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For the purpose of improving the prediction of cancer prognosis in the clinical researches, various algorithms have been developed
to construct the predictive models with the gene signatures detected by DNAmicroarrays. Due to the heterogeneity of the clinical
samples, the list of differentially expressed genes (DEGs) generated by the statistical methods or the machine learning algorithms
often involves a number of false positive genes, which are not associated with the phenotypic differences between the compared
clinical conditions, and subsequently impacts the reliability of the predictive models. In this study, we proposed a strategy, which
combined the statistical algorithm with the gene-pathway bipartite networks, to generate the reliable lists of cancer-related DEGs
and constructed the models by using support vector machine for predicting the prognosis of three types of cancers, namely, breast
cancer, acute myeloma leukemia, and glioblastoma. Our results demonstrated that, combined with the gene-pathway bipartite
networks, our proposed strategy can efficiently generate the reliable cancer-relatedDEG lists for constructing the predictivemodels.
In addition, the model performance in the swap analysis was similar to that in the original analysis, indicating the robustness of
the models in predicting the cancer outcomes.

1. Introduction

In the past decade, DNA microarray technology has been
widely used in clinical researches to predict the cancer
outcomes because of its capability ofmonitoring tens of thou-
sands of genes simultaneously [1–9]. Accurately identifying
the genes, for which the changes of their expression levels
are significantly correlated with the phenotypic differences
between the clinical conditions, plays an important role in
the procedure of clinical model construction. The statistical
methods and the machine learning algorithms that are rou-
tinely used for gene selectionmainly identify the differentially
expressed genes (DEGs) according to the changes of the gene
expression levels between the compared biological samples.
However, because of the heterogeneity of the clinical samples,
the changes of the gene expression levels may be not only
caused by the changes in the status of the cancer cells but
also by those of the cells unrelated to the cancers. In addition,

the intensities detected by the microarrays for a gene will
vary to some extent among the technical replicates due
to the complex procedures of the microarray experiment,
such as labeling, hybridization, and scanning. Consequently,
the DEG list generated by the statistical methods or the
machine learning algorithms often involves a number of false
positive genes, which are not associated with the phenotypic
differences between the compared clinical samples, and
subsequently impacts the reliability of the predictive models.

The network-based methodologies can efficiently inte-
grate the biological information with the computational
techniques and link the disease-related genes to relevant
proteins and disease types. In recent years, the network-based
methodologies have been successfully introduced into the
systems biology researches for drug discovering [2], identify-
ing disease-related genes [10–15], and revealing themolecular
mechanisms of tumorigenesis [16–19]. In clinical researches,
the prediction models constructed with the cancer-related
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gene markers, which were selected only by the statistical
methods or the machine learning algorithms, cannot ensure
the accuracy and the reproducibility in predicting the clinical
outcomes of cancer patients. Therefore, for the sake of
improving the model performance and interpreting the bio-
logical relevance of the gene markers and the specific cancer,
a number of network-based algorithms were developed to
prioritize the prognostic genes [20–38].

In our study, a new strategy, which combined the sta-
tistical algorithm with a gene-pathway bipartite network,
was proposed to prioritize the reliable gene signatures and
the supported vector machine (SVM) was used to construct
the models for predicting the clinical outcomes of cancer
patients. The DEG list was firstly generated by the statistical
methods, for example, Student’s t-test. Then, the bipartite
network that connected the genes and the cancer-related
pathways was constructed to score each of the DEGs accord-
ing to its connectivity in the network. Finally, the DEGs were
ranked by the scores in descending order and those, for which
the scores were greater than a given cutoff, were selected as
features for predicting the cancer prognosis.

