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A B S T R A C T

With more than 1.7 million COVID-19 deaths, identifying effective measures to prevent COVID-19 is a top
priority. We developed a mathematical model to simulate the COVID-19 pandemic with digital contact tracing
and testing strategies. The model uses a real-world social network generated from a high-resolution contact
data set of 180 students. This model incorporates infectivity variations, test sensitivities, incubation period,
and asymptomatic cases. We present a method to extend the weighted temporal social network and present
simulations on a network of 5000 students. The purpose of this work is to investigate optimal quarantine rules
and testing strategies with digital contact tracing. The results show that the traditional strategy of quarantining
direct contacts reduces infections by less than 20% without sufficient testing. Periodic testing every 2 weeks
without contact tracing reduces infections by less than 3%. A variety of strategies are discussed including
testing second and third degree contacts and the pre-exposure notification system, which acts as a social
radar warning users how far they are from COVID-19. The most effective strategy discussed in this work was
combining the pre-exposure notification system with testing second and third degree contacts. This strategy
reduces infections by 18.3% when 30% of the population uses the app, 45.2% when 50% of the population
uses the app, 72.1% when 70% of the population uses the app, and 86.8% when 95% of the population uses
the app. When simulating the model on an extended network of 5000 students, the results are similar with
the contact tracing app reducing infections by up to 79%.
1. Introduction

More than 1.7 million people have died of COVID-19 [1]. With
such catastrophic loss of life at risk, it is a top priority to identify
effective measures to prevent the spread of COVID-19. Preventing the
spread of COVID-19 has several challenges. Firstly, 44% of COVID-
19 transmissions occur during the asymptomatic stage with infected
individuals being most infectious 1 to 2 days before symptom onset [2].
Secondly, according to the Center for Disease Control and Prevention
(CDC) Planning Scenarios report [3], 40% of all COVID-19 cases remain
asymptomatic and this number could be as high as 79% for those under
20 [4]. The CDC Planning Scenario also estimates that asymptomatic
individuals are 75% as infectious as symptomatic individuals. Finally,
the false-negative rate of RT-PCR tests on presymptomatic individuals
ranges from 67% to 100% [5]. All of these factors make it very difficult
to prevent COVID-19 with symptom-based measures.

Contact tracing has existed for decades, helping to reduce tubercu-
losis [6], sexually transmitted diseases [7], and Ebola [8]. However,
manual contact tracing relies on substantial human labor. According to
a recent survey by National Public Radio, 39 states do not have enough
contact tracers [9]. Additionally, of the contacts reported, only around
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50% were reachable by contact tracers [10]. Health officials estimate
an additional $12 billion dollars are required to fund the 180,000
manual tracers needed [11]. Manual contact tracing is also susceptible
to errors with the United Kingdom’s Test and Trace service losing
15,000 positive COVID-19 cases between September 25 and October
2, 2020 [12].

Digital contact tracing is a relatively new method of fighting pan-
demics. Although the Bluetooth technology for digital contact tracing
was first validated in 2014 [13], contact tracing apps have only re-
cently been implemented to fight the COVID-19 pandemic. Since digital
contact tracing apps require a critical mass of a population in order
to be effective, a key goal is to convince enough people to use the
app. In [14], it is suggested that targeting small communities like
universities first will allow the app to be used by enough people within
that community. This is more feasible than expecting a significant
proportion of the population at large to use the app. Many universities
have experienced outbreaks [15] and are looking for ways to prevent
further spread. Currently, Georgia Tech, Carnegie Mellon, Grand Valley
State University, and even the city of Santa Fe are beginning to adopt
contact tracing apps like NOVID [16]. Currently, there are not enough
https://doi.org/10.1016/j.mbs.2021.108645
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users within these communities to prove the effectiveness of contact
tracing apps. We will use simulation to evaluate the effectiveness of
digital contact tracing.

Efforts to model diseases date back to the 1920s with the cre-
ation of the SIR (Susceptible, Infectious, Recovered) model [17] where
people in a fully mixed population are modeled as being Susceptible,
Infectious, or Recovered. The SEIR (Susceptible, Exposed, Infectious,
Recovered) model [18] is a variant of the SIR framework used for
diseases with longer incubation periods. It includes the Exposed stage
which are infected individuals who do not show symptoms. While all
individuals are asymptomatic during the exposed stage, we assume
a certain proportion, 𝑝, of individuals remain asymptomatic during
the Infectious stage as well. More recently, network based models,
where humans are vertices and contacts are edges, have been adopted.
Epidemiological models have been instrumental in encouraging preven-
tative measures in the COVID-19 pandemic such as masking [19,20],
social distancing [21,22], testing [23,24]. In particular, [19,23] are
network based models.

Since digital contact tracing relies on the exact contacts that occur in
a population, it is best modeled with a contact network where people
are vertices and contacts are edges. Recent efforts to simulate digital
contact tracing [25,26] have been done using synthetic networks where
households and communities are constructed with random processes
such as full mixing, and each pair of people have the same probability
of contact. However, very little is known about the exact structure of
human contacts and how these structures affect digital contact trac-
ing. Additionally, those models assume perfect COVID-19 tests which
changes optimal strategies of digital contact tracing and testing.

