(t) = eAαtX0α +

∫ t
0 e

Aα (t−τ)Bαdτ. Since the six-dimensional
matrix Aα depends on α, the calculation of eAαt becomes
difficult. But this matrix can be written as Aα = A1 + (1 −
α)A2, where A1 and A2 are α-independent matrices. We have
eAαt = eA1te(1−α)A2t + O(t), where O(t) is a function that
limt→ 0O(t)/t = 0. Assuming that 	js and σ j s, j = 1, . . . , 6,
are eigenvalues of A1 and A2, respectively, there are invertible
matrices P and Q such that A1 = PD1P−1 and A2 = QD2Q−1,
where D1 = diag(	1, . . . , 	6) and D2 = diag(σ1, . . . , σ6).
Therefore, for small t,

eAαt ≈ P

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e	1t 0 · · · 0

0 e	2t · · · ...

...
...

. . . 0

0 · · · 0 e	6t

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

P −1

×Q

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

e(1−α)ζ1t 0 · · · 0

0 e(1−α)ζ2t · · · ...

...
...

. . . 0

0 · · · 0 e(1−α)ζ6t

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Q −1.

(10)

As a result, the fitting functions are chosen as e(	i+(1−α)σ j )t,
i, j = 1, . . . , 6. Therefore, by choosing the numbers 	j , j =
1, . . . ,n, and σi, i = 1, . . . ,m, where n,m ∈ {1, 2, . . . , 6}, an
approximate solution can be found in the following form:

Sα(t) ≈ KEα(t), (11)

where Sα(t) = [xα(t), xα(t), vα(t), vα(t)]T , Eα(t) =
[e(	1+(1−α)σ1)t, . . ., e(	1+(1−α)σm)t, . . ., e(	n+(1−α)σ1)t, . . ., e(	n+(1−α)σm)t]T

and K = [ki j]4×nm denotes the coefficients matrix that can be
found using the lsqnonlin code of the optimization toolbox
in MATLAB. Obviously, zα(t) and zα(t) are obtained from
the 5th and the 6th equations in (8) using the approximate
values xα(t), xα(t), vα(t), and vα(t).

3.2. Dynamic Behavior of the Immune Cells Level and the
Viral Load in Patient W . Figure 5 shows the level of immune
cells and the HIV viral load of patient W during the time



Computational and Mathematical Methods in Medicine 7

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

100

t (day)

x̃(
t)

(a)

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

t (day)

ṽ(
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Figure 5: CD4+ T-cells level (a), the viral load (b), and CTLs level (c) versus time in patient W.

interval [0, 1800]. The darker color shows the curve with the
higher possibility. Figure 5(a) shows that the gradual declines
in CD4+ T-cells level correspond to the low possibilities,
while the rapid declines and the progression to full blown
AIDS after a gradual decay, have the high possibilities of
occurrence. Figure 5(b) shows a rapid increase in the viral
load during the later stages of the disease. Moreover, we
observe that, at each time, a higher viral load corresponds
to a higher possibility. Figure 5(c) shows a clear correlation
between CTLs level in the blood and HIV progression. As
the viral load increases upon initial infection, CTLs increase
in order to decrease the virus. But ultimately the level
of these cells begins to decrease, which is due to virus-
induced impairment of CD4+ T-cell function, with the high
possibilities after about the 1450th day. Besides, a lower CTLs
level has a higher possibility of occurrence and vice versa.

From Figures 5(a) and 5(b), there is an inverse correlation
between the HIV viral load and the level of CD4+ T-cells.
Following the proposed method in Section 3.1, choose the
eigenvalues of the corresponding matrices A1 and A2 as

(σ1, σ2) = (−0.2600 × 10−3, 0.6537 × 10−11),

(	1, 	2, 	3, 	4, 	5) = (− 0.2801 × 10−2, 0.2801 × 10−2,

− 0.2145 × 10−6,

− 0.1128 × 10−6, 0.6760 × 10−2).
(12)

Then, we have an approximate explicit solution in the form
of (11) where the corresponding coefficients matrix K is
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Figure 6: Exact (—) and approximate (×) CD4+ T-cells level (a) and the viral load (b) in patient W .