To evaluate the performance of the predictive models
with the gene signatures generated by our strategy, three data
sets including the gene expression data of the clinical samples
collected from the patients of breast cancer, acute myeloma
leukemia, and glioblastoma were downloaded from the gene
expression omnibus (GEO) database. Gene signatures sepa-
rately identified from these data sets by our strategywere used
as features to predict the reoperative treatment response of
breast cancer, the overall survival milestone outcome of acute
myeloma leukemia, and the molecular subclasses of high-
grade glioblastoma. The results of predicting the reoperative
treatment response of breast cancer and the overall survival
milestone outcome of acute myeloma leukemia showed that
our models performed better than those reported by the
data contributors. In addition, the accuracy of predicting
the molecular subclasses of high-grade glioblastoma was as
high as 87.5%. In the swap analysis, we repeated the model
construction and validation process by training the models
with the original independent test set and validating them
using the original training set with the same gene signatures
prioritized in the original analysis. The prediction results
were similar to those achieved in original analysis, indicating
the robust model performance on predicting the cancer
prognosis when using the gene signatures identified by our
proposed strategy.

2. Materials and Methods

2.1. Data Sets. All microarray gene expression data (series
MATRIX files) generated from the clinical samples of breast
cancer, acute myeloma leukemia, and glioblastoma and the
corresponding clinical information were downloaded from
the National Center for Biotechnology Information’s Gene
Expression Omnibus (GEO) database (series accession num-
bers: GSE16716, GSE12417, and GSE13041).

In the human breast cancer data set [4, 9], the gene
expression data of 230 clinical samples were generated

by using Affymetrix Human Genome U133A (HG-U133A)
microarrays, which included 22,283 probesets. In light of
the data analysis protocol in MicroArray Quality Control
(MAQC)-II Project [9], the gene expression data generated
from 130 out of 230 clinical samples of breast cancer patients
were used as training set and the rest of the 100 cases were
used as independent test set. The response to preoperative
chemotherapy, which was divided into two subcategories of
no residual invasive cancer in the breast or lymph nodes
(pCR) and residual invasive cancer (RD), was used as the
clinical endpoint for prediction [4].

The acute myeloma leukemia data set included the gene
expression profiling of the clinical samples of 242 patients
with cytogenetically normal acute myeloid leukemia (CN-
AML) [39]. In the training set, the gene expression data
of 163 clinical samples were generated by using Affymetrix
Human Genome U133A&B (HG-U133A&B) microarrays,
which included a total of 44,760 probesets. The gene expres-
sion data of 79 clinical samples in the independent test
set were generated by using HG-U133Plus2 microarrays.
During the calculation procedure, we only used 44,693
common probesets between HG-U133A&B chips and HG-
U133Plus2 chips for the DEG selection and predictive model
construction. The clinical endpoint of overall survival times
was dichotomized with a “milestone” cutoff because the
continuous endpoint values cannot be predicted by the binary
classificationmodels. By considering the balance between the
number of positive samples and that of negative samples,
the patients with the survival time less than one year were
categorized into the “high-risk” group and the rest with the
survival time equal to or longer than one year were assigned
to the “low-risk” group. In addition, a patient was excluded
from the data set if the survival time was less than one-year
milestone cutoff and censored when he/she was still alive.
Eventually, there were 152 patients in the training set and 77
patients in the independent test set.

The gene expression data in the glioblastoma data set
[7] were generated by using HG-U133A microarrays. In
glioblastoma research, a subcategory of glioblastoma termed
ProNeural (PN) was highly related to better survival progno-
sis when compared to other subcategories [6]. In our study,
we collected 50 patients belonging to the PN subcategorywith
amean survival of 924 days and 50 patients belonging to non-
PN subcategory with a mean survival of 150 days. Among
these patients, 60 of them, which included 30 patients in PN
subcategory and 30 in non-PN subcategory, were randomly
assigned to the training set and the rest were used as the
independent test set. A predictive model was constructed to
discriminate the PN and non-PN categories based on the
microarray gene expression data.