This paper presents an enhanced network based SEAIR (Susceptible,
Exposed, Asymptomatic, Infectious, Recovered) model of the COVID-
19 pandemic with digital contact tracing and testing strategies that
incorporates variations in infectivity and test sensitivity. Our SEAIR
model further refines the population into symptomatic individuals,
who show symptoms during infection, and asymptomatic individuals,
who do not. In contrast to previous work on digital contact tracing,
the networks in the model are generated from a real world data set
of interactions among 180 students of a high school in France [27].
Since the data set was only recorded over 7 days, we use a MUNGE-
like heuristic to generate additional days for the model. We present a
new method to extend temporal weighted graphs in order to perform
simulations on a larger population of 5000 people.

Our model incorporates test sensitivity and shows that it has a
significant impact on digital contact tracing strategies. The model sim-
ulates a new digital contact tracing strategy developed by NOVID [16]
called the pre-exposure notification system. The pre-exposure notifi-
cation system acts like a ‘‘social radar" telling app users how close
they are to the nearest COVID-19 infections, allowing them to take
extra precautionary measures. In contrast with traditional SEIR models,
test sensitivity is modeled to change over time depending on the time
of symptom onset [5]. The incubation period is sampled from the
COVID-19 incubation period distribution [28]. The infectiousness of an
individual is modeled to change over the infectious period and is fitted
to the function presented in [2].

The model shows that the traditional strategy of quarantining direct
contacts reduces infections by less than 10% when more than half the
population is asymptomatic. Testing second and third degree contacts
reduces infections by up to 40% when 70% of the population uses
the app. The pre-exposure notification system reduces infections by
an additional 43% and reduces the number of quarantines required
by 51%. Quarantining second degree contacts reduces infections but
leads to a high number of quarantines. If large proportions of the
population are asymptomatic, periodic testing reduces infections by
an additional 41%. However, periodic testing without tracing reduces
infections by only 3%. The most effective strategy discussed in this
work was combining the pre-exposure notification system with testing

second and third degree contacts. This strategy reduces infections by o
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18.3% when 30% of the population uses the app, 45.2% when 50% of
the population uses the app, 72.1% when 70% of the population uses
the app, and 86.8% when 95% of the population uses the app. When
simulating the model on an extended network of 5000 students, the
results are very similar with the contact tracing app reducing infections
by up to 79%.

1.1. Paper outline

In Section 2, we present the contact network generation process.
Section 3 outlines the SEAIR based model of COVID-19 spread. In
Section 4, we introduce the contact tracing app into the model in-
cluding the pre-exposure notification system. Section 5 introduces the
contact tracing and testing strategies which are tested in the results.
In Section 6 we present the results of 5 simulated scenarios. In Sec-
tion 6.1, the traditional strategy of quarantine of first degree contacts is
investigated. In Section 6.2, testing of second and third degree contacts
is incorporated. In Section 6.3, the pre-exposure notification system
is investigated. Section 6.4 investigates periodic testing. Section 6.5
simulates the model on an extended version of the graph. In Section 7,
we provide a summary and concluding remarks.

2. Model of contact network

The first component of the model is the contact network which
encapsulates the interactions between individuals in the simulation.
The model iterates through discrete timestamps each representing a day
in the simulation. Each day in the model, individuals come into contact,
and these contacts ultimately determine how the virus transmits. The
contact network on day 𝑡, 𝐺𝑡 is defined to be a graph where each vertex
𝑣1,… , 𝑣𝑛 represents an individual in the model and the edge weight
𝑒𝑖𝑗 between 𝑣𝑖 and 𝑣𝑗 represents the total amount of time person 𝑖 and
person 𝑗 have spent in contact with each other during this time step. We
do not distinguish between times of the day of the contact or number
of contacts between the same pair of individuals. This is in accordance
with a recent CDC policy change that defines a close contact to be
measured using cumulative contact time over the course of a day [29].

Traditional SEIR models assume uniform mixing where each indi-
vidual has the same probability of coming into contact with every other
individual. Since digital contact tracing involves the exact contacts
that occur in a population, a realistic contact network is needed.
Temporal networks in the model are generated using a publicly avail-
able high-resolution data set [27] which used RFID (Radio Frequency
Identification Devices) to record all contacts between 180 students from
Lycée Thiers high school in France over the course of 7 days.

Since the simulation is over longer periods of time, we present a
heuristic for generating additional days. Define 𝐻𝑎 to be the contact
network in day 𝑎 of the data set where 1 ≤ 𝑎 ≤ 7. The edge weight 𝐻𝑎,𝑖,𝑗
is the duration of contact between people 𝑖, 𝑗 on day 𝑎 from the data set.
The heuristic is similar to the MUNGE algorithm [30] which generates
synthetic training data. The algorithm picks an initial data value, and
for each feature, with a certain probability, swaps that feature with
the feature of its nearest neighbor. In this heuristic, we use a random
day rather than the nearest neighbor. Initially, 2 distinct days 𝑎, 𝑏 are
hosen at random from the data set. Starting with the contact graph for
ay 𝑎, for the contact duration between 𝑣𝑖 and 𝑣𝑗 with probability 0.5,
e replace that contact duration with 𝐻𝑏,𝑖,𝑗 . On average, the generated

ontact network 𝐺𝑡 has half of its edges equal to the corresponding
dges in 𝐻𝑎, and the other half equal to 𝐻𝑏.

