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In contrast to the prenatal topographic development of sensory cortices, striatal circuit
organization is slow and requires the functional maturation of cortical and thalamic
excitatory inputs throughout the first postnatal month. While mechanisms regulating
synapse development and plasticity are quite well described at excitatory synapses
of glutamatergic neurons in the neocortex, comparatively little is known of how this
translates to glutamate synapses onto GABAergic neurons in the striatum. Here we
investigate excitatory striatal synapse plasticity in an in vitro system, where glutamate can
be studied in isolation from dopamine and other neuromodulators. We examined pre-and
post-synaptic structural and functional plasticity in GABAergic striatal spiny projection
neurons (SPNs), co-cultured with glutamatergic cortical neurons. After synapse
formation, medium-term (24 h) TTX silencing increased the density of filopodia, and
modestly decreased dendritic spine density, when assayed at 21 days in vitro (DIV). Spine
reductions appeared to require residual spontaneous activation of ionotropic glutamate
receptors. Conversely, chronic (14 days) TTX silencing markedly reduced spine density
without any observed increase in filopodia density. Time-dependent, biphasic changes
to the presynaptic marker Synapsin-1 were also observed, independent of residual
spontaneous activity. Acute silencing (3 h) did not affect presynaptic markers or
postsynaptic structures. To induce rapid, activity-dependent plasticity in striatal neurons,
a chemical NMDA receptor-dependent “long-term potentiation (LTP)” paradigm was
employed. Within 30 min, this increased spine and GluA1 cluster densities, and the

Abbreviations: SPN, striatal projection neuron; D1R, Drd1 dopamine receptor; D2R, Drd2 dopamine receptor; LTP,
long-term potentiation; LTD, long-term depression; TTX, tetrodotoxin; DIV, days in vitro; AP5, D-(−)-2-Amino-5-
phosphonopentanoic acid; CNQX, 6-cyano-7-nitroquinoxaline-2, 3-dione disodium salt; mEPSC, miniature excitatory
post-synaptic current; cLTP, chemical LTP; PTX, picrotoxin; NGS, normal goat serum; PBS, phosphate-buffered saline;
RT, room temperature.
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percentage of spines containing GluA1 clusters, without altering the presynaptic signal.
The results demonstrate that the growth and pruning of dendritic protrusions is an active
process, requiring glutamate receptor activity in striatal projection neurons. Furthermore,
NMDA receptor activation is sufficient to drive glutamatergic structural plasticity in SPNs,
in the absence of dopamine or other neuromodulators.

Keywords: cortico-striatal co-culture, immunocytochemistry, electrophysiology, dendritic spines, synaptic
plasticity, glutamate, long-term potentiation

INTRODUCTION

The striatum is a highly integrative structure. In rodents, each
of the ∼2.5 million GABAergic medium-sized spiny projection
neurons (SPNs) receives ∼25,000 glutamate afferents from
nearly all areas of the cortex and thalamus (Kincaid et al.,
1998; Doig et al., 2010). These are modulated by nigrostriatal
dopamine and form the only striatal output pathways (Tritsch
and Sabatini, 2012). As the gateway to the basal ganglia, the
striatum mediates action selection, motor control, motivation,
and learning (Friend and Kravitz, 2014), and its dysfunction
is implicated in neurodevelopmental disorders, addiction, and
neurodegeneration (Graybiel et al., 2000; Smith et al., 2009;
Gerfen and Surmeier, 2011). In contrast to the prenatal
topographic development of sensory cortices, striatal circuit
organization is slow and requires the functional maturation
of cortical and thalamic excitatory inputs throughout the
first postnatal month (Tepper et al., 1998). During this time,
glutamate release promotes the formation and stabilization
of excitatory synapses on SPNs (Kozorovitskiy et al., 2012,
2015). While mechanisms regulating synaptic development,
maintenance, and plasticity are quite well described at glutamate
synapses in principal excitatory neurons of the neocortex, much
less is known of how these mechanisms translate to subcortical
areas such as the striatum. Here, we developed assays to
investigate excitatory synapse plasticity in a striatal in vitro
system, where glutamate activity can be examined in isolation
from dopamine and other neuromodulators.

Dendritic spines are specialized excitatory post-synaptic
structures, which are thought to compartmentalize signaling
processes to regulate glutamate receptor activation, calcium
flux, cytoskeletal remodeling, membrane trafficking, and protein
synthesis/degradation (Bourne and Harris, 2008; Yoshihara
et al., 2009). Activity-dependent morphological changes in
dendritic spines and associated presynaptic elements modulate
neural function, with growth, pruning, and remodeling likely
underlying cognitive processes (Villalba and Smith, 2013; Sala
and Segal, 2014), and spine loss being a potential structural
correlate of cognitive deficits (Penzes et al., 2011).

Excitatory synapse development, spine formation, and
dynamics have been extensively studied in hippocampal/cortical
pyramidal neurons, both in vivo and in vitro. Long-term
potentiation (LTP) and long-term depression (LTD)-like
paradigms have received particular attention, as these lasting
activity-dependent modifications are considered the leading
cellular model for learning and memory (Bliss and Collingridge,

1993). Spines alter shape and receptor composition in response
to plasticity induction paradigms, with studies showing that
LTP is typically associated with spine swelling (Matsuzaki et al.,
2004; Okamoto et al., 2004; Tanaka et al., 2008) or de novo
spine formation (Maletic-Savatic and Malinow, 1998; Engert and
Bonhoeffer, 1999; Goldin et al., 2001), whereas LTD is associated
with spine shrinkage (Okamoto et al., 2004; Zhou et al., 2004) or
spine loss (Nägerl et al., 2004).

In recent genetic models where glutamate transmission
is absent, principle excitatory neurons still develop normal
dendritic architecture and spine numbers in vivo (Sando et al.,
2017), a recent finding that adds weight to the traditional view
that neuronal activity serves as a mechanism of refinement after
synaptic connections are established (LeVay et al., 1980; Katz
and Shatz, 1996; Sanes and Lichtman, 1999; Huberman et al.,
2008). Conversely, there is evidence to support that activity is
also important for synapse formation per se (Sabo et al., 2006;
Andreae and Burrone, 2014; Choi B. J. et al., 2014; Choi S.
H. et al., 2014; Okawa et al., 2014), reviewed in Andreae and
Burrone (2018). In neuronal cultures, chronic action potential
silencing throughout synaptogenesis reduces spine density by
∼50% (Kossel et al., 1997), whereas after synapses form, a 3-day
(but not 24 h) silencing period reduces spine number by only
∼15% (Papa and Segal, 1996), suggesting that activity throughout
the first 3 days contributes to synapse (and consequently
spine) formation.

Alternatively, the observations that spine formation occurs
on pyramidal neurons in the absence of vesicular glutamate
release (Sando et al., 2017; Sigler et al., 2017), but is reduced
in chronically-silenced cultures (Kossel et al., 1997), raise
the possibility that early stages of spine formation may
be regulated by GABAergic activity; inhibitory neurons are
present in both scenarios, and GABA transmission (which
is depolarizing in early development, and thus excitatory),
is blocked in silenced cultures. Against this suggestion as a
general rule, striatal cultures (almost entirely comprised of
GABAergic SPNs) fail to generate appropriate dendritic arbors
or dendritic spines in the absence of glutamatergic neurons,
but do when co-cultured with cortical or hippocampal neurons
(Segal et al., 2003; Kaufman et al., 2012; Fasano et al., 2013;
Paraskevopoulou et al., 2019). Chronic silencing prevents spine
formation even on co-cultured SPNs, which will develop spines
within 2 h of TTX wash-out (Segal et al., 2003); this suggests
connections are made despite silencing, and that spinogenesis
specifically requires action potential-dependent transmission.
Thus, SPNs require glutamatergic input to develop their
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eponymous morphology, and their dendritic spines appear to be
highly plastic.