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.6684 10.1635 −0.2245 0.2229 −0.7100 45.2900 −0.7028 45.2924 −0.0009 0.0005

−3.1406 13.9779 0.1989 −0.1974 0.6763 43.8973 0.6832 43.8994 0.0004 −0.0008

−0.0123 0.0109 −0.0002 0.0002 0.0044 −0.0038 0.0044 −0.0038 −0.0000 0.0003

0.8273 −0.8222 0.0219 −0.0217 −0.1624 0.1608 −0.1623 0.1609 0.0004 −0.0001

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (13)

A comparison between the exact and approximate solu-
tions which is shown in Figure 6 confirmed the effectiveness
of this approach.

3.3. Dynamic Behavior of the Immune Cells Level and the
Viral Load in Patient S. Figure 7 shows the changes in
the immune cells level and the viral load in patient S.
With respect to Figure 7(a), CD4+ T-cells level decreases
gradually during the 1800 days from infection with the high
possibilities. Moreover, an increase in CD4+ T-cells as well
as the progression to AIDS arises with a low possibility.

The HIV viral load is low and a lower viral load has a
higher possibility of occurring, as shown in Figure 7(b). A
high CD4+ T-cell count and a low HIV viral load lead to
establishment of a lasting CTL response which is shown in
Figure 7(c). A high HIV viral load and a low CD4+ T-cells
level impair the immune response where this arises with the
low possibilities as shown in Figure 7 as the light curves.
The selected numbers 	is and σ j s and the corresponding
coefficients matrix K representing the approximate explicit
solutions in the form of (11) are as

(σ1, σ2) = (

0.2600× 10−3, 0.6537× 10−11),

(	1, 	2, 	3, 	4, 	5) = (− 0.2800× 10−2, 0.2800× 10−2, −0.1159× 10−6, 0.6240× 10−2,−0.2378× 10−6),

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−3.3203 13.9175 0.1287 −0.1265 0.7662 43.9293 0.0003 −0.0006 0.7723 43.9412

0.8303 9.7266 −0.1431 0.1412 −0.8060 45.5176 −0.0008 0.0005 −0.7996 45.5300

0.3895 −0.3902 0.0110 −0.0109 −0.0724 0.0725 0.0004 −0.0002 −0.0724 0.0726

0.0076 −0.0099 0.0002 −0.0002 −0.0051 0.0063 −0.0000 0.0002 −0.0051 0.0063

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(14)

3.4. Dynamic Behavior of the Immune Cells and the Viral Load
in Patient M. Figure 8 shows the changes in the immune
cells level and the viruses in patient M. From Figure 8(a),

the uncertainty of CD4+ T-cells level increases and new
possibilities, varying fromm an increment to normal level to
rapid progression to full blown AIDS, arise after a gradual
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Figure 7: CD4+ T-cells level (a), the viral load (b), and CTLs level (c) versus time in patient S.

decay. But the most possible scenario is between where
the level of these cells decreases at a moderate rate. A
moderate viral load occurs with a high possibility, as shown
in Figure 8(b). A moderate CD4+ T-cells level as well as
a moderate viral load implies a moderate CTLs level, as

shown in Figure 8(c). Besides, from this figure, a high (low)
viral load and a low (high) CD4+ T-cells number decrease
(increase) CTLs level, and this happens with a low possibility.

Here, a representation for solutions is given in the form
of (11) where

(	1, 	2, 	3, 	4, 	5) = (−0.2800× 10−2, 0.2800× 10−2, 0.2257× 10−6,−0.1143× 10−6, 0.6500× 10−2),

(σ1, σ2, σ3) = (

0, −0.2600× 10−3, 0.2600× 10−3),

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

45.7977 −20.3001 −14.9203 0.8002 −0.6250 −0.1772 26.5114 9.6039 8.5734 26.5188 9.6169 8.5785 −0.0004 −0.0006 0.0006

25.4227 −12.6502 −2.1878 0.4622 −0.0933 −0.3705 31.2491 8.3945 5.0396 31.2549 8.4097 5.0415 −0.0000 0.0005 −0.0008

−0.2693 −0.3082 0.5693 −0.0159 −0.0016 0.0174 −0.0068 0.0869 −0.0772 −0.0069 0.0869 −0.0773 −0.0003 0.0001 0.0005