2.2. Probesets Mapping. For Affymetrix microarray plat-
forms, a gene may be detected by multiple probesets. Before
identifying DEGs, we mapped the multiple probesets to a
unique HUGO gene symbol by using the probeset with the
highest fold change value between two groups of samples.
Accordingly, 22,283 probesets involved in the data sets of
breast cancer and glioblastomaweremapped to 11,285 unique



BioMed Research International 3

genes and 44,693 common probesets involved in the acute
myeloma leukemia data set were mapped to 14,892 unique
genes, respectively.

2.3. Identification of Differentially Expressed Genes. Student’s
t-test, which can assess how significant a gene is differentially
expressed in two compared phenotypes, was used in our
study for the DEG selection.The 𝑃 value for each of the genes
was calculated by t-test and directly used for gene filtering
without multiple-testing correction. Only the genes with 𝑃 <
0.05 were kept. To ensure the reproducibility of the DEG
lists generated by the t-test, a fold change ranking is usually
applied to refining the genes with 𝑃 < 0.05. These genes were
ranked by their fold changes (the expression intensity of a
gene in sample A/its expression intensity in sample B). Only
the genes with fold change >1.5 (FC > 1.5) or fold change
<0.667 (FC < 0.667) were kept for the subsequent analysis.
Note that, in some microarray studies of clinical samples,
only a few genes can meet the fold change cutoff because of
the minor phenotypic differences between the two groups of
clinical samples.

2.4. Construction of Gene-Pathway Bipartite Network. For
the purpose of screening out the genes unassociated with
the phenotypic differences, we constructed a gene-pathway
bipartite network, which can be used to score the genes
according to their connections [40] to the cancer-related
signaling pathways. All the cancer-related pathways were
collected from Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database and listed in Table 1. The first six
pathways reflected the overview of cancers and the rest were
correlated with the specific types of cancers.

The bipartite network was a particular class of complex
networks, in which the nodes were divided into two groups
and the connections only existed between two nodes in
different groups [41]. So, the nodes in the gene-pathway
bipartite network were genes or pathways and were divided
into two groups of gene set and pathway set, respectively.
The connections between genes and pathways indicated (1)
which genes were involved in a specific pathway and (2)
which pathways included a specific gene. We scored each
of the genes with a weighting method proposed by Zhou et
al. [42]. Let us consider a gene-pathway bipartite network
𝑁(G,P,E), where𝐺 and𝑃 represent the gene set and pathway
set, respectively. E is the set of connections between genes
and pathways. The genes and pathways in G and P were
denoted by 𝑔
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projection. In our study, the DEGs were firstly selected by
the statistical methods and subsequently ranked by the scores
S (S = {𝑠
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}). Only the DEGs with 𝑠 ≥ 1 were kept

as features for the construction of the predictive models.

2.5. Model Construction for Clinical Endpoints Prediction.
The binary classification models for predicting the clinical
endpoints were constructed by using support vector machine
(SVM), which is a popular learning machine based on
statistical learning theory [43, 44]. In our study, radial basic
function was used as the kernel function in SVM. The regu-
larization parameter 𝑐 and the kernel width parameter 𝜎were
optimized by a grid search approach. For each of the clinical
endpoints, the SVM model was built by using the training
set and leave-one-out cross-validation and validated by the
independent test set. Four performance metrics, namely,
specificity, sensitivity, accuracy, and Matthew’s correlation
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Table 1: The 20 cancer-related signaling pathways collected from KEGG database for the construction of gene-pathway bipartite network.

Pathway entry KEGG pathway name Number of genes
hsa05200 Pathways in cancer 327
hsa05202 Transcriptional misregulation in cancer 179
hsa05203 Viral carcinogenesis 206
hsa05204 Chemical carcinogenesis 80
hsa05205 Proteoglycans in cancer 225
hsa05206 MicroRNAs in cancer 296
hsa05210 Colorectal cancer 62
hsa05211 Renal cell carcinoma 66
hsa05212 Pancreatic cancer 66
hsa05213 Endometrial cancer 52
hsa05214 Glioma 65
hsa05215 Prostate cancer 89
hsa05216 Thyroid cancer 29
hsa05217 Basal cell carcinoma 55
hsa05218 Melanoma 71
hsa05219 Bladder cancer 38
hsa05220 Chronic myeloid leukemia 73
hsa05221 Acute myeloid leukemia 57
hsa05222 Small cell lung cancer 86
hsa05223 Non-small-cell lung cancer 56

coefficient (MCC), were considered formodel evaluation and
defined as follows:

