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Abstract: Three pairs of new isopentenyl dibenzo[b,e]oxepinone enantiomers, (+)-(5S)-arugosin K
(1a), (−)-(5R)-arugosin K (1b), (+)-(5S)-arugosin L (2a), (−)-(5R)-arugosin L (2b), (+)-(5S)-arugosin M
(3a), (−)-(5R)-arugosin M (3b), and a new isopentenyl dibenzo[b,e]oxepinone, arugosin N (4), were
isolated from a wetland soil-derived fungus Talaromyces flavus, along with two known biosynthetically-
related compounds 5 and 6. Among them, arugosin N (4) and 1,6,10-trihydroxy-8-methyl-2-(3-methyl-
2-butenyl)-dibenz[b,e]oxepin-11(6H)-one (CAS: 160585-91-1, 5) were obtained as the tautomeric
mixtures. The structures of isolated compounds were determined by detailed spectroscopic analysis.
In addition, the absolute configurations of these three pairs of new enantiomers were determined by
quantum chemical ECD calculations.

Keywords: isopentenyl dibenzo[b,e]oxepinone; wetland soil-derived fungus; Talaromyces flavus;
arugosins K–N

1. Introduction

Isopentenyl dibenzo[b,e]oxepinones possess a dibenzo[b,e]oxepin-11(6H)-one skeleton (intact 6-7-6
tricyclic system) with isopentenyl substitution. Up to now, about nine isopentenyl dibenzo[b,e] oxepinones
had been reported from fungi in Nature, including arugosins A–D from Aspergillus rugulosus [1,2]
and A. variecolor [3], arugosin G from Emericella nidulans var. acristata [4], pestalachloride B
from Pestalotiopsis adusta [5], cephalanones D–E from Graphiopsis chlorocephala [6], and 1,6,10-
trihydroxy-8-methyl-2-(3-methyl-2-butenyl)-dibenz[b,e]oxepin-11(6H)-one (CAS: 160585-91-1, 5) from
Penicilium sp. [7].

Talaromyces flavus, the commonest species of the genus Talaromyces, has been reported to produce
a series of bioactive compounds [8,9]. In our search for bioactive secondary metabolites from wetland
fungi [10–15], several interesting molecules also had been isolated from this species [12–15]. At present,
a chemical investigation of metabolites from Talaromyces flavus AHK07-3 was carried out, which led to
the isolation of three pairs of new isopentenyl dibenzo[b,e]oxepinone enantiomers ((+)-(5S)-arugosin K
(1a), (−)-(5R)-arugosin K (1b), (+)-(5S)-arugosin L (2a), (−)-(5R)-arugosin L (2b), (+)-(5S)-arugosin M
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(3a), (−)-(5R)-arugosin M (3b)), a new isopentenyl dibenzo[b,e]oxepinone, arugosin N (4), and two
known compounds 1,6,10-trihydroxy-8-methyl-2-(3-methyl-2-butenyl)-dibenz[b,e]oxepin-11(6H)-one
(5) and chrysophanol (6) (Figure 1). The absolute configurations of the three pairs of enantiomers were
determined by quantum chemical ECD calculations. In addition, arugosin N (4) and 1,6,10-trihydroxy-
8-methyl-2-(3-methyl-2-butenyl)-dibenz[b,e]oxepin-11(6H)-one (5) were a pair of tautomers, and they
were isolated as mixtures. Detail of the isolation and structural elucidations of compounds 1–6 are
presented herein.
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2. Results and Discussion

Compound 1 was obtained as a yellow solid. The quasi-molecular ion at m/z 355.1550 [M + H]+

obtained by HRESIMS indicated the molecular formula of 1 was C21H22O5 with 11 degrees of
unsaturation. The 13C-NMR spectrum combined with the DEPT-135 spectrum showed 21 signals
(Table 1), assigned to ten sp2 quaternary carbons [including one ketone carbonyl (δC 197.5), nine
aromatic/olefinic carbons (δC 162.8, 162.4, 154.5, 147.1, 138.5, 133.2, 124.8, 116.8, and 113.6), five sp2