Alterations to striatal dendritic structures and synaptic
plasticity are observed in multiple disorders, with evidence
from many studies suggesting a role in the pathophysiology
of Parkinson’s disease, Alzheimer’s disease, schizophrenia, and
autism (McNeill et al., 1988; Day et al., 2006; Milnerwood
and Raymond, 2010; Penzes et al., 2011; Villalba and Smith,
2013; Sala and Segal, 2014; Volta et al., 2017). Most knowledge
of striatal plasticity comes from electrophysiological studies
in acute brain slices; these have demonstrated a propensity
to presynaptic plasticity and long-term depression, as well as
the importance of neuromodulation by dopamine (Calabresi
et al., 1997; Spencer and Murphy, 2000; Wang et al., 2006;
Kreitzer and Malenka, 2007; Sergeeva et al., 2007; Li et al., 2009;
Lovinger, 2010; Blackwell et al., 2019). That said, glutamate
uncaging has also been shown to be sufficient to trigger de
novo spine formation on SPN dendrites in ∼50% of trials
(Kozorovitskiy et al., 2012, 2015), similar to basal rates in cortical
pyramidal neurons (Kwon and Sabatini, 2011). Elsewhere, Shen
et al. (2008) demonstrated that dopamine was necessary for
determining the directionality, but not necessarily the induction,
of spike-time dependant plasticity in cultured striatal slices. Thus,
glutamatergic modulation of striatal dendritic spines merits
further attention, both during development and in response to
activity-dependant plasticity.

Here, we examined how glutamate transmission, in
the absence of dopamine, modulates SPN dendritic spine
development, plasticity, and associated synaptic markers. Using
an in vitro cortico-striatal co-culture system (Segal et al., 2003;
Tian et al., 2010; Randall et al., 2011; Kaufman et al., 2012;
Milnerwood et al., 2012; Penrod et al., 2015), we investigated
the effects of blocking action potential-dependent network
activity, manipulating spontaneous AMPA receptor (AMPAR)
and NMDA receptor (NMDAR) activity, and the effects of
an NMDAR-dependent LTP induction paradigm. Long-term
glutamate silencing (>24 h) induced presynaptic alterations,
reduced spine density, and had variable effects on filopodia,
while short-term silencing (<3 h) did not. The LTP induction
paradigm rapidly induced spine and GluA1 cluster changes,
consistent with LTP-like modifications. We add to the literature
by showing that glutamatergic activity is required for the
maturation of striatal neurons, and demonstrate that glutamate
receptor activity can induce structural plasticity in the absence
of dopamine or other neuromodulators. The experiments here
provide a foundation for future studies of activity-dependent
striatal plasticity both in development and disease.

MATERIALS AND METHODS

Culture Preparation
Wild-type (WT) C57BL/6J, and WT littermates from an
LRRK2 G2019S knock-in colony (bred with the C57BL/6 colony,
described in Beccano-Kelly et al., 2014) were maintained
following the University of British Columbia animal care unit
and the Canadian Council on Animal Care regulations. Primary
neuronal cultures were prepared from mouse embryos (E16.5)

of either sex. Briefly, brains were removed and dissected on
ice in Hank’s Balanced Salt Solution (HBSS, GIBCO). For WT
littermate cultures, tails were genotyped before cells were pooled,
as in Beccano-Kelly et al. (2014). Cortical and striatal tissues
were separately digested in 0.05% Trypsin-EDTA (LifeTech)
at 37◦C. Striatal cells were nucleofected with GFP on an
AAV plasmid driven by a long-lasting (CAG/β-actin) promoter
(pAAV-CAG-GFP; Addgene plasmid #37825): 1–2 million cells
were suspended in 100 µl of electroporation buffer (Mirus
Bio) with 1–2 µg of endonuclease-free DNA, transferred
to a cuvette and electroporated using a Lonza Nucleofector
2b (Amaxa, program 05). The cell suspension was then
removed and resuspended in plating medium (PM; 2% B27 +
1/100 penicillin/streptomycin, Invitrogen; 0.5 mM α-glutamine;
neurobasal medium, GIBCO) and 24-well plates were seeded
with non-transfected cortical neurons from the same mice at
1:1, to a density of 200,000 cells/well in 1 ml of PM. Cells
were incubated at 37◦C and 5% CO2, and, from days in vitro
(DIV) 4 onwards, 10% of media was exchanged every 3–5 days
until DIV21.

To verify survival and correct fluorophore/morphological
identification of SPNs (as opposed to striatal interneurons
and other cells) in vitro, additional co-cultures were prepared
from homozygous BAC transgenic Drd1a-tomato mice [D1R-
Tom, B6.Cg-Tg(Drd1a-tdTomato)6Calak/J, Jackson Laboratory,
#016204], in which SPNs expressing the Drd1 dopamine receptor
(D1R) are identified by Td-Tomato red fluorescent protein (Ade
et al., 2011). To visualize SPNs expressing the Drd2 dopamine
receptor (D2R), we used heterozygous Drd2-eGFP transgenic
mice on an FVB/NJ background (D2R-eGFP, a gift from
Raymond lab). Striatal or cortical neurons were nucleofected
with TagBFP (pTagBFP-N; Axxora; EVN-FP172-C020) before
plating 1:1 with non-nucleofected cells, and maintained until
DIV21 as described above.

Treatments
Chronic and Acute Action Potential Silencing
Co-cultures were left untreated 7 days after plating, to enable
neurite outgrowth and synapse formation. Action potentials were
then blocked by TTX application [1 µM; Tocris (IC50 ∼7 nM)]
in two ways: (A) throughout the rest of the 3-week development
and maturation process, 3× TTX (TTX added at DIV7, 14 and
20); and (B) for the first 2 weeks with no further addition within
the third week, 2× TTX (TTX at DIV7 and 14), and compared
to control (sham; no drug added) neurons on the same 24-well
plate. The concentration (far exceeding IC50) and time of TTX
application was chosen to ensure effectiveness with fresh media
addition (Takada et al., 2005; Hartman et al., 2006; Fishbein and
Segal, 2011), and the 2× TTX (B) group included to see if a
7-day period is sufficient for recovery. One-hundred microliter
of media was removed from each well and pooled by condition,
then returned to each well, with, or without (sham) the addition
of TTX.

Short-term disruption of glutamate signaling was achieved
by blockade of burst firing with TTX (1 µM; Silencing),
or of all excitatory activity (Total Silencing) by application
of TTX, 6-cyano-7-nitroquinoxaline-2,3-dione disodium salt
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(CNQX; AMPA/kainite receptor antagonist; 10 µM; Tocris)
and D-(−)-2-Amino-5-phosphonopentanoic acid (AP5; NMDA
receptor antagonist; 10 µM; Tocris). At 24 or 3 h before fixation
on DIV21, 100 µl of media was removed from each well and
pooled by condition, then replaced with (for silencing) or without
(sham control) drug addition.

Chemical Plasticity
The chemical long-term potentiation (cLTP) paradigm was
achieved by applying glycine in the absence of extracellular
magnesium (Mg2+), as previously described in hippocampal
neurons (Lu et al., 2001; Brigidi et al., 2014). Briefly, media was
removed from wells and replaced by an Mg2+-free extracellular
solution (ECS; 125 mM NaCl, 33 mM D-glucose, 5 mM HEPES,
5 mM KCl, 2 mM CaCl2) containing 0.5 µM TTX and 20 µM
bicuculline methiodide (10 mM stock; Tocris) for 15 min. One-
hundred microliter of the solution was then removed from each
well, 200 µM glycine (100 mM stock; Thermo Fisher Scientific)
was added for cLTP condition and the solution was replaced,
whereas removal/replacement without glycine addition acted
as a negative sham control (cLTP Control). After 3 min, the
solution in both groups was replaced with a fresh solution for
30 min, before fixation. A media removal and replacement group
(without a change to Mg2+-free) acted as a second sham control.