−0.0517 0.2515 −0.2007 −0.0035 0.0074 −0.0040 −0.0033 −0.0363 0.0406 −0.0033 −0.0363 0.0406 −0.0002 0.0004 0.0000

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(15)
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3.5. A Comparison between the Immune Cells Level and the
Viral Load in Patients W , M, and S. From Figures 5(b), 7(b),
and 8(b), there is an inverse correlation between the viral
load and the immune system strength. CD4+ T-cell and CTL
levels in patient S are more than the level of these cells in
patient W, as shown in Figures 5 and 7. A high viral load in
patient W leads to a virus-induced impairment of CD4+ T-
cell function. Therefore, CTLs level in this patient is less than
the level of these cells in patient S, as shown in Figures 5(c)
and 7(c). A comparison between CTLs level in patients M
and S shows that it is possible that CTLs level in patient M be
slightly more than the level of these cells in patient S, which
can be due to this fact that patient M has more antigens that
are required to stimulate CTLs (see Figures 7(b) and 8(b)),
and, thus, a higher level of CD4+ T-cells in patient M is
possible as shown in Figures 7(a) and 8(a). Figure 9 shows
CD4+ T-cell and CTL levels and the viral load of patients W,
M, and S on the 1800th day. Here, we perform a comparison
between the immune cells level and the HIV viral load of
patients based on their weighted center of gravity (WCOG).

For this end, the WCOG of x̃(t), ṽ(t), and z̃(t) is denoted
by x(t), v(t), and z(t), respectively; hence,

x(t) =
∫ 1

0
α
(

xα(t) + xα(t)
)

dα,

v(t) =
∫ 1

0
α
(

vα(t) + vα(t)
)

dα,

z(t) =
∫ 1

0
α
(

zα(t) + zα(t)
)

dα.

(16)

With respect to (11), an approximate explicit formula for
the WCOG of x̃(t) and ṽ(t) is given as S(t) ≈ NF(t), where
S(t) = [x(t), v(t)]Tand N is a matrix with two rows that its
first and second rows are obtained by summing the first two
rows and the last two rows of the corresponding coefficients
matrix K, respectively. Moreover,

F(t) =
∫ 1

0
α Eα(t)dα

=
[

e	1t

σ1t

(

eσ1t

σ1t
− 1

σ1t
− 1

)

, . . . ,

e	1t

σmt

(

eσmt

σmt
− 1

σmt
− 1

)

, . . . ,

e	nt

σ1t

(

eσ 1t

σ1t
− 1

σ1t
− 1

)

, . . . ,

e	nt

σmt

(

eσmt

σmt
− 1

σmt
− 1

)]T

.

(17)

The WCOG of x̃(t), ṽ(t), and z̃(t) corresponding to patients
W , M, and S is shown in Figure 10. From Figures 10(a)
and 10(c), CD4+ T-cells and CTLs level are proportional
to the strength of patient’s immune system such that a
stronger immune system leads to a higher level of these cells.

Moreover, there is an inverse correlation between the viral
load and the strength of the immune system as shown in
Figure 10(b).

4. Fuzzy Optimal Control Problem

In this section, we formulate a fuzzy optimal control problem

that identifies the parameter ˜k in (8), with a function of
the fuzzy control variable ũ. In particular, we will replace

the parameter ˜k with the function ˜k ΘH ũ. This choice then
identifies the control variable ũ(t) with the rate of inhibition
of virus reproduction, which is modeled as a simple function
of drug dosage. Therefore, we have the fuzzy set control
differential equations (FSCDEs) as

˙̃x = ˜λ Θ σ̃ ⊗ x̃ Θ c̃ ⊗ ṽ,

˙̃v =
(

˜k ΘH ũ
)

⊗ ṽ Θ ã⊗ z̃,

˙̃z = ˜h⊗ x̃ Θ τ̃ ⊗ ṽ.