methine carbons (δC 137.6, 121.8, 119.5, 116.8, and 109.3), one sp3 oxygenated methine carbon (δC 103.4),
one sp3 methylene carbon (δC 27.8), and four methyl carbons (δC 56.9, 25.8, 21.8, and 17.8). In the
1H-NMR spectrum of 1 (Table 1), the characteristic signals of two exchangeable protons (δH 13.62 (1H, s)
and 11.46 (1H, s)), five aromatic or olefinic protons (δH 7.33 (1H, d, J = 8.3 Hz), 6.94 (1H, s), 6.87 (1H, s),
6.58 (1H, d, J = 8.3 Hz), and 5.33 (1H, br t, J = 7.3 Hz), one sp3 oxygenated methine proton (δH 5.64 (1H,
s)), one sp3 methylene (δH 3.34 (2H, d, J = 7.3 Hz)), and four methyl protons (δH 3.57 (3H, s), 2.37 (3H,
s), 1.77 (3H, br s), and 1.73 (3H, br s)) were observed. The non-exchangeable proton resonances were
associated with the directly attached carbon atoms in the HSQC experiment (Table 1). The analysis
of the 1H-1H COSY experiment and the coupling values of the protons indicated the presence of two
subunits (C-7–C-8 and C-1′–C-2′) as shown in Figure 2. Combined with the analysis of the 1H-1H
COSY experiment and molecular formula, the HMBC correlations from H3-1 to C-2/C-3/C-15, from
H-3 to C-1/C-5/C-13/C-15, from H-5 to C-3/C-6/C-13/5-OCH3, from H-7 to C-6/C-9/C-11, from H-8
to C-6/C-10, from H2-1′ to C-8/C-9/C-10, from H3-4′ to C-2′/C-3′/C-5′, from H3-5′ to C-2′/C-3′/C-4′,
from 5-OCH3 to C-5, from 10-OH to C-9/C-10/C-11, and from 14-OH to C-13/C-14/C-15 revealed the
planer structure of 1 (Figure 2). On the basis of the above analyses, the planar structure of 1 (Figure 2)
was established, and it was named arugosin K. The assignments of all proton and carbon resonances
are provided in Table 1.
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Table 1. The 13C- and 1H-NMR data of 1–3 (δ in ppm, J in Hz).

1 a 2 b 3 a

No. δC δH No. δC δH
c No. δC δH

c

1 21.8 2.37, s 1 21.9 2.38, s 1 21.9 2.39, s
2 147.1 2 147.2 2 147.1
3 116.8 6.94, s 3 116.8 6.98, s 3 116.6 6.97, s
4 138.5 4 138.8 4 138.3
5 103.4 5.64, s 5 102.0 5.74, s 5 103.9 5.71, s
6 154.5 6 154.8 6 163.5
7 109.3 6.58, d (8.3) 7 109.3 6.55, d (8.3) 7 112.2 6.70, d (8.5)
8 137.6 7.33, d (8.3) 8 137.6 7.32, d (8.3) 8 138.4 7.35, d (8.5)
9 124.8 9 124.7 9 121.8

10 162.8 10 162.7 10 153.2
11 113.6 11 113.7 11 113.9
12 197.5 12 197.6 12 197.5
13 116.8 13 116.9 13 117.0
14 162.4 14 162.3 14 161.9
15 119.5 6.87, s 15 119.4 6.86, s 15 119.4 6.87, s
1′ 27.8 3.34, d (7.3) 1′ 27.8 3.35, dd (15.9, 7.4), a 1′ 28.0 3.36, dd (15.6, 7.5), a

3.31, dd (15.9, 7.4), b 3.30, dd (15.6, 7.5), b
2′ 121.8 5.33, br t (7.3) 2′ 121.8 5.32 2′ 122.1 5.25
3′ 133.2 3′ 133.3 3′ 133.2
4′ 25.8 1.77, br s 4′ 25.8 1.76, br s 4′ 25.7 1.73, br s
5′ 17.8 1.73, br s 5′ 17.8 1.73, br s 5′ 17.8 1.71, br s

5-OCH3 56.9 3.57, s 1′ ′ 65.3 3.96, dq (9.6, 7.1), a 5-OCH3 57.3 3.57, s
3.66, dq (9.6, 7.1), b

2′ ′ 14.8 1.26, t (7.1)
10-OH 13.62, s 10-OH 13.63, s 6-OH 13.14, s
14-OH 11.46, s 14-OH 11.44, s 14-OH 11.22, s

a The data recorded in CDCl3 (1H-NMR for 400 MHz, 13C-NMR for 100 MHz); b The data recorded in CDCl3 (1H-NMR for 600 MHz, 13C-NMR for 150 MHz); c Indiscernible
signals owing to overlapping or having complex multiplicity are reported without designating multiplicity. The letters of a and b mean that these two potons on C-1′ are not
chemical equivalence.
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Figure 3. HPLC analysis of 1. a: the analysis of 1 on routine ODS HPLC; b: the analysis of 1 on chiral HPLC. 