Immunostaining
Cells were fixed [4% Paraformaldehyde (PFA), 4% sucrose;
20 min], permeabilized [−20◦C Methanol (MeOH) for 3 min]
and blocked [3× 20 min wash with 10% normal goat serum
(NGS) in phosphate-buffered saline (PBS), at room temperature
(RT)]. Primary antibodies were incubated by shaking overnight
at 4◦C in PBS with Tween 20 (PBST) + 2% NGS, then cells
were blocked again (10% NGS + PBS, 1 h RT) before secondary
antibodies were applied (in PBST + 2% NGS, 30 min RT).
Coverslips were washed (PBS, 3× 10 min) and slide-mounted
with Fluoromount (Southern Biotech). The primary antibodies
used were anti-GFP (Green Fluorescent Protein, mouse,
Abcam Cat# ab1218 RRID: AB_298911, 1:1,000), anti-synapsin1
(Synapsin-1, rabbit, Millipore Cat# AB1543P RRID: AB_90757,
1:500), anti-GluA1 (AMPA Receptor, rabbit, Alomone Labs Cat#
AGC-004 RRID: AB_2039878, 1:500), anti-tRFP (tagRFP, rabbit,
Axxora Cat# EVN-AB233, 1:500). Secondary antibodies were
anti-Mouse Alexa 488 (RRID: AB_2534069), anti-Rabbit Alexa
568 (RRID: AB_143157) and anti-Rabbit AMCA (all 1:1,000).

Image Acquisition and Quantification
For co-culture characterization, 10–15 images were captured of
each culture on an Olympus Fluoview 1000 confocal microscope
(20× magnification, 1× confocal zoom), at random points
across coverslips (for striatal marker co-expression counts)
and targeted at BFP-expressing neurons (to verify D1R or
D2R co-expression specifically with nucleofected neurons).
The number of nucleofected neurons (blue) co-expressing
Td-Tomato (red, D1R) or eGFP (green, D2R) were counted
in ImageJ.

For other experiments, GFP-expressing neurons that fit D1R
or D2R SPN morphology (Kaufman et al., 2012) were imaged as
a series of 8–15 successive 0.5 µm z-stacks (60× oil immersion

lens, 2× confocal zoom). Five to 10 SPNs were imaged per
condition from a minimum of three independent cultures, with
excitation and acquisition parameters constrained across all
paired comparisons. The acquired images were sorted by channel
and flattened using the max projection function on ImageJ for
dendritic protrusion and cluster analysis.

For GluA1 and Synapsin-1 puncta analysis, images were
manually thresholded and binarized by the eye using ImageJ,
with the experimenter blind to condition. All quantification
was conducted in Cell Profiler (http://www.cellprofiler.org;
analysis pipeline included in Supplementary Material). Briefly,
GFP-expressing cells were used to mask the dendritic arbor
as the region of interest (ROI), which was then expanded by
five pixels to capture apposing presynaptic elements. Binarized
Synapsin-1 or GluA1 images were used to produce masks within
the dendritic ROI, which was applied to the corresponding
original (non-binarized) image to obtain puncta size (min
diameter = 4 pixels; max = 15 pixels), intensity, and density
(number of puncta/dendrite length) measures. Otsu’s method
was used for automatic global thresholding of the images, and
adjacent puncta were distinguished and divided by intensity.

To quantify dendritic protrusions, 3× ≥ 30 µm segments of
secondary or tertiary dendrites, at least 30 µm from the soma
were selected in the green channel (GFP fill) of each z-projected
image in ImageJ. Dendrite length was recorded and manual 2D
digital reconstruction was performed to count and measure each
dendritic protrusion, with the experimenter blind to treatment
condition. Protrusions were classified as either spine (<2 µm in
length with a visible head >0.5 µm in diameter), or filopodia
if they ranged between 1–10 µm and lacked a distinct bulbous
head (Segal et al., 2003; Arstikaitis et al., 2011). The calculated
densities and lengths for individual dendrites were averaged for a
mean density per neuron. To quantify the percentage of spines
associated with GluA1, clusters from binarized GluA1 images
were manually counted within spines in three selected dendritic
segments, excluding clusters that were clearly in perpendicular
crossing neurites of other neurons.

Additional analysis was conducted on a large subset of
images from chronic and acute silencing experiments, to quantify
Synapsin-1 puncta on excitatory synapses only (those on spines
and filopodia-like protrusions), as opposed to the entire dendrite
masks. ImageJ was used to create ROIs around a sample of
20 spines (of varying shapes and widths) and any visible filopodia
(ranging from 0 to 20) on secondary or tertiary dendrites of the
GFP-expressing cell in each image. The ROIs were then applied
as masks on the corresponding raw Synapsin-1 images, and the
mean and integrated intensity measured within each ROI.

Electrophysiology
Whole-cell voltage-clamp recordings were performed on
GFP-expressing SPNs in the cortico-striatal co-cultures at
DIV20–22 to measure functional changes following glycine
application. 30 min after the cLTP or cLTP Control treatment,
cells were perfused at room temperature with the extracellular
solution (ECS) containing (in mM): 167 sodium chloride,
2.4 potassium chloride, one magnesium chloride, 10 glucose,
10 HEPES, two calcium chloride; pH 7.4, 290–300 mOsm. TTX
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(1 µM) and picrotoxin (PTX, 100 µM) were added to block
spontaneous burst firing and GABAergic activity respectively.
Pipette resistance (Rp) was 5–8 M� when filled with (in mM):
130 cesium methanesulfonate, five cesium chloride, four sodium
chloride, one magnesium chloride, 5 EGTA, 10 HEPES,
5 QX-314, 0.5 GTP, 10 Na2-phosphocreatine, and 5 Mg ATP,
0.1 spermine; pH 7.3, 290 mOsm. The membrane test function
was used to determine intrinsic membrane properties after
obtaining whole-cell configuration, with a holding potential of
−70 mV (Milnerwood et al., 2012). Following a 2-min settling
period, miniature (spontaneously released, in the presence of
TTX) excitatory post-synaptic currents (mEPSCs) were recorded
at −70 mV. Data were acquired by Multiclamp 700 B amplifier
and signals were filtered at 2 kHz, digitized at 10 kHz, and
analyzed in Clampfit10 (Molecular Devices). Only recordings
with a series resistance (Rs) <30 MΩ were included and ∆Rs
tolerance cut-off was <10%. mEPSCs were analyzed using the
threshold search in Clampfit10 (threshold 5 pA) and additional
visual quality control with the experimenter blind to genotype;
monophasic events were used for amplitude and decay kinetics,
while others were suppressed but included in frequency counts.

Statistical Analysis
All statistical analyses were performed using Graphpad
versions 7–9 (GraphPad software). For chronic and acute
TTX experiments, spine/filopodia analysis is presented as
raw data, whereas Synapsin-1 cluster data is normalized to
the sham control within culture, to account for between-
culture variation in immunostaining. Analyses were performed
by one-way ANOVA and a Kruskal–Wallis test when data
were not normally distributed (based on the d’Agostino and
Pearson omnibus normality test). If significance was reached (at
p < 0.05), post-hoc comparisons were made using uncorrected
Fisher’s LSD (following one-way ANOVA) or uncorrected
Dunn’s test (following Kruskal–Wallis). For chemical plasticity,
the cLTP condition was normalized to cLTP control within
culture, and comparisons made using two-tailed unpaired
Student’s t-test, or the Mann–Whitney U test when data were
not normally distributed. Statistical analyses are specified in
each figure legend and all significant comparisons displayed
by asterisks, with sample numbers (n) presented as number of
images (number of independent cultures). Data are presented as
mean± SEM throughout.