To simulate the app on larger networks, we present a method to gen-
rate larger networks from the original data set. We create a modified
ersion of the Albert–Barabási process that is adjusted for constructing
eighted temporal graphs and maintains the average degree of the
ertices.

The principal idea of the Albert–Barabási process is that nodes

f high degree are more likely to interact with new nodes. Given a
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temporal graph 𝐺 with 𝑛 vertices where the graph on timestamp 𝑡 is
𝐺𝑡, extra people are added one at a time with the following process:

A new vertex 𝑣 is added, and for each existing 𝑤, a random third
vertex 𝑢 is chosen. The temporal edge weight between 𝑣 and 𝑤 is
determined to be the same as the edge weight between 𝑤 and 𝑢:
𝐺𝑡,𝑣,𝑤 = 𝐺𝑡,𝑢,𝑤 for all 𝑡. This step is the same as in Albert–Barabási except
adjusted to fit a weighted temporal graph. To preserve the average
degree of the vertices, each of the original edges of 𝐺 are deleted
with probability 1

𝑛−1 . Note that the generated graph no longer has the
scale-free property.

The extended network is initialized to be the original graph in the
data set and extended in accordance to the above procedure to a total
of 5000 individuals.

3. Model of COVID-19 spread

The SEIR framework organizes the people in the simulation into one
of the following four states: Susceptible (S), Exposed (E), Infectious (I),
or Recovered (R). Individuals in the Susceptible stage have not been
infected and therefore are susceptible to the virus. Exposed individuals
have been infected with the virus but do not yet show symptoms.
The Infectious stage begins when infected individuals show symptoms.
Finally, the Recovered stage contains individuals who have recovered
or otherwise removed from the model and are now immune from
further spread. Individuals in both the Exposed and Infectious stage can
infect others. An individual moves onto the next stage according to the
following rules:

• 𝑆 → 𝐸: Individuals in the susceptible stage can only be exposed
if they come into contact with an infected individual. Infections
will be discussed in later sections.

• 𝐸 → 𝐼 : After being exposed to a virus, the period of time before
symptom onset is called the Incubation period, typically within
2 to 14 days. According to [28], the distribution of incubation
periods is approximately the log-normal distribution with param-
eters 𝜇 = 1.621, 𝜎 = 0.418. The log-normal distribution is defined
as follows: Let 𝑍 be a random variable with normal distribution
with mean 𝜇 and deviation 𝜎, then 𝑋 = 𝑒𝑍 where 𝑋 is the
random variable with log-normal distribution with parameters
𝜇, 𝜎. To determine the incubation period of an individual, we take
a random sample from this distribution rounded to the nearest
positive integer.

• 𝐼 → 𝑅: Individuals with moderate symptoms stop being infectious
around 10 days from symptom onset [31]. As in traditional SEIR
models, we assume that every time stamp after symptom onset,
there is a probability 𝜆 = 0.11 which is 1

9 that an Infectious person
recovers or is removed from the model.

As in traditional SEIR models, the functions 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡) are
the number of individuals in the compartments susceptible, exposed,
infections, and recovered respectively at time 𝑡. We defined 𝑄(𝑡) to be
he number of individuals quarantined at time 𝑡 but have not received
positive test result and 𝑇 (𝑡) to be the number of individuals who have

eceived a positive before or during time 𝑡 but have not recovered.
ndividuals counted in 𝑇 (𝑡) are in quarantine as well. Quarantines will
e discussed in Section 4. In the rest of the paper, for each individual
𝑖, we will refer to 𝐸𝑣𝑖 , 𝐼𝑣𝑖 , and 𝑅𝑣𝑖 as the time of exposure, symptom
nset, and recovery respectively of 𝑣𝑖. Additionally, 𝑇𝑣𝑖 is the time of
he first positive test of 𝑣𝑖.

In realistic scenarios, individuals can infect others even before
ymptom onset and the level of infectiousness changes throughout
he infection. As in [2], the infectiousness of an individual is directly
roportional to the amount of viral shedding. In [2], the amount of viral
hedding of an individual over the course of the infection is calculated
sing the distribution of the serial interval and distribution of the
ncubation period. We will denote the function giving the infectiousness

rofile by 𝐼𝐷(𝑡) where the input 𝑡 is the number of days since symptom

3

Fig. 1. Probability of infection vs individual reproduction number.

onset, and the output 𝐼𝐷(𝑡) is the density of viral shedding on day 𝑡.
For example, since 𝐼𝐷(1) is approximately 0.11, around 11% of the
total viral shedding happens 1 day after symptom onset. The values of
𝐼𝐷(𝑡) are taken directly from the function in [2] where infectiousness
was assumed to start 5 days before symptom onset.

The function 𝐼𝐷(𝑡) allows us to introduce variations in infectious-
ness throughout the infection. The infectiousness of an individual,
which is defined to be the probability of infection given a 20-second
contact, is some constant multiple, 𝑝, of 𝐼𝐷(𝑡). The value of 𝑝 will be
calculated based on the 𝑅0 value.