Specificity = TN
FP + TN

,

Sensitivity = TP
TP + FN

,

Accuracy = TP + TN
TP + FP + TN + FN

,

MCC = (TP × TN − FP × FN)

× ((TP + FP) × (TP + FN)

× (TN + FP) × (TN + FN))−1/2,

(7)

where TP, FP, TN, and FN represent true positive, false
positive, true negative, and false negative, respectively. In
addition, the areas under the ROC curves (AUCs) were
also provided for evaluating the performance of the models
on the prediction of the survival milestone outcomes of
AML patients and the molecular subclasses of high-grade
glioblastoma. The software libsvm 3.17 [45] used in our
study for SVM modeling can be freely downloaded from the
website http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

3. Results

3.1. Model Performance on Predicting the Reoperative Treat-
ment Response of Breast Cancer. According to the data
analysis protocol in MAQC-II project, 130 clinical samples of
breast cancer patients were assigned to training set and the
rest of the 100 clinical samples were used as independent test

set. By comparing the gene expression profiles of the samples
in pCR subcategory with those in RD subcategory in training
set, 1010 genes with 𝑃 value < 0.05 and |log

2
FC| > 0.585 were

selected as DEGs and used to construct the gene-pathway
bipartite network. Based on the connections between the
DEGs and the cancer-related KEGG pathways, 1010 DEGs
were scored by a weighted method and then 29 DEGs with
the scores ≥1 were kept as features for model construction.
The gene-pathway bipartite network, which connected the
29 DEGs with the 20 cancer-related KEGG pathways, was
shown in Figure 1. It can be seen from Figure 1 that the gene
CCND1, which was ranked 1st in the 1010 DEGs, had the
most connections to the cancer-related pathways, indicating
it was an important feature for the prediction of the clinical
endpoint of breast cancer.

A SVM model was constructed by using the training
set and leave-one-out cross-validation. The best parameters
of 𝑐 and 𝜎 were 2 and 0.03125, respectively. The prediction
results of training set and independent test set were listed in
Table 2. In swap analysis, we repeated themodel construction
and validation process by training the models with the
original independent test set and validating them using the
original training set with the same 29 DEGs identified in the
original analysis. Meanwhile, the prediction results achieved
by MAQC-II candidate models were also listed in Table 2.
Compared with the MAQC-II candidate models, our model
was more robust and superior in predicting the breast cancer
outcomes.

3.2. Model Performance on Predicting the Overall Sur-
vival Milestone Outcome of Acute Myeloma Leukemia. By
comparing the gene expression profiles of the clinical samples



BioMed Research International 5

CCNE1

BCL2

RXRB

PDGFRB

PLCG2

RUNX1

TRAF1

PTGS2

ITGB1

RARA

SKP2

WNT4

GSTP1

CBLC

THBS1

FZD7

IL8

WNT6

PRKX

TIMP3

PDCD4

CCND1

E2F3

E2F1

EGFR

CDKN2A

IKBKB

LEF1

TCF7L1

Pathway in cancer

Transcriptional misregulation in cancer

MicroRNAs in cancer

Proteoglycans in cancer

Chemical carcinogenesis

Viral carcinogenesis

Colorectal cancer

Pancreatic cancer

Glioma

Thyroid cancer

Acute myeloid leukemia

Chronic myeloid leukemia

Basal cell carcinoma

Melanoma

Bladder cancer

Prostate cancer

Endometrial cancer

Small cell lung cancer

Non-small-cell lung cancer

Figure 1: The gene-pathway bipartite network constructed with 29 gene signatures that were used for predicting the reoperative treatment
response of breast cancer.