RESULTS

Characterization of Cortico-Striatal
Co-cultures From D1R and D2R Reporter
Mice
While striatal neurons develop poorly and have low viability in
mono-culture (Segal et al., 2003; Kaufman et al., 2012; Burguière
et al., 2013), those co-cultured with cortical neurons develop
complex dendritic arbors and spines that stabilize around
DIV20, and exhibit both morphological and electrophysiological
properties resembling SPNs in vivo (Segal et al., 2003; Tian et al.,
2010; Randall et al., 2011; Kaufman et al., 2012;Milnerwood et al.,

2012; Burguière et al., 2013; Lalchandani et al., 2013; Penrod
et al., 2015). Over 95% of total striatal cells are SPNs in vivo
(Kawaguchi and Kubota, 1997), a proportion that is maintained
in vitro (Shehadeh et al., 2006). Of these, ∼half express the
D1 dopamine receptor, and half express the D2 dopamine
receptor (Kreitzer, 2009).

To verify the nucleofection of isolated striatal cells before
mixing in co-culture, and ensure correct visual identification
of SPNs by the experimenter based on fluorescent fills, we
quantified the co-expression of BFP plasmid-nucleofected striatal
neurons in cultures prepared from germ-line SPN marker mice;
for D1R SPNs we used Drd1a-tdTomato reporter mice, and for
D2R SPNs we used Drd2-eGFP reporter mice. BFP-expressing
neurons showing characteristic SPNmorphology, as described in
previous studies (Kaufman et al., 2012; Burguière et al., 2013),
were imaged before checking for D1R or D2R co-expression,
to test the accuracy of the experimental assessment. Given
that >95% of striatal cells are SPNs, D1- and D2-expressing
cells should each account for ∼50% of all BFP-expressing
neurons; however, it should be noted that in acute slices
and cultures, the segregation in double-fluorophore mice
is 60% D1 vs. 40% D2 (Thibault et al., 2013). In line
with this, 56% of imaged BFP neurons (in two separate
cultures) in cultures from Drd1a-tdTomato reporter mice were
Drd1 positive (Figures 1A,B). In cultures from Drd2-eGFP
reporter mice (Figure 1C), ∼28% of BFP-expressing neurons
(over two separate cultures) co-expressed D2R, slightly below the
expected proportion. Together the results demonstrate that at
least 80% of BFP-filled cells are clearly identified as SPNs, based
on BAC fluorophore expression.

Chronic TTX Application During
Development Alters Dendritic Protrusions
and Synapsin-1 Clusters in SPNs
The role of bursts of synchronous (action potential-mediated)
excitatory release onto SPNs during synapse maturation was
assessed by chronic blockade of action potentials (TTX) in
cortico-striatal co-cultures over 2 (2× TTX, at DIV 7, 14) or 3
(3×TTX, at DIV 7, 14 and 20) weeks (Figure 2A). Quantification
of dendritic protrusions on GFP-expressing SPNs (Figure 2B)
revealed a significant effect of treatment upon SPN spines
(Figure 2Ci), with post-hoc analysis demonstrating significantly
lower density in both TTX-treated groups, relative to untreated
SPNs (control = 0.68 ± 0.07, 2× TTX = 0.46 ± 0.05, and
3× TTX = 0.36 ± 0.04 spines/µm dendrite). While filopodia
density was not significantly altered, there was a clear trend
toward TTX treatment increasing filopodia in a dose/time-
dependent manner (Figure 2Cii).

To assess whether postsynaptic structural alterations
were associated with a change in presynaptic contacts, we
quantified Synapsin-1 clusters (present at both glutamatergic
and GABAergic synapses) in contact with dendrites on
GFP-filled SPNs. The density of Synapsin-1 clusters did not
differ between treatment groups (Supplementary Figure 1A),
but there was a significant main effect of treatment upon
cluster size (Figure 2Di) and cluster intensity (Figure 2Dii),
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FIGURE 1 | Nucleofection and spiny projection neuron (SPN) identification in
co-cultures from reporter line mice. (A,B) Representative images of days in
vitro (DIV) 21 striatal neurons from Drd1a-tdTomato (D1R) BAC transgenic
reporter line mice, nucleofected with BFP expression constructs and grown in
co-culture with cortical neurons (20× magnification, 2× zoom Olympus
FV-1000). (A) D1R SPN (red) co-labeled with BFP-fill (blue) is shown (purple;
filled star), surrounded by two non-nucleofected (open star) D1R SPNs. (B)
Two BFP filled SPNs are apparent, one of which is D1R+ve (filled star) and
one is negative (open arrowhead), as apparent in somatic D1 signal (inserts);
two D1R+ve non-nucleofected SPNs are nearby (open stars). (C)
Representative image of DIV21 striatal neurons from Drd2-eGFP (D2R) BAC
transgenic reporter line mice, nucleofected with BFP expression constructs
and grown in co-culture with cortical neurons (20× magnification, Olympus
FV-1000). A D2R SPN (green) co-labeled with BFP-fill (blue) is shown (cyan;
filled star), near to a non-nucleofected (open star) D2R SPN. A BFP filled SPN
is apparent, which is D2R+ve (open arrowhead). (D) Representative image
(20× magnification) of DIV21 cortico-striatal co-cultures from non-transgenic
mice. Striatal neurons nucelofected with BFP expression constructs (blue)
before plating, and cultures were stained for MAP2 (green) to verify the
density of nucleofected striatal neurons. Two BFP-expressing neurons are
visible (open arrowheads).

with both TTX-treated groups showing a reduction when
normalized to control SPN values (2× TTX = 0.85 ± 0.05 and
3× TTX = 0.87 ± 0.16). The size of Synapsin-1 clusters was only
significantly reduced compared to control SPNs in the 2× TTX
condition (Figure 2Di, 0.93 ± 0.02). To verify that the observed
changes occurred at excitatory synapses, we quantified puncta
signal intensity directly on spines and filopodia (Supplementary
Figure 1A); in agreement with reduced presynaptic intensity
on whole dendritic masks, Synapsin-1 signal was significantly
reduced on spines in cultures that were silenced for the full period
(3× TTX), relative to both untreated and transiently-silenced
cultures (2× TTX, p < 0.0001 and p = 0.008, respectively).
While not statistically significant, there was an intermediate
reduction in Synapsin-1 signal on spines in the transiently-
silenced group. This demonstrates that presynaptic alterations
in Synapsin-1 signal on spines (Supplementary Figure 1A)
correlate with the reductions to spine density (Figure 2Ci)
and Synapsin-1 signal on whole dendrite masks (Figure 2D).

Silencing duration gradually increased the density of filopodia,
but not significantly (Figure 2Cii), and while Synapsin-1 signal
was unaltered on filopodia of cultured SPNs silenced for the
full period, in the transiently-silenced group Synapsin-1 signal
was significantly increased, relative to both untreated and total
silenced (Supplementary Figure 1A). This suggests that the
overall reduction in presynaptic signals onto SPN dendrites of
silenced cultures is predominantly at more mature dendritic
spines and that transient silencing results in an increase in
presynaptic signal on filopodia (and a rebound increase in
spines) following removal of TTX.

Together the data demonstrate that sustained chronic
blockade of burst firing in cortico-striatal co-cultures alters
presynaptic inputs, in concert reducing the density of dendritic
spines by either: (1) preventing spine formation in SPNs
(which recovers partly when TTX is removed); or (2) causing
a gradual loss of spines that is more pronounced with
longer silencing.