Consider the graph 𝐺𝑡 to be the contact network during timestamp
𝑡 in the model, with vertices 𝑣1,… , 𝑣𝑛 representing people and edge
weight 𝑒𝑖𝑗 to be the total contact duration between 𝑣𝑖, 𝑣𝑗 during day 𝑡.
Assuming infection to be an event that can happen during the course of
a contact, if 𝑣𝑖 is in either the exposed or infectious compartments, and
𝑣𝑗 is susceptible, we model the probability that 𝑣𝑗 becomes exposed to
be

1 − (1 − 𝑝𝐼𝐷(𝑡 − 𝐼𝑣𝑖 ))
𝑑

here 𝑡 − 𝐼𝑣𝑖 is the number of days since symptom onset of 𝑣𝑖.
The basic reproduction number, or 𝑅0, is the expected number of

econdary infections caused by a single infectious individual. Estimates
f the value of 𝑅0 range from 1.5 to 6.7 with the median value being
.8 [32] and the methods used to estimate 𝑅0 varies widely between
tudies [33]. Through simulation, we calculate the value of 𝑅0 as a
unction of 𝑝 as shown in Fig. 1. The value of 𝑝 is ranged in increments

of 0.0025 from 0 to 0.225 for a total of 100 values. For each value
of 𝑝, we run the simulation 1,800 times where each individual is the
seed infection 10 times and the 𝑅0 value is measured as the average
number of secondary infections caused by the seed infection. As shown
in Fig. 1, the scenario when 𝑝 = 0.10 yields an 𝑅0 value of 2.8. Based
on an additional 18,000 trials for 𝑝 = 0.1 where each individual is the
seed infection 100 times, the confidence interval is 2.76 to 2.81 for 95%
confidence. In the rest of this work, the value of 𝑝 will be set to 0.10.

Our model refines the population to include asymptomatic individ-
ual. According to [3], 40% of the population remain asymptomatic
throughout their infectious periods. Again, estimates vary widely and
it is noted that this value could range from 10% to 70%. In [34], it
is estimated that over 80% of young individuals are asymptomatic.
At the beginning of each simulation, some individuals are randomly
selected to be asymptomatic. The amount of asymptomatic individuals
is used as an independent variable. Asymptomatic individuals do not
show symptoms if they are infected. Note that the status of an individ-
ual as asymptomatic is not related to whether they are infected, but
whether they will or will not show symptoms if infected. We test the
possibilities when the expected proportion of asymptomatic individuals
is 20%, 40%, 60%, or 80%. Asymptomatic individuals have similar
viral loads to symptomatic individuals [35]. Thus, we will assume that
asymptomatic individuals have the same infectiousness as symptomatic

individuals.
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Testing is a key component of contact tracing. The contact tracing
pp relies on positive tests to identify cases of COVID-19. We adjust
est sensitivities based on days from symptom onset to the distribution
alculated in [5]. The false-negative rate of RT-PCR COVID-19 tests
re between 67% to 100% before symptom onset, and fall to 20%
o 40% after symptom onset [5]. The median number of days from
ymptom onset to taking a test is 3 days with interquartile range 1
o 6 [3]. We approximate this distribution by assuming that each day
here is a probability of 19% that symptomatic individuals are tested.
his preserves the median of 3 days and interquartile range 1 to 6.
e do not account for false-positive tests or individuals symptomatic
ith a disease unrelated to COVID-19. Test results are received after a
elay of 1 day. This is similar to the delay on university campuses [36].
fter receiving a positive COVID-19 test result, we assume the person
ill remain in quarantine until recovery.

. Model of contact tracing app

The contact tracing app has incomplete information about the con-
act network and the states of the individuals. Ultrasound apps such
s NOVID can measure distances to the resolution of inches and detect
ontacts with accuracy over 99.6% [16]. We will assume all contacts
etween individuals with the app are sensed. Thus, the contact tracing
pp can detect the subgraph of the contact map induced by the set of
pp users. Contact tracing apps support the consideration of degree
contacts rather than just direct contacts. This is not possible with
anual contact tracing. A contact is defined to be a tuple (𝑝1, 𝑝2, 𝑡, 𝑑)

that contains the following four pieces of information: 𝑝1, 𝑝2 are the
people involved in the contact, 𝑡 is the day of contact, and 𝑑 is the
duration of the contact measured in units of 20 s. Since the digital
contact tracing app cannot determine the time of symptom onset, the
estimated transmission probability of the contact is (1 − (1 − 𝑝′)𝑑𝑖 ). The
value 𝑝′ = 𝐼𝐷𝑝 is substituted for 𝑝𝐼𝐷(𝑡) where 𝐼𝐷 = 0.11 is the average
value of 𝐼𝐷(𝑡) during the 6 most infectious days. In addition to contacts,
users report all positive test results. If a user has tested positive, we
assume that this user will report recovery. In the contact tracing app,
we define a degree 𝑘 contact to be a sequence of contacts 𝑐1,… , 𝑐𝑘 that
satisfy the following properties:

1. The individuals 𝑝1,… , 𝑝𝑖+1 involved in the contacts form a chain:
𝑐𝑖 = (𝑝𝑖, 𝑝𝑖+1, 𝑡𝑖, 𝑑𝑖).

2. 𝑝1 has reported a positive test: 𝑡1 ≤ 𝑇𝑝1 ≤ 𝑡1 + 10. Through
simulation of 1800 outbreaks without interventions, 95% of all
symptomatic individuals took a test within 8 days of symptom
onset. Since infectiousness becomes significant 2 days before
symptom onset, the contacts from 10 days before the test must
be recalled.

3. 𝑝𝑖, 𝑝𝑖+1 have not reported recovery and thus can transmit or catch
the virus: 𝑅𝑝𝑖 , 𝑅𝑝𝑖+1 > 𝑡𝑖 for each 𝑖.