The absolute configurations of 1a and 1b were determined by quantum chemical ECD calculations 
at the APFD/6-311++G(2d,p) level. The predicted ECD curves of (5S)-1 and (5R)-1 (Figure 4) were in 
good accordance with the experimental ECD for 1a and 1b, respectively. Therefore, the absolute 
configurations of 1a and 1b were identified as 5S and 5R, respectively. 
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The specific rotation value of 1 was close to zero, indicating that 1 was a racemic mixture.
Compound 1 displayed two peaks in a Phenomenex Lux Cellulose-2 chiral column (Figure 3), which
confirmed the above deduction. Therefore, (+)-1a (tR = 20.3 min) and (−)-1b (tR = 23.2 min) were
isolated from 1 by a Phenomenex Lux Cellulose-2 chiral column using CH3OH/H2O (88/12, v/v) as
eluent at a flow rate of 0.7 mL/min. The ECD spectra and [α]D values of 1a ([α]27

D +27.8 (c 0.5, CHCl3))
and 1b ([α]27

D −27.0 (c 0.5, CHCl3)) showed their enantiomeric relationship.
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The absolute configurations of 1a and 1b were determined by quantum chemical ECD calculations
at the APFD/6-311++G(2d,p) level. The predicted ECD curves of (5S)-1 and (5R)-1 (Figure 4) were
in good accordance with the experimental ECD for 1a and 1b, respectively. Therefore, the absolute
configurations of 1a and 1b were identified as 5S and 5R, respectively.
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Compound 2 was obtained as a yellow solid. The quasi-molecular ion at m/z 369.1695 [M + H]+

by HRESIMS indicated the molecular formula of 2 was C22H24O5 with 11 degrees of unsaturation.
Except for the loss of an oxygenated methyl at δC 56.9 (5-OCH3) and the appearance of an additional
oxygenated methylene at δC 65.3 (C-1′ ′) and methyl at δC 14.8 (C-2′ ′), the NMR data of 2 (Table 1) were
similar to those of 1 (Table 1), which indicated that the 5-OCH3 in 1 was replaced by 5-OCH2CH3 in 2.
This deduction was supported by the 1H-1H COSY correlations of Ha-1′ ′/Hb-1′ ′ and H3-2′ ′ and the
key HMBC correlations from H-5 to C-1′ ′, from Ha-1′ ′/Hb-1′ ′ to C-5/C-2′ ′, and from H3-2′ ′ to C-1′ ′.
On the basis of the exhaustive analysis of 2D NMR data (1H-1H COSY, HSQC, and HMBC) (Table S2,
Supplementary Materials), the planar structure of 2, named arugosin L, was established (Figure 1).

Since 1 and 2 coexist in the same strain, 2 was also a racemic mixture, and it displayed two peaks
in a Phenomenex Lux Cellulose-2 chiral column (Figure S1, Supplementary Materials). Therefore,
(+)-2a (tR = 22.6 min) and (−)-2b (tR = 26.6 min) were isolated from 2 by a Phenomenex Lux Cellulose-2
chiral column using CH3OH/H2O (88/12, v/v) as eluent at a flow rate of 0.7 mL/min. The ECD spectra
and [α]D values of 2a ([α]27