Glutamatergic Silencing Alters Dendritic
Protrusions and Synapsin-1 Clusters After
24, but Not 3, Hours
Next, we tested whether pre-and post-synaptic changes would
still be observed following a shorter (24 h) TTX application
(Silencing), and after additionally using antagonists to block
glutamate signaling from action potential-independent
(miniature/spontaneous) release and AMPA and NMDA
receptor signaling (Total Silencing, Figure 3A). A treatment
effect on spine density in GFP-filled SPNs (Figure 3B) neared
statistical significance (Figure 3Ci, p = 0.07), due to reduced
spine density in the TTX Silencing group, whereas Total
silencing appeared to prevent this. There was a significant main
effect of treatment upon filopodia density, with a significant
increase following TTX application only, and a strong trend to
an increase following total silencing (Figure 3Cii).

Analysis of Synapsin-1 revealed that cluster density was
not altered (Supplementary Figure 1B), but cluster size was
significantly increased in both the Silencing and Total Silencing
conditions when normalized to control SPNs (Figure 3Ciii,
1.08 ± 0.01, p < 0.0001 and 1.10 ± 0.02, respectively).
Cluster intensity was also significantly increased after Total
Silencing, whereas there was only a trend to increase in the
Silencing condition (Figure 3Civ). Analysis of Synapsin-1 signal
specifically on dendritic spines and filopodia demonstrated an
increase in spines similar to that observed on whole dendrite
masks, but no change on filopodia (Supplementary Figure 1B).
The data suggest presynaptic alterations (increased Synapsin-1
signal) occur on all spines upon TTX silencing, before robust
spine elimination by longer (chronic) TTX silencing; this spine
loss is prevented by blocking residual spontaneous activity in
the Total Silencing group, despite similar presynaptic effects.
Conversely, no presynaptic changes were detected on filopodia,
despite their increased density, which must require more
sustained (chronic) silencing.

A shorter 3 h blockade of glutamatergic activity produced no
significant differences in spine density (Figure 3Di), filopodia
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FIGURE 2 | Chronic TTX treatment decreases spine density and Synapsin-1 intensity. GFP-expressing striatal neurons were grown in co-culture at a 1:1 ratio with
cortical cells until DIV21, then fixed and stained with anti-GFP (green) and the presynaptic terminal marker Synapsin-1 (red). (A) Experimental timeline for each
condition. Cells were treated with 3× TTX (DIV 7, 14 and 20), 2× TTX (DIV 7&14), or received a media removal sham treatment (Control). (B) Top: representative
images for each condition (Olympus FV-1000, 60×, 2× zoom). Middle and bottom: expanded images of the dendritic segment marked by the white rectangle in the
corresponding top image (digital zoom). Overlay of GFP fill and Synapsin-1 staining (middle) showing dendritic spines (filled arrowhead), filopodia (open arrowhead),

(Continued)
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FIGURE 2 | Continued
and Synapsin-1-positive presynaptic terminals in red. Outline of GFP filled
with Synapsin-1-positive puncta (bottom) to show presynaptic terminals and
masked area for quantification. (Ci) There was a significant decrease in
dendritic spine density (averaged across three quantified dendritic segments
per neuron) in both chronic TTX treatments (Kruskal–Wallis test, **p = 0.002;
post-hoc 2× TTX, *p = 0.019, 3× TTX, ***p = 0.0007) relative to control, but
there was no significant difference between the two TTX treatments (p =
0.188). (ii) Filopodia density was not significantly increased following TTX
treatment relative to control (Kruskal–Wallis test, p = 0.155). (Di,ii) Synapsin-1
cluster size was only significantly reduced in the 2× TTX condition compared
to control (i; Kruskal–Wallis test, **p = 0.008, post-hoc 2× TTX, **p = 0.002,
3× TTX, p = 0.147), and there was no significant difference between
treatment groups (p = 0.179). Synapsin-1 cluster intensity was reduced in
both TTX conditions relative to the control (ii; one-way ANOVA,
F (2,115) = 3.409, *p = 0.036; post-hoc, 2× TTX, *p = 0.026 and 3× TTX,
*p = 0.034), and there was no difference between the two TTX treatment
groups (p = 0.791).

density (Figure 3Dii), or any measures of Synapsin-1 clusters
(Figures 3Diii,iv). Thus, a 3 h silencing period is insufficient
to drive structural changes in SPNs, whereas a 24 h silencing
period causes pre- and post-synaptic changes. Interestingly,
blocking AMPA and NMDA receptors prevented dendritic
protrusion changes, but not Synapsin-1 signal increases. The
results suggest that postsynaptic structural plasticity is dependent
upon residual, presumably miniature, NMDA/AMPA receptor
glutamate signaling over a 24 h period; in contrast, presynaptic
alterations are apparent in response to silencing at terminals
on spines (but not filopodia), regardless of NMDA and AMPA
receptor signaling.

Chemical LTP Significantly Increases Spine
Density, GluA1 Expression, and Alters
mEPSC Properties in SPNs
To determine whether striatal SPNs can exhibit LTP-like
changes without the contribution of neuromodulators, we
used a pharmacological induction paradigm for NMDAR-
dependent LTP with the NMDAR co-agonist glycine, a
protocol similar to what we and others have previously
used in cultured hippocampal neurons (Park et al., 2006;
Fortin et al., 2010; Brigidi et al., 2014). Cells were treated
with glycine for 3 min in Mg2+-free extracellular solution
(cLTP), using a switch to Mg2+-free solution with no
glycine addition as a control condition (cLTP control;
Figure 4A). There were no significant differences between
the cLTP control and the sham control (media removal
and replacement; data not shown), and cLTP results
were normalized to cLTP control within each culture.
Quantification of dendritic protrusions on GFP-expressing
SPNs (Figure 4B) revealed that glycine treatment resulted in a
significant ∼30% increase in spine density (Figure 4Ci; cLTP
ctrl = 1.00 ± 0.07 and cLTP = 1.27 ± 0.06), with no change in
filopodia density (Figure 4Cii). Additionally, cLTP treatment
resulted in a significant increase in GluA1 cluster intensity
compared to control SPNs (Figure 4Ciii, 1.00 ± 0.06 and
1.22 ± 0.05 respectively) but no difference in GluA1 cluster
density or size (data not shown). Quantification of the

percentage of dendritic spines containing clear GluA1 clusters
was significantly higher (70% increased) in glycine-treated
cultures (Figure 4Civ). Presynaptic Synapsin-1 staining did not
change following glycine treatment (Figure 4Cv).

Since glycine treatment increased spine density and
GluA1 signal, we next assessed functional effects by whole-cell
voltage-clamp recordings of miniature excitatory postsynaptic
currents (mEPSCs) in control and glycine-treated GFP-filled
SPNs (Figure 4Di). Increases in mEPSC frequency (reflective
of increased presynaptic glutamate release or active synapses)
and increased amplitude (postsynaptic responsiveness) are
detected in glycine-treated hippocampal neurons (Brigidi
et al., 2014). The frequency of mEPSCs appeared ∼20% higher
in glycine-treated SPNs, but the trend was not significant
(Figure 4Dii), and there were no trends to increased mEPSC
amplitude (Figure 4Diii). However, mEPSC event decay
time constants (tau) were significantly faster in cLTP SPNs
(Figure 4Div); this was not explained by passive membrane
properties, which did not differ between the two groups (data
not shown). These results suggest that NMDAR activation
alone is sufficient to drive LTP-like structural changes in
SPNs and to induce significant alterations to the properties of
excitatory currents.