4. The serial interval is between 1 and 10 days: 𝑡𝑖 + 1 ≤ 𝑡𝑖+1 ≤
𝑡𝑖 + 10. The serial interval is defined to be the duration from
the exposure time of the infector (𝑡𝑖) to the exposure time of
the infected (𝑡𝑖+1). Through simulation of the model 1800 times,
94% of all serial intervals are within 10 days.

The weight of this contact chain is the product of the estimated
transmission probabilities of each contact:
𝑘
∏

𝑖=1
(1 − (1 − 𝑝′)𝑑𝑖 ).

First and second degree contacts are computed using contact data
from previous days directly after 𝑝1 reports a positive test. Larger
degree contacts are computed recursively. For each person 𝑣𝑖 in the

odel, we keep track of a matrix 𝑀𝑖 where 𝑀𝑖,𝑙,𝑡 is the total sum of
contact chains of length 𝑙 that affect person 𝑣𝑖 at time 𝑡. Using the

ontacts, the app can calculate 𝑀𝑖 recursively.

4

On day 𝑡, if 𝑣𝑖 has contacts with 𝑣𝑎1 ,… , 𝑣𝑎𝑘 with durations 𝑑1,… , 𝑑𝑘
espectively, where 𝑣𝑖, 𝑣𝑎1 ,… , 𝑣𝑎𝑘 have not reported recovery by day 𝑡,
hen:

𝑖,𝑙,𝑡 =
𝑘
∑

𝑠=1

(

(

1 − (1 − 𝑝′)𝑑𝑠
)

10
∑

𝑟=1
𝑀𝑠,𝑙−1,𝑡−𝑟

)

.

For all of 𝑣𝑖’s contacts, we take the sum of all contact chains of
length 𝑙 − 1 and multiply by the estimated transmission probability
− (1 − 𝑝′)𝑑𝑠 to obtain the sum of all contact chains of length 𝑙.

A person 𝑥 is a degree 𝑘 contact on day 𝑡 if the sum of all weights
f their contacts with degree ≤ 𝑘 is above 10%:
𝑘

𝑖=1

10
∑

𝑗=1
𝑀𝑥,𝑖,𝑡−𝑗 ≥ 𝐶.

The contact cutoff value, 𝐶, only affects the quarantine rules and not
imulating the disease transmission. Essentially, direct contacts that are
alculated to be infected with probability at least 𝐶 are quarantined.
he value of 𝐶 is set to 10% by default. Note that contacts are
ecalculated and updated every day in the simulation. By default, first
egree contacts will be quarantined.

.1. Pre-exposure notification system

The pre-exposure notification system, as implemented in NOVID
16], acts like a ‘‘social radar" telling users how close they are to
OVID-19 by showing the number of positive cases at each distance

n their social network. App users can see the number of neighbors
f distance 𝑑 that are COVID-19 positive. We assume that first, sec-
nd, and third degree neighbors will take precautionary measures.
or second degree contacts, we assume a 75% reduction in contacts.
or third degree contacts, we assume a 50% reduction in contacts.
ontact reduction is simulated by taking the set of all interactions of a

ndividual, and deleting each contact with a certain probability (75%
r 50% depending on whether the individual is a second or third degree
ontact).

. Contact tracing strategies and simulation

At the beginning of the simulation, exactly one individual is exposed
hile the rest are susceptible. The simulation runs for 120 days. There
re 180 individuals and for each scenario we run 1800 trials where
ach individual starts as the seed infection 10 times. At the beginning
f each trial, some individuals are selected as asymptomatic, which
eans they will not show symptoms if infected. Note that the status

f an individual as asymptomatic is not related to whether they are
nfected, but whether they will or will not show symptoms if infected.
hus, asymptomatic is a fixed status of an individual. Every individual
as an equal and independent probability of being asymptomatic. These
robabilities are shown in the Asymptomatic column in Section 6. The
et of app users are determined in a similar way with the probability of
eing an app user shown in the App Proportion column. As discussed in
ection 3, symptomatic individuals that are in the infectious stage have
19% chance of getting tested everyday. We simulate the cases when

n expected 0%, 30%, 50%, 70%, and 95% of the population use the
pp and when an expected 20%, 40%, 60%, and 80% of the population
s asymptomatic.

Each contact tracing strategy is a combination of quarantine and
esting rules. We use the definition of degree 𝑑 contacts in Section 4

to determine which individuals to quarantine or test. For example, first
degree contacts are assumed to be at the highest risk of infection while
second and third degree contacts are at a lower risk. The first 4 of
our scenarios are simulated on the original network of 180 students
while the fifth scenario is simulated on the extended network of 5000
students as discussed in Section 2. In all our scenarios, we assume
individuals who have tested positive are quarantined for the duration
of the infection.
We simulate the following 5 situations:
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Table 1
Quarantine direct contacts, no followup testing.

Situation Infected Quarantine Tests used

App proportion Asymptomatic False True Tested

0% 40% 106 0 0 292 54
30% 40% 101 79 40 278 51
50% 40% 97 196 94 266 49
70% 40% 87 329 150 243 44
95% 40% 70 477 201 195 35

0% 80% 110 0 0 101 18
30% 80% 108 34 19 99 18
50% 80% 108 88 52 97 18
70% 80% 102 159 92 94 17
95% 80% 100 283 157 91 17

1. Quarantine of first degree contacts:
This is the basic strategy where first degree contacts, people who
are at the highest risk, are quarantined. No additional testing
strategies are implemented.