(18)

This paper aims to propose a drug regimen that minimizes
both the viral load and the drug costs. Here, we assume
that the cost of the treatment is proportional to ũ2(t) at

time t. Therefore, the fuzzy functional ˜J(ṽ, ũ) = ∫ t f
t0 (w̃ ⊗

ṽ(t)⊕ũ2(t))dt should be minimized, where the positive fuzzy
number w̃ is used to set the relative importance between
minimizing the viral load and the systemic cost to the body.
Let T = [t0, t f ], and assume C(T) be the set of all continuous
fuzzy number valued functions on T . Assuming that the
minimum and the maximum of allowable drug dosage are
denoted by fuzzy numbers ũmin and ũmax, respectively, then
we are seeking a ũ∗ ∈ ˜U such that ˜J(ṽ∗, ũ∗)≤̃ ˜J(ṽ, ũ), for all
ũ ∈ ˜U , where ˜U = { ũ ∈ C(T) : ũmin≤̃ ũ(t) ≤̃ ũmax, for
all t ∈ T}. By using the derivative in the first form (i), the
FSCDEs (18) is converted to the following control system:

ẋα(t) = λα − σαxα(t)− cαvα(t),

ẋα(t) = λα − σαxα(t)− cαvα(t),

v̇α(t) =
(

kα − uα(t)
)

vα(t)− aαzα(t),

v̇α(t) = (

kα − uα(t)
)

vα(t)− aαzα(t),

żα(t) = hαxα(t)− ταvα(t),

żα(t) = hαxα(t)− ταvα(t),

xα(0) = x0α, xα(0) = x0α,

vα(0) = v0α, vα(0) = v0α,

zα(0) = z0α, zα(0) = z0α.

(19)

With respect to Definition 5, a fuzzy function ũ∗ ∈
˜U is viewed as an optimal solution, if, for each α ∈
[0, 1], the pair (u∗α ,u∗α ) ∈ U minimizes the functionals

[
∫ t f
t0 (w̃ ⊗ ṽ(t)⊕ ũ2(t))dt]α = ∫ t f

t0 (wαvα(t) + u2
α(t))dt and
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Figure 8: CD4+ T-cells level (a), the viral load (b), and CTLs level (c) versus time in patient M.

[
∫ t f
t0 (w̃ ⊗ ṽ(t)⊕ ũ2(t))dt]

α
= ∫ t f

t0 (wαvα(t) + u2
α(t))dt simul-

taneously, where vα(t) and vα(t) are the solution of ODEs
(19) corresponding to control pair (uα,uα), and U is the set
of all measurable control pairs (uα,uα) that umin

α ≤ uα(t) ≤
umax
α , umin

α ≤ uα(t) ≤ umax
α , for all t ∈ T . Therefore,

we restrict our attention to optimizing the functional J(vα,

vα,uα,uα) = ∫ t f
t0 (wαvα(t)+wαvα(t)+u2

α(t)+u2
α(t))dt over the

set U . We now proceed to compute candidates for an optimal
solution by applying the Pontryagin’s Maximum Principle
[24] and begin by defining the Lagrangian to be

Lα
(

xα, xα, vα, vα, zα, zα,uα,uα, λ1α, . . . , λ6α
)

= wαvα(t) + wαvα(t)

+ u2
α + u2

α + λ1α

(

λα − σαxα − cαvα
)

+ λ2α
(

λα − σαxα − cαvα
)

+ λ3α

((

kα − uα
)

vα − aαzα
)

+ λ4α
((

kα − uα
)

vα − aαzα
)

+ λ5α

(

hαxα − ταvα
)

+ λ6α
(

hαxα − ταvα
)

− ω11

(

uα − umin
α

)

− ω12
(

umax
α − uα

)

− ω21

(

uα − umin
α

)

− ω22
(

umax
α − uα

)

,

(20)

where ωij ≥ 0 are the penalty multipliers satisfying ω11(u∗α −
umin
α ) = ω12(umax

α −u∗α ) = 0 and ω21(u∗α −umin
α ) = ω22(umax

α −
u∗α ) = 0. Thus, the Maximum Principle gives the existence of
adjoint variables λjα, j = 1, . . . , 6, satisfying

λ̇1α = − ∂Lα
∂ xα

= σαλ2α − hαλ5α,

λ̇2α = −∂Lα
∂xα

= σαλ1α − hαλ6α,
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Figure 9: The fuzzy numbers indicating CD4+ T-cells level (a), the viral load (b), and CTLs level (c) on the 1800th day in patients W (- -),
M (· · · ) and, S (—).