DISCUSSION

The structural responses of SPNs to altered glutamate input
were examined within the context of cortico-striatal co-
cultures, and findings are summarized in the graphical abstract
(Figure 5). A reduction in spine density following chronic
or medium-term TTX application suggests that excitatory
action potential firing in cortico-striatal networks is a crucial
regulator of dendritic spines, and thus of excitatory synapse
development and/or maintenance on striatal neurons; however,
a contributing role of GABA from interneurons or SPNs
themselves cannot be ruled out in the present work. NMDAR-
dependent structural LTP-like changes were rapidly induced by
glycine stimulation, as evidenced by a ∼30% increase in spine
density and GluA1 cluster signals within 30 min. Overall, these
pharmacological silencing and plasticity experiments indicate
that altering glutamatergic activity is sufficient to drive structural
plasticity in SPNs, even in the absence of dopamine and other
striatal neuromodulators. Furthermore, while there is an ongoing
debate about the role of filopodia as intermediates in spine
formation (reviewed in Sala and Segal, 2014), our finding
that spine and filopodia densities were not always negatively
correlated supports the notion that they are, at least in part,
regulated by distinct processes.

We replicate a previous finding that the continuous presence
of TTX causes a reversible reduction in spines and increase in
filopodia in developing co-cultured SPNs (Segal et al., 2003),
and additionally demonstrate that 24 h silencing is sufficient
to drive an increase in filopodia along with a strong trend to
decreased spine density. Based on previous reports in cortico-
striatal co-cultures, SPN spine density increases from ∼0.07
to 0.3–0.4 spines/µm between DIV7 and 14 (Burguière et al.,
2013; Penrod et al., 2015; Thibault et al., 2016) to ∼1 spine/µm
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FIGURE 3 | Blocking glutamatergic activity induces structural changes and increases Synapsin-1 cluster intensity after 24, but not 3, hours. (A) Experimental
timeline for each condition. TTX (Silencing) or TTX + AP5 + CNQX (Total Silencing) was administered either 24 or 3 h before fixation on 21 days in vitro (DIV). (B) Top:
representative cell images from each condition (Olympus FV-1000, 60×, 2× zoom). Middle and bottom: expanded images of the dendritic segment outlined in the
white rectangle (digital zoom), showing the GFP fill (green) and Synapsin-1-positive presynaptic terminals (red, middle) with visible spines (filled arrowhead)

(Continued)
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FIGURE 3 | Continued
and filopodia (open arrowhead), and an outline of the GFP fill with Synapsin-1
puncta (bottom) to illustrate the masked area for quantification. (C) Results
from 24 h blockade. (i) There was no significant difference in spine density,
despite a strong trend to a reduction following TTX treatment (one-way
ANOVA, F (2,57) = 2.812, **p = 0.068). (ii) There was a significant increase in
filopodia density following TTX treatment as compared to control cells
(Kruskal–Wallis test, **p = 0.004, post-hoc ***p = 0.0008), which was not
observed when AMPA and NMDA receptors were also blocked (p = 0.068)
and post-hoc comparisons revealed no significant difference between the
TTX treatment groups (p = 0.127). (iii,iv) Synapsin-1 cluster size was
significantly increased in both silencing conditions relative to control. (iii)
One-way ANOVA, F (2,74) = 15.617, ****p < 0.000001; post-hoc Silencing
****p < 0.0001 and Total Silencing ****p < 0.000001); and there was no
significant difference between treatment groups (p = 0.227). The integrated
intensity was only significantly increased in the Total Silencing condition
compared to control (iv; Kruskal–Wallis test, *p = 0.024, the post-hoc p value
is referred to on the graph **p = 0.007), whereas the Silencing condition did
not differ significantly either from control (p = 0.230) or Total Silencing
conditions (p = 0.115). (Di–iv) No significant changes in dendritic protrusions
or Synapsin-1 clusters were observed following a 3 h treatment. (i) Spines p
= 0.6. (ii) Filopodia p = 0.9. (iii) Size p = 0.1. (iv) Intensity p = 0.1.

by DIV21 (Tian et al., 2010; Penrod et al., 2015). Thus,
our reported spine density of ∼0.36 and ∼0.46 spines/µm at
DIV21 following 2× TTX and 3× TTX, respectively, suggest a
suppression in the maturing spines between DIV7–21; however,
it is also possible that newly formed spines are lost or revert
to filopodia upon additional TTX applications. In contrast,
given the relative stability of spine densities by three weeks
in culture (Penrod et al., 2015), our findings following a
24 h TTX application at DIV20 most likely reflect either a
conversion of mature spines to filopodia or distinct regulation
of each. Further examination of the mechanisms underlying
these changes would benefit from examining SPNs at different
developmental stages and at multiple time points following
glutamatergic silencing.

That said, the silencing experiments here allow direct
comparison of SPN silencing with studies in hippocampal
and cortical pyramidal neurons. While a 24 h silencing
period in DIV19 hippocampal neurons did not affect spine
density, an increase in spine length was interpreted as a
possible conversion to filopodia (Papa and Segal, 1996), in
support of the results here. Chronic glutamate blockade
has yielded somewhat contradictory results elsewhere; one
study reported that TTX application throughout synaptogenesis
reduced spine density ∼50% in cultured hippocampal neurons
(Kossel et al., 1997), whereas normal synaptogenesis and spine
formation was observed in TTX-treated rat hippocampal slice
cultures (McKinney et al., 1999; Soares et al., 2013) and
in those from transgenic mice entirely lacking presynaptic
glutamate release (Sigler et al., 2017). SPNs also respond
differently to disrupted glutamatergic transmission in vivo;
while hippocampal neurons develop mature spines in the
absence of glutamatergic transmission (Sando et al., 2017),
reducing glutamatergic release at cortico-striatal synapses in
postnatal day (P) eight mice led to a ∼40% reduction in
spine density measured at P14–15 (Kozorovitskiy et al., 2012).
Such changes may be distinct to spiny GABAergic neurons,

as GABAergic cerebellar Purkinje cells also lack spines when
cultured in the presence of TTX (Schilling et al., 1991).
Future comparison of chronic silencing and glutamate receptor
blockade in both SPNs and cortical pyramidal neurons in
the same co-culture may prove enlightening. This would
enable cell-specific spine/filopodia responses to be assessed
under the same treatment paradigms and at the same
developmental stages.