2. Quarantine of first degree contacts with followup testing of
second and third degree contacts:
As in the first scenario, first degree contacts are quarantined.
Additionally, first, second, and third degree contacts are tested
every 3 days. The goal is to test individuals who are at moderate
risk of infection.

3. Pre-exposure notification system:
As in scenario 2, first degree contacts are quarantined and first,
second, and third degree contacts are tested every 3 days. In
addition, we implement the pre-exposure notification system as
discussed in Section 4. We assume that second and third degree
contacts will take precautionary actions and thus reduce contacts
by 75% and 50% respectively.

4. Pre-exposure notification system with periodic testing:
In addition to the strategy in scenario 3, we test all individu-
als every 14 days. This scenario tests whether mass testing is
effective in curbing spread.

5. Scenario 4 on the extended graph:
The strategy implemented in scenario 5 is the same as in scenario
4. In this scenario, we simulate using the extended graph of 5000
students as discussed in Section 2. This scenario is used to test
whether our results are consistent even for larger populations.

We will measure the contact tracing app and COVID-19 testing con-
iguration by 3 metrics: Total infected, total days spent in quarantine,
nd total tests used. In the tables in Section 6, the Infected column
hows the number of individuals infected after 120 days. Quarantines
re split into 3 categories: false, true, tested. False quarantines are
uarantined individuals who do not have COVID-19. Individuals in
he True quarantine category are infected with COVID-19 but have
ot received a positive test result. Tested quarantines are individuals
laced in quarantine after testing positive. We distinguish the Tested
uarantines because these infections have been confirmed by test while
rue and False quarantines are predicted by the quarantine rules in
ection 4. Each of the quarantine columns show the total number of
ays spent in quarantine across all individuals over 120 days. The Tests
sed column shows the total number of tests used in the simulation
fter 120 days. The values in the tables show the total over 120 days. In
he graphs below, we present the time graphs for cumulative infections
nd active infections. We define active infections as individuals who
re infected, not recovered, and have not tested positive.

. Results

We simulate each scenario 1800 times where each individual is the
eed infection 10 times. The data provided in the tables below are
veraged over all trials and rounded to the nearest integer. In summary,
e simulate the following 5 scenarios:
5

1. Quarantine of first degree contacts
2. Quarantine of first degree contacts with followup testing of

second and third degree contacts
3. Pre-exposure notification system
4. Pre-exposure notification system with periodic testing
5. Scenario 4 on the extended graph

In scenario 1, the most basic strategy of quarantining first degree
contacts is not effective at high asymptomatic levels, suggesting that
a more comprehensive testing strategy is required. Scenario 2 shows
that testing second and third degree contacts greatly increases the effec-
tiveness of the app. The pre-exposure notification system, which warns
second and third degree contacts to take extra precautionary measures,
can reduce infections by an additional 40% while also reducing the
number of quarantines by up to 50%. In scenario 4, it is shown that
periodic testing without contact tracing reduces infections by less than
3%. Finally, scenario 5 presents the results for the extended network
of 5000 people. We find that the extended network has similar results
to the original network. In the graphs in Figs. 5(b) and 5(b), there
are large drops in active infections on days when the population is
tested. The graphs also display bumps that come from testing the new
second and third degree contacts every 3 days. Since the graphs are
averaged over thousands of trials, the jaggedness is significant. It is
likely caused by many second and third degree contacts being detected
at the same time, and thus, the followup testing, which happens every
3 days, becomes synchronized.

6.1. Scenario 1 — Quarantine of first degree contacts (traditional strategy)

This is the most basic strategy where only first degree contacts are
quarantined. Every day, symptomatic individuals have a 19% chance
of getting a test as discussed in Section 3. The simulation is performed
on the original network of 180 students.

From Table 1, we can find out that the effectiveness of the app
depends on the percentage of the people use the app. At 40% asymp-
tomatic ratio, the contact tracing app reduces infections by 8.4% at
50% app usage and 17.5% at 70% app usage. The effectiveness of the
app increases doubles from adding the extra 20% of app users. This
shows that it is very important to have a majority of app users.

A limitation of this strategy is that it is ineffective at high asymp-
tomatic ratios. At 80% asymptomatic ratio the contact tracing app
reduces infections by less than 10% in all cases. This is because in this
scenario, since COVID-19 testing relies on symptomatic individuals, the
effectiveness of the app is greatly reduced at high asymptomatic levels.
Less than 20 tests are used while over 100 students are infected which
indicates that the majority of infections are undetected. The results
in this scenario suggest that more comprehensive testing strategies
are needed, especially when large proportions of the population are
asymptomatic.

The cost of using the app is that quarantines increase as more
people use the app. In all cases, the number of false quarantines is
approximately double the number of true quarantines. The time of
peak infections is similar for each app usage. In Fig. 2(b), infections
rise dramatically, peaking at around 30 days after the initial infection
and then falls as herd immunity is reached. Because quarantine rules
require a history of contacts to be recalled, the initial 10 days show no
difference between the graphs of each app usage level.

6.2. Scenario 2 — Testing of second and third degree contacts

In this scenario, first, second, and third degree contacts are tested
every 3 days. All other parameters are the same as in scenario 1. The
simulation is performed on the original network of 180 students (see
Table 2).