D +27.4 (c 0.5, CHCl3)) and 2b ([α]27
D −26.8 (c 0.5, CHCl3)) showed their

enantiomeric relationship. Since the ECD data of 2a were similar to that of 1a (Figure 5), the absolute
configuration of 2a was determined as 5S (Figure 5). The similar observation was found between 2b
and 1b. Therefore, the absolute configurations of 2a and 2b were assigned as 5S and 5R, respectively.
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Compound 3 was obtained as a yellow solid. The quasi-molecular ion at m/z 355.1541 [M + H]+

by HRESIMS indicated the molecular formula of 3 was C21H22O5 with 11 degrees of unsaturation,
which indicated that 3 was the isomer of 1. Furthermore, the NMR data of 3 (Table 1) were similar
to those of 1, which suggested that 3 and 1 had the similar skeleton. The analysis of the 1H-1H
COSY experiment and the coupling values of the protons indicated the presence of two subunits
(C-7–C-8 and C-1′–C-2′) as shown in Figure 2. Combined with the analysis of the 1H–1H COSY
experiment and molecular formula, the HMBC correlations (Figure 2) from H3-1 to C-2/C-3/C-15,
from H-3 to C-1/C-5/C-13/C-15, from H-5 to C-3/C-10/C-13/5-OCH3, from H-7 to C-6/C-9/C-11,
from H-8 to C-6/C-10, from Ha-1′/Hb-1′ to C-8/C-9/C-10, from H3-4′ to C-2′/C-3′/C-5′, from H3-5′ to
C-2′/C-3′/C-4′, from 5-OCH3 to C-5, from 6-OH to C-6/C-7/C-11, and from 14-OH to C-13/C-14/C-15
confirmed the planar structure of 3, which is named arugosin M.

Since 1 and 3 coexist in the same strain, 3 was also a racemic mixture, and it displayed two peaks
in a Phenomenex Lux Cellulose-2 chiral column (Figure S2, Supplementary Materials). Therefore,
(+)-3a (tR = 20.4 min) and (−)-3b (tR = 22.1 min) were isolated from 3 by a Phenomenex Lux Cellulose-2
chiral column using CH3OH/H2O (88/12, v/v) as eluent at a flow rate of 0.7 mL/min. The ECD
spectra and [α]D values of 3a ([α]27

D +28.4 (c 0.5, CHCl3)) and 3b ([α]27
D −27.6 (c 0.5, CHCl3)) showed

their enantiomeric relationship. The absolute configurations of 3a and 3b were determined by quantum
chemical ECD calculations at the APFD/6-311++g(2d,p) level. The predicted ECD curves of (5S)-3
and (5R)-3 were in good accordance with the experimental ECD for 3a and 3b, respectively (Figure 6).
Therefore, the absolute configurations of 3a and 3b were identified as 5S and 5R, respectively.
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Compounds 4 and 5 were obtained as mixtures of yellow solids. The quasi-molecular ion at
m/z 363.1213 [M + Na]+ by HRESIMS indicated the molecular formulas of 4 and 5 were C20H20O5,
with 11 degrees of unsaturation. The NMR data of the mixtures presented two sets of signals, assigned
to 4 and 5 respectively (Table 2). The molecular formula of 4 was fourteen atomic mass units less than
3. Except for the loss of an oxygenated methyl at δC 57.3 (5-OCH3), the 1H NMR and 13C-NMR data
of 4 (Table 2) were similar to those of 3 (Table 1), which indicated that the 5-OCH3 in 3 was replaced
by the hydroxyl in 4. On the basis of the exhaustive analysis of 2D NMR data (1H-1H COSY, HSQC,
and HMBC) (Table S4, Supplementary Materials), the planar structure of 4 was established, named
arugosin N.

The molecular formula of 5 was fourteen atomic mass units less than 1. Except for the loss
of an oxygenated methyl at δC 56.9 (5-OCH3), the 1H-NMR and 13C-NMR data of 5 (Table 2) were
similar to those of 1 (Table 1), which indicated that the 5-OCH3 in 1 was replaced by the hydroxyl
in 5. On the basis of the exhaustive analysis of 2D NMR data (1H-1H COSY, HSQC, and HMBC)
(Table S5, Supplementary Materials), the planar structure of 5 was established as the known compound,
1,6,10-trihydroxy-8-methyl-2-(3-methyl-2-butenyl)-dibenz[b,e]oxepin-11(6H)-one [7].
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Table 2. The 1H-NMR and 13C-NMR data of 4 and 5 (δ in ppm, J in Hz).