Intriguingly, we found increased presynaptic Synapsin-1
cluster size and intensity (but not density) following 24 h
glutamatergic silencing, in contrast to the decrease observed
following the chronic blockade. One possibility for this
difference is a transient response to 24 h silencing, related
to the immediate pause in the activity-dependent vesicle
cycle. Studies of homeostatic plasticity in hippocampal and
cortical neurons indicate that ∼4–24 h suppression of action
potential firing (or AMPAR activity) increases postsynaptic
responses (O’Brien et al., 1998; Turrigiano et al., 1998;
Stellwagen and Malenka, 2006; Goel and Lee, 2008; Ibata et al.,
2008); however, it remains unclear whether this happens in
other neuron types (Rutherford et al., 1997; Kim and Tsien,
2009), as does the extent to which homeostatic presynaptic
changes in glutamate release and protein expression occur
(Erickson et al., 2006; Wierenga et al., 2006; Turrigiano,
2011; Zhao et al., 2011). Although our results indicate that
some presynaptic change occurred at cortico-striatal synapses
following silencing, which may precede structural changes
(as a trend to increased Synapsin-1 cluster size was visible
3 h post-treatment), the interpretation is limited by our
choice of presynaptic marker. Given that Synapsin-1 is present
at both glutamatergic and GABAergic synapses, we cannot
distinguish whether our silencing paradigms differentially altered
excitatory or inhibitory input onto SPNs; moreover, opposite
regulation of these inputs could cancel one another, or
mask additional effects in our readouts. To verify whether
the presynaptic input changes observed here were occurring
at excitatory synapses, we conducted additional analysis in
which we quantified Synapsin-1 puncta on dendritic spines
and filopodia only. While this strongly suggests that the
observed Synapsin-1 changes were indicative of plasticity at
excitatory synapses, future experiments would benefit from
staining for synapse-specific pre- and post-synaptic markers
to distinguish between inhibitory and excitatory synapses
(for example VGLUT1 and PSD95 vs. VGAT and gephyrin,
respectively; Rao and Craig, 1997; Levinson and El-Husseini,
2005). This, in combination with electrophysiological recordings
of both excitatory and inhibitory post-synaptic currents,
would provide more insight as to how different forms of
glutamatergic blockade (chronic vs. acute; burst firing vs.
receptor blockade) affect both structural and functional plasticity
at synapses on SPNs. Future experiments could additionally
examine activity-dependant effects on AMPA and NMDA
receptor subunit composition and subcellular distribution;
given that alterations to these are hallmarks of activity
blockade in other glutamatergic neurons (Rao and Craig, 1997;
Ehlers, 2003; Soares et al., 2013), it is worth investigating
whether similar changes occur in SPNs. Nonetheless, examining
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FIGURE 4 | A 3-min glycine cLTP induction protocol induced spine density and GluA1 cluster increases within 30 min and altered the decay time of miniature
events. (A) Experimental timeline. Following glycine or control treatment, cells were fixed and immunostained with anti-GFP (green) and the presynaptic terminal
marker Synapsin-1 (not shown) or the postsynaptic AMPA receptor subunit GluA1 (red). Separate coverslips were used for whole-cell voltage-clamp recordings. (B)
Top: representative images (Olympus FV-1000, 60×, 2× zoom) of control (cLTP ctrl) and +glycine (cLTP) cells. Middle and bottom: expanded images (digital zoom)
depicting the dendritic segment outlined in the white rectangle above. Middle row images show GFP fill with visible spines and GluA1 clusters, and in the lower panel,
the GFP fill is outlined to depict the masked area for puncta quantification. (C) Structural and synaptic marker changes following glycine treatment in Mg2+-free ECS.
(i,ii) The analysis revealed a ∼30% increase in spine density relative to control-treated SPNs. (i) Unpaired t-test, **p = 0.006; whereas no change was observed in
filopodia density. (ii) p = 0.2. (iii,iv) GluA1 cluster intensity was significantly increased in glycine-treated relative to control SPNs. (iii) Unpaired t-test, **p = 0.009; as
was the percentage of spines colocalized with GluA1 clusters in glycine treated SPNs. (iv) Mann–Whitney test, *p = 0.022. (v) No changes in Synapsin-1 cluster
density were observed. (D) Whole-cell patch-clamp recordings from cLTP and control SPNs. (i) Representative traces showing miniature excitatory postsynaptic
currents (mEPSCs) in the control (top) and glycine-treated (bottom) SPN. (ii,iii) Despite a trend, there was no significant difference in mEPSC frequency. (ii) p = 0.1
and no change in amplitudes. (iii) p = 0.5. (iv) The mEPSC decay time (tau) was significantly faster, following glycine treatment (Mann–Whitney test, *p = 0.015).

the overall change in presynaptic input onto SPNs, in
parallel to quantifying dendritic protrusions, highlighted an
interesting difference between the response to chronic and 24 h
glutamatergic blockade.

Our observations following the additional blockade of
AMPARs and NMDARs during 24 h silencing suggest a
potential disconnect between the spine and filopodia dynamics.
While blocking ionotropic glutamate receptors prevented any

suggestion of a change in spine density, a very strong trend to
increased filopodia density remained. This is in agreement with
results in cortical pyramidal and hippocampal neurons, where
NMDAR activity is required for activity-dependent spinogenesis
(Fischer et al., 2000; Kwon and Sabatini, 2011) and spine
shrinkage/loss (Nägerl et al., 2004; Zhou et al., 2004; Oh et al.,
2013), and where AMPAR activity regulates spine motility
(Fischer et al., 2000) and maintenance (McKinney et al., 1999).
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FIGURE 5 | Summary of results. (A) Cartoon depicting basal (no silencing) striatal projection neuron dendrite (SPN; green) with three postsynaptic spines and
two filopodia, with presynaptic Synapsin-1 signal shown in red. There were no changes detected following 3 h TTX silencing or 3 h TTX + AP5+CNQX. Silencing with
TTX for 24 h increased Synapsin-1 signal intensity specifically on dendritic spines (darker red), and began the process of spine elimination, without changes to
filopodia density. The additional block of spontaneous glutamate receptor activation (AP5 + CNQX) prevented reductions in spine density but not increased
Synapsin-1 signal intensity. Chronic silencing with 2-week exposure to TTX dramatically reduced spine density and decreased Synapsin-1 signal intensity;
specifically, that associated with dendritic spines and dendrites. (B) Cartoon of control (no glycine) SPN with three spines and two filopodia with postsynaptic
GluA1 AMPA receptor signal shown in purple. A chemical LTP protocol (3 min glycine) increased spine density, GluA1 signal intensity, and the percentage of spines
with clearly detected GluA1 clusters, without changing presynaptic cluster density.

Distinct effects on spine and filopodia dynamics have also
been observed elsewhere; blocking AMPA receptors reduced
spine density in hippocampal slices 7 days post-treatment,
whereas NMDAR blockade had no effect on spines, but
instead caused the appearance of filopodia-like protrusions
(McKinney et al., 1999).

Beyond methodological variability, different responses to
glutamate receptor blockade may arise from the existence
of different filopodia sub-types (Portera-Cailliau et al., 2003;
Richards et al., 2005), as well as the effects of developmental stage
on filopodia dynamics (Sala and Segal, 2014); these distinctions
could be tested in future experiments. It is also worth considering
that some differences between blocking burst firing vs. all
glutamatergic activity may arise from extrasynaptic receptors;
while we assume antagonists are most effective in blocking
spontaneous glutamate release and activation of receptors close
to release sites, we cannot rule out the possibility that silencing
extrasynaptic receptor activation through ambient glutamate
in the media may contribute. Regardless, our results extend
the literature on the effects of glutamatergic receptor blockade
to striatal SPNs, demonstrating that, as at other glutamatergic
synapses, spine pruning is an active process requiring ongoing

low-level glutamate activity, and can be uncoupled from
filopodia formation.

The role of NMDARs in striatal activity-dependent plasticity
has been revealed primarily by slice electrophysiology (reviewed
in Perrin and Venance, 2019). Although LTD was initially
considered the dominant form of plasticity at cortico-striatal
synapses, many reports have since shown that high-frequency
stimulation can result in either NMDAR-dependent LTP, or
mGluR-dependent LTD (Calabresi et al., 1996; Spencer and
Murphy, 2000; Tang et al., 2001; Reynolds and Wickens, 2002;
Wang et al., 2006; Sergeeva et al., 2007; Li et al., 2009; Lovinger
and Mathur, 2012; Johnson et al., 2017). However, debate
remains as to whether dopamine or other neuromodulators
are necessary for the expression of LTP (Spencer and Murphy,
2000; Calabresi et al., 2007; Li et al., 2009; Lovinger, 2010;
Burguière et al., 2013; Park et al., 2014; Cerovic et al., 2015).
Only a few studies have specifically examined activity-dependent
spine alterations in the context of AMPAR trafficking in SPNs
(Kozorovitskiy et al., 2012, 2015; Matikainen-Ankney et al.,
2018), and, to our knowledge, only one other study has done
so in the absence of dopamine (Burguière et al., 2013). Here,
we show that LTP-like changes in SPNs can be driven by

Frontiers in Cellular Neuroscience | www.frontiersin.org 12 February 2021 | Volume 15 | Article 569031

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Kuhlmann et al. Structural Plasticity in Cortico-Striatal Co-culture

NMDAR activity alone, as the NMDAR co-agonist glycine (in
the absence of Mg2+) produced a rapid increase in dendritic
spines and associated GluA1 expression. Thus, even in the
absence of dopamine, SPNs show a similar response to NMDAR
stimulation compared to principle excitatory neurons, in which
LTP induction by glutamate uncaging (Matsuzaki et al., 2004;
Yang et al., 2008) or chemical paradigms (Lin et al., 2004; Huang
et al., 2005; Park et al., 2006; Sharma et al., 2006; Korkotian
and Segal, 2007; Fortin et al., 2012; Brigidi et al., 2014) leads to
increased spine head volume or de novo spine formation without
filopodial intermediates (Kwon and Sabatini, 2011). However,
a contributing role of non-neurotransmitter neuromodulators
within the culture media, such as BDNF, cannot be discounted
in the present findings.