Table 2: The results of predicting the reoperative treatment response of breast cancer in original and swap analyses.

Our model MAQC-II candidate model
SP SE ACC MCC SP SE ACC MCC

Original analysis Training 0.928 0.455 0.808 0.444 0.847 0.569 0.775 0.433
Validation 0.882 0.467 0.820 0.332 0.729 0.667 0.720 0.301

Swap analysis Training 0.988 0.200 0.870 0.343 0.899 0.522 0.837 0.454
Validation 1.000 0.152 0.785 0.343 0.959 0.212 0.769 0.267

In the prediction, pCR was defined as positive sample.
SP, SE, ACC, and MCC represented specificity, sensitivity, accuracy, and Matthew’s correlation coefficient, respectively.
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Figure 2:The gene-pathway bipartite network constructedwith 50 gene signatures that were used for predicting the overall survivalmilestone
outcome of acute myeloma leukemia.

between the high-risk patients and the low-risk patients in the
training set, 3234 genes with 𝑃 value < 0.05 were selected as
DEGs.These DEGs were used to construct the gene-pathway
bipartite network and ranked by their scores calculated by
the weighted method. At last, 50 DEGs with the scores ≥1
were used as features for the subsequent model construction.
The gene-pathway bipartite network of 50DEGs connected to
the 20 cancer-related KEGGpathways was shown in Figure 2.
The geneMAPK1 was ranked 1st in the DEG list and had the
most connections to the cancer-related pathways.

In both original and swap analyses, the best parameters
of 𝑐 and 𝜎 optimized for SVM models were 512 and 0.00195,
respectively. The prediction results achieved by our models
were listed in Table 3. For the convenience of comparison, we
built the SVMmodels in the original and swap analyses with
the expression signatures of 86 probesets proposed by the
data contributors [39] and summarized the prediction results
(Table 3). In general, our model performed similarly to the
86-probeset model in the original analysis, while the MCC
achieved by our model with the validation set in the swap
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Table 3: The results of predicting the overall survival milestone outcome of acute myeloma leukemia in original and swap analyses.

Our model 86-probe-set model
SP SE ACC MCC AUC SP SE ACC MCC AUC

Original analysis Training 0.697 0.837 0.776 0.542 0.776 0.758 0.733 0.743 0.486 0.746
Validation 0.574 0.600 0.584 0.170 0.587 0.362 0.800 0.532 0.172 0.581

Swap analysis Training 0.830 0.700 0.779 0.533 0.765 1.000 0.433 0.779 0.564 0.717
Validation 0.545 0.756 0.664 0.308 0.655 0.712 0.523 0.605 0.236 0.618

In the prediction, high-risk patient was defined as positive sample.
AUC represented the area under the ROC curve.
See notes under Table 2 for more information.
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Figure 3: The gene-pathway bipartite network constructed with 62 gene signatures that were used for predicting the molecular subclasses of
high-grade glioblastoma.

analysis was 0.308, which was higher than that achieved by
the 86-probeset model.

3.3. Model Performance on Predicting theMolecular Subclasses
of High-Grade Glioblastoma. For the high-grade glioblas-
toma data set, 2712 genes with 𝑃 value < 0.05 were selected as
DEGs and 62 of them with scores ≥1 were used to construct
the SVM models. The gene-pathway bipartite network of 62

DEGs connected to the 20 cancer-related KEGG pathways
was shown in Figure 3. The gene KRAS was ranked 1st in the
DEG list and had the most connections to the cancer-related
pathways.The best parameters of 𝑐 and 𝜎 optimized for SVM
models in original analysis were 8 and 0.00781, respectively,
and were 0.5 and 0.125 in swap analysis, respectively. The
prediction results in original and swap analyses were listed
in Table 4. In the original analysis, the prediction accuracy
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Table 4: The results of predicting the molecular subclasses of high-grade glioblastoma in original and swap analyses.