As in scenario 1, the effectiveness of the app increases greatly as
the number of app users increases. In Table 2, at 40% asymptomatic
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Fig. 2. Quarantine direct contacts, no followup testing.
Fig. 3. Test second, third degree contacts.
able 2
uarantine direct contacts, test second, third degree contacts.
Situation Infected Quarantine Tests used

App proportion Asymptomatic False True Tested

0% 40% 105 0 0 286 53
30% 40% 99 113 33 326 108
50% 40% 83 259 74 341 234
70% 40% 63 395 101 316 470
95% 40% 28 314 77 172 671

0% 80% 112 0 0 101 19
30% 80% 107 89 24 156 62
50% 80% 95 254 71 250 188
70% 80% 78 419 110 305 401
95% 80% 44 423 106 239 645

ratio, the contact tracing app reduces infections by 20.6% at 50% app
usage and 39.5% at 70% app usage. These reductions are over two
times greater than in scenario 1. Notably, at 95% app usage, infections
are reduced by 73.4%, which is almost twice the reduction at 70%
app usage. Compared to scenario 1, the number of true quarantines
decreases while the number of tested quarantines increases at 40%
asymptomatic ratio. At 80% asymptomatic ratio, the contact tracing
app reduces infections by 14.5% at 50% app usage and 30.0% at
70% app usage. Again, this strategy is significantly more effective than
scenario 1. However, the number of quarantines increases significantly
in all categories compared to scenario 1. In particular, the number of
tested quarantines rises by 224% at 70% app usage. This is to be ex-
pected since the number of tests used rises significantly, from less than
20 to over 400. Again, the app is significantly more effective at 95%
6

app usage, with infections being reduced by 60.05%. Although results
for 40% and 80% asymptomatic ratio are similar for app proportions
less than 70%, at 95% app proportion, the case of 80% asymptomatic
yields 58% more infections.

Similar to scenario 1, the graphs in Fig. 3 are similar during the
first 10 days and then diverge significantly. However, at high app
usage, infections peak before 20 days while no app usage yields peak
infections at around 30 days. In conclusion, testing second and third
degree contacts greatly increases the effectiveness of the app especially
at higher asymptomatic proportions. Thus, the increase in test usage
and quarantines is justified.

6.3. Scenario 3 — Pre-exposure notification system

In this scenario, we simulate the pre-exposure notification system.
For second degree contacts, we assume a 75% reduction in contacts.
For third degree contacts, we assume a 50% reduction in contacts. All
other parameters are the same as those in scenario 2. The simulation is
performed on the original network of 180 students.

As in the previous scenarios, the effectiveness of the app increases
as the number of app users increases. In Table 3, at 40% asymptomatic
ratio, the contact tracing app reduces infections by 37.1% at 50% app
usage and 66.1% at 70% app usage. At 95% app usage, infections are
reduced by 84.5% which is an additional 40.2% reduction compared
to scenario 2. Compared to scenario 2, the total number of quarantines
is reduced by 51.4% at 70% app usage. There is a 54.7% reduction in
the number of tests used which is caused by the reduced interactions
for second and third degree contacts. This strategy is more effective
even though the number of true and tested quarantines are reduced by
55.2% and 48.4% respectively.



D. Xu Mathematical Biosciences 338 (2021) 108645

t
t
u
t
2
d

6

w
s

Fig. 4. Quarantine direct contacts, pre-exposure notification system.
Fig. 5. Pre-exposure notification system with periodic testing.
Table 3
Quarantine direct contacts, pre-exposure notification system.

Situation Infected Quarantine Tests used

App proportion Asymptomatic False True Tested

0% 40% 107 0 0 296 54
30% 40% 93 93 27 303 102
50% 40% 67 162 44 254 161
70% 40% 36 186 45 163 213
95% 40% 17 190 42 98 280

0% 80% 111 0 0 101 19
30% 80% 103 87 22 150 65
50% 80% 82 187 48 190 143
70% 80% 54 251 61 180 221
95% 80% 30 288 66 156 309

At 80% asymptomatic ratio, the contact tracing app reduces infec-
ions by 14.5% at 50% app usage and 30.0% at 70% app usage. Again,
his strategy is significantly more effective than scenario 1. At 95% app
sage, the 80% asymptomatic case yields 80.6% more infections than
he 40% case. This is an even more pronounced gap than in scenario
. The graphs in Fig. 4 are similar in shape to Scenario 2, the main
ifference being that the number of total infections are lower.

.4. Scenario 4 — Pre-exposure notification system with periodic testing

In scenario 4, we simulate the Pre-Exposure Notification System
ith periodic testing every 14 days is investigated. As in scenario 3,

econd and third degree contacts take extra precautionary measures.
7

Individuals in the model are tested every 14 days. The simulation is
performed on the original network of 180 students.

At 40% asymptomatic ratio, the contact tracing app reduces infec-
tions by 45.2% at 50% app usage and 72.1% at 70% app usage (see
Table 4). At 95% app usage, infections are reduced by 86.8%. Scenario
3 and 4 show similar results at higher app usage. In this scenario, the
app is effective even at 30% app usage. The 30% app usage case reduces
infections by 18.1% which is much more effective than in previous
scenarios. Additionally, results are similar at all asymptomatic ratios. At
80% asymptomatic ratio, the contact tracing app reduces infections by
37.8% at 50% app usage and 66.4% at 70% app usage. Thus, periodic
testing is especially helpful when larger proportions of individuals are
asymptomatic.