The observed increase to GluA1 cluster intensity and
association within spines also suggests a functional change,
consistent with results in hippocampal neurons showing
trafficking and membrane insertion of GluA1-containing
AMPARs in spines following LTP induction (Shi et al., 2001;
Malinow and Malenka, 2002; Matsuo et al., 2008; Fortin
et al., 2010). However, electrophysiological measures of activity-
dependent changes here were less clear. Whole-cell patch-clamp
recordings ∼30–60 min following treatment revealed variable
effects on mEPSC frequency, although a trend to increased
frequency in glycine-treated SPNs was observed. Moreover, we
found no indication of increased mEPSC amplitude following
glycine, despite the increased GluA1 signal. A potential reason
for this is that the synaptic effects of glycine stimulation are not
fully captured by measuring quantal (miniature) glutamatergic
transmission, and that changes in evoked activity would be more
apparent, given the growing body of literature suggesting that
these are mechanistically distinct (Ramirez and Kavalali, 2011;
Kavalali, 2015; Abrahamsson et al., 2017; Andreae and Burrone,
2018; Chanaday and Kavalali, 2018). Alternatively, the observed
increase in spine density could precede functional changes
requiring associated new presynaptic elements (as Synapsin-1
density did not increase); apropos, spine enlargement before
AMPAR insertion has been observed following chemical LTP
induction in hippocampal slices (Kopec et al., 2006).

In a separate study in which we used the same chemical
LTP protocol on cultured hippocampal neurons, we found
increased mEPSC amplitude and frequency, which correlated
with increased spine width and density 30–60 min after glycine
stimulation (Brigidi et al., 2014). It is thus possible that
SPNs, unlike hippocampal neurons, require neuromodulators
to fully express synaptic LTP in terms of current flux, while
structural plasticity can be induced by NMDAR activation
alone. In support of this, glutamate uncaging alone leads
to spinogenesis in SPNs ∼50% of the time, whereas D1 or
A2a receptor agonists significantly increase the probability
of novel spines and functional synapses (as evidenced by
increased mEPSC frequency) in D1R and D2R SPNs, respectively
(Kozorovitskiy et al., 2015). Nevertheless, the significant decrease
in mEPSC event-decay constant following glycine treatment
indicates that some functional change occurred at cortico-
striatal synapses, possibly reflecting altered glutamate receptor
subunit composition or phosphorylation (Lambolez et al., 1996;

Banke et al., 2000; Chater and Goda, 2014). GluA2-lacking,
calcium-permeable AMPARs exhibit faster decay kinetics than
those containing GluA2 (reviewed in Diering and Huganir,
2018), and multiple studies have reported their integration at
specific synapses, including cortico-striatal ones, during LTP
induction (Lamsa et al., 2007; Soares et al., 2013; Ma et al., 2018;
Park et al., 2018; Benke and Traynelis, 2019). Thus, the faster
decay of mEPSCs in glycine-treated co-cultures, together with
the increased GluA1 signal in spines, may reflect the activity-
dependent insertion of calcium-permeable AMPARs in SPNs.
Future work could extend these findings by recording evoked vs.
miniature EPSCs, verifying differences in SPN subtype, and/or
additionally examining the response to D1 and A2a receptor
agonists. Regardless, our results show that NMDAR activation
drives rapid structural, and some electrophysiological changes at
cortico-striatal synapses.

This study presents an examination of activity-dependent
structural development and plasticity within GABAergic striatal
projection neurons. Chronic and short-term glutamatergic
manipulations to co-cultured SPNs provides a comparison with
similar studies in hippocampal and cortical pyramidal neurons
and highlights the distinct but overlapping regulation of spine
and filopodial activity-dependent plasticity. In particular, we
show that SPN structural plasticity occurs within 24 h of
glutamate activity blockade, and within 30 min of a 3-min
NMDAR activation by glycine, even in the absence of dopamine;
thus, the cortico-striatal co-culture system is useful for examining
the specific role of glutamate receptor activity in shaping SPN
physiology and cortico-striatal synapses. While our primary aim
was to provide a characterization of structural plasticity in SPNs
and how these may differ from principal excitatory neurons,
we offer several ideas on how these assays can be refined and
built upon. These could easily be applied to examining activity-
dependent plasticity in disease models, particularly those in
which altered glutamatergic transmission and aberrant structural
plasticity may play a pathophysiological role, and in which SPNs
have shown distinct vulnerability.
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SUPPLEMENTARY FIGURE 1 | Synapsin-1 total dendritic density, and
spine-/filopodia-specific changes in Synapsin-1 puncta following chronic and
acute silencing. Additional analysis to quantify the effects of glutamatergic
silencing on Synapsin-1 puncta at select dendritic protrusions as opposed to the
full dendritic arbor. In a subset of images (5–10 per culture) in chronic (A) and
acute (B) silencing experiments, ROIs were created around a sample of spines
and any visible filopodia on secondary or tertiary dendrites of GFP-expressing
SPNs, to calculate the integrated density (intensity) of Synapsin-1 in the
corresponding raw images. (A) There were no changes in total dendritic
Synapsin-1 cluster density in chronic TTX silencing experiments; analysis of
dendritic spines and filopodia showed a significant reduction in Synapsin-1
integrated intensity on spines following silencing (Kruskal–Wallis test,
∗∗∗∗p < 0.0001), with post-hoc tests indicating that the 3× TTX condition was
reduced compared to the 2× TTX condition and control (Uncorrected Dunn’s test;
∗∗p = 0.008 and ∗∗∗∗p < 0.0001, respectively), whereas there was no significant
difference between 2× TTX and control (p = 0.291). In contrast, Synapsin-1 signal
on filopodia was significantly higher in the 2× TTX condition when compared to
control (Kruskal–Wallis test, ∗∗∗p = 0.0008; post-hoc Uncorrected Dunn’s test,
∗p = 0.034) and compared to the 3× TTX condition (∗∗∗p = 0.0002). (B) Acute
(24 h) silencing experiments, with separate analysis for dendritic spines and
filopodia. There were no changes in total dendritic Synapsin-1 cluster density in
24 h acute TTX silencing experiments. On spines, both the Silencing (TTX only)
and Total Silencing (TTX + APV + CNQX) conditions showed significantly
increased Synapsin-1 integrated intensity compared to control (Kruskal–Wallis
test, ∗∗∗∗p < 0.0001; post-hoc Uncorrected Dunn’s Test, ∗∗∗∗p < 0.0001 for both).
Additionally, the Total Silencing condition had a significantly greater increase
compared to the Silencing condition (∗∗∗p = 0.0003). In contrast, there was no
significant difference in Synapsin-1 signal on filopodia (Kruskal–Wallis test,
p = 0.838).
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