Our model
SP SE ACC MCC AUC

Original analysis Training 0.900 0.900 0.900 0.800 0.900
Validation 0.750 1.000 0.875 0.775 0.875

Swap analysis Training 0.950 0.900 0.925 0.851 0.925
Validation 0.800 0.567 0.683 0.377 0.684

In the prediction, the gene expression profile termed ProNeural (PN) was defined as positive sample.
AUC represented the area under the ROC curve.
See notes under Table 2 for more information.

for the validation set was as high as 87.5% and similar
to that achieved in the training procedure, indicating the
superior performance of the SVM model in predicting the
molecular subclasses of high-grade glioblastoma. In the swap
analysis, the MCC for validation set was dropped to 0.377.
Thiswasmainly because the number of samples for themodel
construction was limited.

4. Discussion

In clinical researches, the microarray-based gene expression
profiling is often used to construct the models for predicting
cancer prognosis. Identifying theDEGs accurately plays a key
role in the procedure of clinical model construction. Current
statistical methods and machine learning algorithms used
for DEG selection only focus on the changes of the gene
expression levels between the two groups of clinical samples
instead of the causes behind these changes and subsequently
result in a number of false positive genes unrelated to the
phenotypic differences involved in the DEG list and the
predictive models becoming unreliable. In our current study,
we described a weighted method, which scored each of the
genes according to their connections to the cancer-related
pathways in the gene-pathway bipartite network, for the
purpose of refining the DEG list generated by the statistical
methods. By considering the two facts of (1) howmany genes
connected to a specific pathway and (2) how many pathways
involved a specific gene, all the DEGs in the bipartite network
were scored by the weighted method. The DEGs with scores
≥1 were considered as the specific cancer-related genes and
used to construct the predictive models.

In order to validate the performance of the predictive
models, the gene expression data of the clinical samples
were collected in our study to predict three clinical end-
points, namely, the reoperative treatment response of breast
cancer, the overall survival milestone outcome of acute
myeloma leukemia, and the molecular subclasses of high-
grade glioblastoma. For the prediction of reoperative treat-
ment response of breast cancer, 29 DEGs were selected from
the bipartite network as features to construct SVM models.
In both original and swap analyses, our model performed
(MCC = 0.332 and 0.343, resp.) better than the MAQC-II
candidate model (MCC = 0.301 and 0.267, resp.). Moreover,
in the swap analysis, the MCC achieved by our model in
training procedure (MCC = 0.343) was equal to that
achieved in validation procedure, indicating the robustmodel
performance.When predicting the overall survival milestone

outcome of acute myeloma leukemia, the performance of our
model with 50 DEGs was similar to that of the 86-probeset
model in original analysis. In the swap analysis, the MCC
achieved by our model (MCC = 0.308) was higher than
that (MCC = 0.236) achieved by the 86-probeset model.
As to the prediction of the molecular subclasses of high-
grade glioblastoma, 62 DEGs were used for SVM model
construction. The accuracy achieved in the original analysis
was as high as 87.5%.Meanwhile, themodel performance was
robust in the original analysis (MCC = 0.800 and 0.775 in
training and validation procedures, resp.). Note that, in the
swap analysis, the MCC for validation set was only 0.377.
This was mainly because the number of samples used for
model construction was limited. In the swap analysis, only 40
samples were used to construct the predictive model, which
was insufficient to ensure the reliability of the predictive
model.

5. Conclusions

In this study, we suggested a strategy to identify the gene sig-
natures, which not only were differentially expressed between
two groups of clinical samples but also highly correlated with
a specific cancer, from a gene-pathway bipartite network.
The predictivemodels constructed with these gene signatures
performed better than those models reported in previous
studies. Moreover, in both original and swap analyses, our
models achieved similar prediction results, indicating the
robust model performance on predicting the cancer progno-
sis.
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