λ̇3α = − ∂Lα
∂ vα

= −wα + cαλ2α −
(

kα − uα
)

λ3α + ταλ6α,

λ̇4α = −∂Lα
∂vα

= −wα + cαλ1α −
(

kα − uα
)

λ4α + ταλ5α,

λ̇5α = −∂Lα
∂zα

= aαλ4α,

λ̇6α = −∂Lα
∂zα

= aαλ3α,

(21)

where λjα(t f ) = 0, j = 1, . . . , 6, are the transversality
conditions. The Lagrangian is minimized with respect to uα
and uα at the optimal pair (u∗α ,u∗α ). So the partial derivatives

of the Lagrangian with respect to uα and uα are zero. Since,
∂L/∂uα = 2uα − λ4αvα − ω11 + ω12 = 0, we have uα =
0.5(vαλ4α + ω11 − ω12). To determine an explicit expression
for the optimal control without ω11 and ω12, we consider the
following three cases. (i) On the set {t | umin

α < u∗α (t) <
umax
α }, we set ω11(t) = ω12(t) = 0; hence, uα = 0.5vαλ4α.

(ii) On the set {t | u∗α (t) = umax
α }, we set ω11(t) = 0;

hence, uα = umax
α = 0.5 (vαλ4α − ω12) which implies that

0.5 vαλ4α ≥ umax
α . (iii) On the set {t | u∗α (t) = umin

α }, we
set ω12(t) = 0; hence, uα = umin

α = 0.5(vαλ4α + ω11) which
implies that 0.5 vαλ4α ≤ umin

α . Combining all the three cases
in compact form gives

uα(t) = max
(

umin
α , min

(

0.5 vα(t)λ4α(t),umax
α

)

)

. (22)
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Figure 10: The WCOG of CD4+ T-cells level (a), the viral load (b) and CTLs level (c) versus time in patients W (- -), M (· · · ), and S (—).

Using similar arguments, we also obtain the following
expression for the second optimal control function:

uα(t) = max
(

umin
α , min

(

0.5 vα(t)λ3α(t),umax
α

)

)

. (23)

We point out that the optimality system consists of the state
system (19) with the initial conditions, the adjoint or costate
system (21) with the terminal conditions, together with the
expressions (22) and (23) for the control functions. We show
the optimal controls and corresponding states and costates
satisfying (19) and (21) by a star superscript ∗. Obviously, if
we assume that the set [λ∗4α(t), λ∗3α(t)] is a valid α-level set of a
positive fuzzy number valued function, say ˜Λ∗2 (t), then, from

(22) and (23),the optimal fuzzy control function ũ∗ ∈ C(T)
can be written as

ũ∗(t) =�max
(

ũmin, ˜min
(

0.5 ⊗ ṽ∗(t)⊗ ˜Λ∗2 (t), ũmax
))

.

(24)

Moreover, if we assume that the sets [λ∗2α(t), λ∗1α(t)] and
[λ∗6α(t), λ∗5α(t)] are valid α-level sets of fuzzy number valued
functions, say ˜Λ∗1 (t) and ˜Λ∗3 (t), respectively, and the sets
[λ̇∗1α(t), λ̇∗2α(t)], [λ̇∗3α(t), λ̇∗4α(t)], and [λ̇∗5α(t), λ̇∗6α(t)] are valid
α-level sets, then it is easy to see that (Θ˜Λ∗2 )⊗Zã and
˜Λ∗3⊗Z

˜h ∈ F(R). Moreover, we can verify that the fuzzy
functions ˜Λ∗1 (t), ˜Λ∗2 (t), ˜Λ∗3 (t), and ũ∗ satisfy the following
system of FDEs, with the terminal conditions ˜Λ j(t f ) = (0, 0),
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Figure 11: Optimal fuzzy adjoint variables ˜Λ∗1 (a), ˜Λ∗2 (b), and ˜Λ∗3 (c) versus time.

j = 1, 2, 3, and using the derivative in the second form (ii)
(see Definition 9):

˙̃Λ1 = Θ
{(

Θ˜Λ1

)

⊗ σ̃ ⊕ ˜Λ3⊗Z
˜h
}

,

˙̃
Λ2 = Θ

{

w̃ ⊕
(

Θ˜Λ1

)

⊗ c̃

⊕˜Λ2 ⊗
(

˜k ΘH ũ
)

⊕
(

Θ˜Λ3

)

⊗ τ̃
}

,

˙̃
Λ3 = Θ

{(

Θ˜Λ2

)

⊗Zã
}

.