In Fig. 5(b), the number of infected but not tested individuals drop
sharply during days when the population is tested. The graph displays
bumps that come from testing the new second and third degree contacts
every 3 days. Since the graphs are averaged over thousands of trials, the
jaggedness is significant. It is likely caused by many second and third
degree contacts being detected at the same time, and thus, the followup
testing becomes synchronized. This shows that when used with contact
tracing, mass testing can be very helpful in reducing active infections.
Surprisingly, periodic testing at 0% app usage reduces infections from
106.05 in scenario 1 to 102.83, only a 3.0% decrease. This is an
insignificant change given that the population of 180 students. Thus,
periodic testing without contact tracing is not effective.

6.5. Graph extension

In this section, we simulate the strategy in scenario 4 on an extended
version of the graph. By the process described in Section 2, the original
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Table 4
Pre-exposure notification system with periodic testing.

Situation Infected Quarantine Tests used

App proportion Asymptomatic False True Tested

0% 40% 103 0 0 466 1021
30% 40% 84 95 27 404 1126
50% 40% 56 153 38 289 1287
70% 40% 29 166 38 159 1441
95% 40% 14 174 35 85 1571

0% 80% 104 0 0 375 1044
30% 80% 91 104 29 358 1118
50% 80% 65 175 44 281 1266
70% 80% 35 195 45 172 1426
95% 80% 18 209 44 106 1562

Table 5
Graph Extension.

Situation Infected Quarantine Tests used

App proportion Asymptomatic False True Tested

0% 40% 2430 0 0 10 992 31 002
30% 40% 1942 5858 869 10 054 36 557
50% 40% 1754 15 411 1686 9847 45 625
70% 40% 1301 26 188 2111 7902 62 003
95% 40% 501 22 810 1439 3319 81 970

0% 80% 2433 0 0 8759 31 576
30% 80% 2253 6641 1017 10 022 36 332
50% 80% 1888 16 594 1852 9563 45 640
70% 80% 1341 26 338 2192 7671 61 131
95% 80% 592 26 708 1723 3861 86 491

weighted temporal graph is extended to 5000 individuals. This popula-
tion size is closer to larger communities such as schools or universities
(see Table 5).

At 40% asymptomatic ratio, the contact tracing app reduces infec-
tions by 27.8% at 50% app usage and 46.5% at 70% app usage. This is
less effective than scenario 4. At 95% app usage, infections are reduced
by 79.4% which is similar to in scenario 4. Since the average degree is
preserved on the network of 5000 students, the similar results are not
surprising. As in scenario 4, the results are similar for all asymptomatic
ratios. At 80% asymptomatic ratio, the contact tracing app reduces
infections by 22.4% at 50% app usage and 44.9% at 70% app usage. At
95% app usage, infections are reduced by 75.7%. These numbers are
very similar to the corresponding values of 40% asymptomatic ratio.

As in scenario 4, Fig. 6(b) shows noticeable drops in infections on
days when the population is tested. Interestingly, at 95% app usage,
the number of infected individuals never rises to more than 100 people,
or 2% of the population. The graph does not exhibit an obvious peak
8

but rather a sustained amount of infections which is a reflection of the
greater population size.

7. Discussion and conclusion

Given the significant loss of life at risk, finding effective measures to
prevent the spread of COVID-19 is a top priority. Challenges in COVID-
19 prevention include significant pre-symptomatic transmission, high
proportions of asymptomatic cases, and inaccurate tests during the pre-
symptomatic stage. This work focuses on solving these challenges by
presenting effective strategies in digital contact tracing and testing.

The parameters in this model can be easily changed as more precise
values of COVID-19 parameters are measured. As more data on human
social patterns are collected, larger social networks can be constructed
leading to more accurate predictions in the model. Additionally, as
more accurate COVID-19 tests are developed, model results and optimal
strategies could change. Finally, this model only considers infections
based on close contacts. Although COVID-19 mainly spreads through
close contacts [37], the significance of spread through indirect contacts
is unclear and could be investigated in future models.

By simulating a variety of tracing and testing strategies, we found
that digital contact tracing can be very effective when combined with
testing. In scenario 1, the most basic strategy of quarantining first
degree contacts is not effective at high asymptomatic levels, suggesting
that a more comprehensive testing strategy is required. Testing second
and third degree contacts greatly increases the effectiveness of the
app. The pre-exposure notification system, which warns second and
third degree contacts to take extra precautionary measures, can reduce
infections by an additional 40% while also reducing the number of
quarantines by up to 50%. While periodic testing with contact tracing
is effective, periodic testing without contact tracing reduces infections
by less than 3%. We find the results on the extended network of 5000
students to be similar.
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Fig. A.1. App Usage vs Infections.
ppendix. App usage

In the following, we present figures for the number of infections as
function of the app usage. Simulations are run with the proportion

f app users ranging from 0% to 100% in increments of 5%. The app
ecomes much more effective as more users use the app. As shown in
ection 6.4, scenario 4 shows very close results for all asymptomatic
evels. Scenarios 3 and 4 shows that the effectiveness of the app begins
o level off after more than 80% of the population uses the app (see
ig. A.1).
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