4 a 5 a

No. δC δH No. δC δH

1 22.0 2.40, s 1 21.9 2.40, s
2 147.6 2 147.4
3 116.0 7.07, s 3 116.2 7.04, s
4 139.7 4 139.3
5 97.1 6.11, s 5 96.6 6.12, s
6 163.6 6 154.5
7 112.9 6.71, d (8.4) 7 109.6 6.53, d (8.4)
8 138.5 7.34, d (8.4) 8 137.7 7.32, d (8.4)
9 122.4 9 125.1

10 154.0 10 162.9
11 114.6 11 113.5
12 197.3 12 197.3
13 116.5 13 116.7
14 163.3 14 162.7
15 119.8 6.89, s 15 119.7 6.89, s
1′ 28.9 3.36, dd (15.4, 7.2), a 1′ 27.8 3.33, d (7.5)

3.22, dd (15.4, 7.2), b
2′ 123.1 5.24, br t (7.2) 2′ 121.7 5.31, br t (7.5)
3′ 133.0 3′ 133.4
4′ 25.7 1.76, s 4′ 25.8 1.76, s
5′ 18.0 1.74, s 5′ 17.8 1.72, s

6-OH 12.95, br s 10-OH 13.61, br s
14-OH 11.82, br s 14-OH 11.54, br s

a The data recorded in CDCl3 (1H-NMR for 400 MHz, 13C-NMR for 100 MHz). The letters of a and b mean that
these two potons on C-1′ are not chemical equivalence.

The C-5 positions of 4 and 5 were hemiacetal linkage, which were unstable and easy to split.
Therefore, 4 and 5 can self-interconvert (Figure 7) and exist as inseparable tautomeric mixtures
in Nature.
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Compound 6 was obtained as a yellow solid. The ESI-MS (positive): m/z 255 [M + H]+;
ESI-MS (negative): m/z 253 [M − H]− indicated the molecular weight was 254. It was identified as
chrysophanol by comparing its data (1H- and 13C-NMR, MS) with literature values [16].
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Based on the structural features of compounds 1–6 and literature investigation, a plausible
biosynthetic pathway of them was proposed (Scheme 1). Chrysophanol (6) undergoes oxidization [17,18],
ring-cleavage [17,18], reduction [17,18], and isoprentenylation to yield arugosin I [17], which may be the
precursor of arugosin N (4) and 1,6,10-trihydroxy-8-methyl-2-(3-methyl-2-butenyl)-dibenz[b,e]oxepin-
11(6H)-one (5). Then, arugosin K (1) and arugosin L (2) may originate from 5 by methylation and
ethylation, respectively. Arugosin M (3) may originate from 4 by methylation.
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3. Materials and Methods

3.1. Chemicals

Methanol (MeOH) was purchased from Yuwang Industrial Co. Ltd. (Yucheng, China).
Cyclohexane, ethyl acetate (EtOAc), and petroleum ether (PE) were purchased from Tianjin Fuyu Fine
Chemical Co. Ltd. (Tianjin, China).

3.2. General Experimental Procedures

Optical rotations were measured on a P1020 digital polarimeter (Jasco International Co. Ltd.,
Tokyo, Japan). UV data were recorded using a Jasco V-550 UV/Vis spectrometer. IR data were
recorded on a Jasco FT/IR-480 plus spectrometer. ECD spectrum was recorded on a Jasco J-810
spectrophotometer using MeOH as the solvent. The ESI-MS spectra were recorded on a Finnigan
LCQ Advantage MAX mass spectrometer (Thermo Fisher Scientific, Inc., Waltham, MA, USA).
The HR-ESI-MS spectra were obtained on a Micromass Q-TOF mass spectrometer (Waters Corporation,
Milford, MA, USA). The NMR spectra were measured with Bruker AV-400 and Bruker AV-600
spectrometers (Bruker BioSpin Group, Faellanden, Switzerland) using the solvent signals (CDCl3:
δH 7.26/δC 77.0) as internal standard. The analytical HPLC was performed on a Dionex HPLC system
equipped with an Ultimate 3000 pump, an Ultimate 3000 diode array detector (DAD), an Ultimate 3000
Column Compartment, an Ultimate 3000 autosampler (Thermo Fisher Scientific, Inc.) using a Gemini
C18 column (4.6 mm× 250 mm, 5 µm) (Phenomenex Inc., Los Angeles, CA, USA). The semi-preparative
HPLC was performed on a Shimadzu LC-6-AD Liquid Chromatography with an SPD-20A Detector
using a Phenomenex Gemini C18 column (Phenomenex Inc.) (10.0 mm × 250 mm, 5 µm). The chiral
HPLC was performed on a Shimadzu LC-6-AD Liquid Chromatography with an SPD-20A Detector
using a Phenomenex Lux Cellulose-2 chiral column (4.6 mm × 250 mm, 3 µm).
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3.3. Fungus Material