(25)

Therefore, if we insure that the assumptions mentioned
above are satisfied, finding the optimal fuzzy control func-
tion can be equivalent to solving a two-point fuzzy boundary
value problem (FBVP) which consists of fuzzy system (18)

with the initial conditions and the fuzzy system (25) with
the final conditions, together with the expression ũ(t) =
�max(ũmin, ˜min(0.5 ⊗ ṽ(t) ⊗ ˜Λ2(t), ũmax)) for the control
function. Here, we verify that ˜Λ∗1 (t), ˜Λ∗2 (t), ˜Λ∗3 (t), and ũ∗

satisfy the second equation in (25) and the rest can be verified
similarly. Since the functions λ∗3α and λ∗4α are positive from
the two last equations in (21), we conclude that λ∗5α and
λ∗6α are negative functions. Moreover, from the two first
equations in (21), we have

λ∗1α(t) =
∫ t f

t

{

hα cosh
{√

σασα(τ − t)
}

λ∗5α(τ)

+

√

σα
σα

hα sinh
{√

σασα(τ − t)
}

λ∗6α(τ)

}

dτ,



Computational and Mathematical Methods in Medicine 15

1.5

1

0.5

0
0 200 400 600 800 1000 1200 1400 1600 1800

ũ
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Figure 12: Optimal fuzzy control (a) and its WCOG (b) versus time.

λ∗2α(t) =
∫ t f

t

{√

σα
σα

hα sinh
{√

σασα(τ − t)
}

λ∗5α(τ)

+ hα cosh
{√

σασα(τ − t)
}

λ∗6α(τ)

}

dτ,

(26)

which implies that the functions λ∗1α and λ∗2α are negative;
hence,

Θ
{

w̃ ⊕
(

Θ˜Λ∗1
)

⊗ c̃ ⊕ ˜Λ∗2 ⊗
(

˜kΘHũ
∗
)

⊕
(

Θ˜Λ∗3
)

⊗ τ̃
}

α

= −
{

w̃ ⊕
(

Θ˜Λ∗1
)

⊗ c̃ ⊕ ˜Λ∗2 ⊗
(

˜kΘHũ∗
)

⊕
(

Θ˜Λ∗3
)

⊗ τ̃
}

α

= −
{

wα − λ∗2αcα + λ∗3α
(

kα − u∗α
)

− λ∗6ατα
}

= λ̇∗3α.
(27)

We summarize our results in the following theorem.

Theorem 13. Assume that ˜Λ∗2 (t) is a positive fuzzy function on
T. A candidate for fuzzy optimal control is given by (24), if the
fuzzy functions ũ∗(t), x̃∗(t), z̃∗(t), and ṽ∗(t) satisfy (18) using
the derivative in the first form (i) and ũ∗(t), ˜Λ∗1 (t), ˜Λ∗3 (t), and
˜Λ∗2 (t) satisfy (25) using the derivative in the second form (ii).

We have solved the optimality system corresponding to
patient W with the fuzzy weight w̃ = (0.24 × 10−5, 0.24 ×
10−6) and the fuzzy bounds ũmin = (0, 0, 0.5 × 10− 3)
and ũmax = (0.15 × 10−2, 0.25 × 10− 3, 0), during the
time interval [0, 1800] by using the gradient method [24].
Numerical results show that the optimal adjoint variables
satisfy the assumptions mentioned above. Figure 11 shows
the optimal fuzzy adjoint variables, while the optimal fuzzy
control function ũ∗ and its WCOG as a real-valued output
u∗ indicating an optimal drug regimen are depicted in

Figure 12. Moreover, the optimal fuzzy states x̃∗(t), z̃∗(t),
and ṽ∗(t) indicating the immune cells level and the HIV
viral load in presence of treatment are shown in Figure 13.
The values of ũ∗ on the 425th and the 1750th days are,
respectively, shown in Figures 14 and 15, for the sake of
clarity.

The proposed treatment by Figure 12, which its intensity
is decreasing during the time interval [0, 1800], reduces the
proliferation rate of viruses considerably. Therefore, the HIV
viral load is very low as shown in Figure 13(b). A very low
viral load slows the destruction of CD4+ T-cells which are
due to contact with virus particles; hence, a CD4+ T-cells
level below 70% is not possible in a treated patient as shown
in Figure 13(a). From Figure 13(c), a high level of CD4+ T-
cells and a low viral load lead to establishment of a lasting
CTL-mediated immune response.

5. Conclusion

In this paper, we proposed a fuzzy mathematical model
of HIV dynamic. Simulation results show that the pro-
posed three-dimensional FDEs can describe the ambiguous
immune cells level and the HIV viral load which are due
to existing patients with various strength of their immune
system. Moreover, we utilized the proposed fuzzy model
and studied a fuzzy optimal control problem minimizing
both the viral load and drug costs. Using the Pontryagin’s
Maximum Principle leads us to the conclusion that the fuzzy
optimal control function may not exist in general, but an
optimality system containing fuzzy state and fuzzy adjoin
equations is derived under certain assumptions. Motivated
by these results, we tend to exploit necessary and sufficient
conditions to the existence of fuzzy solutions for linear
fuzzy optimal control problems. We expect to address these
problems in further works.
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Figure 13: CD4+ T-cells level (a), the viral load (b), and CTLs level (c) in presence of treatment versus time in patient W.
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[16] J. J. Nieto, R. Rodrı́guez-López, and M. Villanueva-Pesqueira,
“Exact solution to the periodic boundary value problem for
a first-order linear fuzzy differential equation with impulses,”
Fuzzy Optimization and Decision Making, vol. 10, no. 4, pp.
323–339, 2011.

[17] J. J. Nieto, A. Khastan, and K. Ivaz, “Numerical solution of
fuzzy differential equations under generalized differentiabil-
ity,” Nonlinear Analysis: Hybrid Systems, vol. 3, no. 4, pp. 700–
707, 2009.

[18] D. W. Pearson, “A property of linear fuzzy differential equa-
tions,” Applied Mathematics Letters, vol. 10, no. 3, pp. 99–103,
1997.

[19] J. Xu, Z. Liao, and J. J. Nieto, “A class of linear differential
dynamical systems with fuzzy matrices,” Journal of Mathemat-
ical Analysis and Applications, vol. 368, no. 1, pp. 54–68, 2010.

[20] B. Ghazanfari, S. Niazi, and A. G. Ghazanfari, “Linear matrix
differential dynamical systems with fuzzy matrices,” Applied
Mathematical Modelling, vol. 36, no. 1, pp. 348–356, 2012.

[21] S. V. Komolov, S. P. Makeev, G. P. Serov, and I. F. Shaknov,
“Optimal control of a finite automation with fuzzy constraints
and a fuzzy target,” Cybernetics and Systems Analysis, vol. 15,
pp. 805–810, 1979.

[22] N. D. Phu and L. Q. Dung, “On the stability and controllability
of fuzzy control set differential equations,” International
Journal of Reliability and Safety, vol. 5, no. 3-4, pp. 320–335,
2011.

[23] A. V. Plotnikov, T. A. Komleva, and A. V. Arsiry, “Necessary
and sufficient optimality conditions for a control fuzzy linear
problem,” International Journal of Industrial Mathematics, vol.
1, pp. 197–207, 2009.

[24] M. D. Gunzburger, Perspectives in Flow Control and Opti-
mization, vol. 5 of Advances in Design and Control, SIAM,
Philadelphia, Pa, USA, 2003.


	Introduction
	Preliminaries
	Linear Fuzzy Model of HIV Infection
	The Approximate Explicit Solutions Based on a Fitting Method
	Dynamic Behavior of the Immune Cells Level and the Viral Load in Patient W
	Dynamic Behavior of the Immune Cells Level and the Viral Load in Patient S
	Dynamic Behavior of the Immune Cells and the Viral Load in Patient M
	A Comparison between the Immune Cells Level and the Viral Load in Patients W, M, and S

	Fuzzy Optimal Control Problem
	Conclusion
	Acknowledgment
	References