The strain AHK07-3 was isolated from the soil, collected at the wetland of Ahongkou, Sinkiang
Province, China. The strain was identified as Talaromyces flavus based on the morphological characters
and gene sequence analysis. The ribosomal internal transcribed spacer (ITS) and the 5.8S rRNA gene
sequences (ITS1-5.8S-ITS2) of the strain have been deposited at GenBank as KX011167. The fungus
was cultured on slants of potato dextrose agar at 25 ◦C for 5 days. Agar plugs were used to inoculate
four Erlenmeyer flasks (250 mL), each containing 100 mL of potato dextrose broth. Four flasks of the
inoculated media were incubated at 25 ◦C on a rotary shaker at 200 rpm for 5 days to prepare the seed
culture. Fermentation was carried out in 20 Erlenmeyer flasks (500 mL), each containing 70 g of rice.
Distilled H2O (105 mL) was added to each flask, and the rice was soaked overnight before autoclaving
at 120 ◦C for 30 min. After cooling to room temperature, each flask was inoculated with 5.0 mL of the
seed culture containing mycelia and incubated at room temperature for 50 days.

3.4. Extraction and Isolation

The culture was extracted with EtOAc (3 × 5000 mL). Removal of EtOAc under reduced
pressure yielded a crude extract (19.7 g) that was dissolved in 90% v/v aqueous MeOH (400 mL).
The methanolic solution was further extracted with cyclohexane (400 mL) to afford a cyclohexane
fraction C (4.6 g). Fraction C was subjected to silica gel (200–300 mesh) column chromatography
initially eluting with cyclohexane (500 mL) and then with MeOH (500 mL) to afford subfractions CC
and CM. Subfraction CC (3.3 g) was further separated by open silica gel column chromatography
eluting with cyclohexane–EtOAc (100:0 (150 mL), 99:1 (150 mL), 98:2 (150 mL), 97:3 (150 mL), 96:4
(150 mL), 95:5 (150 mL), 94:6 (150 mL), 93:7 (150 mL), 92:8 (150 mL), 91:9 (150 mL), 90:10 (150 mL),
50:50 (150 mL), and 0:100 (150 mL), v/v) to yield four sub-subfractions (CC1 to CC4). Sub-subfraction
CC2 (2.8 g) was subjected to open silica gel column chromatography eluting with PE (petroleum
ether)–EtOAc (100:0 (100 mL), 99:1 (100 mL), 98:2 (100 mL), 97:3 (100 mL), 96:4 (100 mL), 95:5 (100 mL),
94:6 (100 mL), 93:7 (100 mL), 92:8 (100 mL), 91:9 (100 mL), 90:10 (100 mL), 50:50 (100 mL) and 0:100
(100 mL), v/v) to yield four sub-subfractions (CC2a to CC2d). Sub-subfraction CC2b (1.1 g) was isolated
by semi-preparative HPLC purification using MeOH–H2O (88:12, v/v) at a flow rate of 3 mL/min
to yield 1 (617.4 mg), 2 (2.6 mg), and 3 (24.7 mg). Sub-subfraction CC2c (0.6 g) was purified by
semi-preparative HPLC purification using MeOH–H2O (90:10, v/v) at a flow rate of 3 mL/min to
yield 6 (1.1 mg). Sub-subfraction CC4 (220.1 mg) was isolated by semi-preparative HPLC purification
using MeOH–H2O (80:20, v/v) at a flow rate of 3 mL/min to yield the mixtures of 4 and 5 (12.5 mg).
Enantioseparation of 1–3 was carried out on a Phenomenex Lux Cellulose-2 chiral column using
CH3OH/H2O (88/12, v/v) as mobile phase.

3.5. Spectroscopic Data of Isolated Compounds

(±)-Arugosin K (1): yellow solid; UV (MeOH) λmax (log ε) 205 (3.75), 221 (3.63), 304 (3.35), 359 (3.29) nm;
IR (KBr) νmax 3438, 2920, 1708, 1619, 1590, 1421, 1206, 1052 cm−1; ESI-MS (positive): m/z 355
[M + H]+, ESI-MS (negative): m/z 353 [M − H]−; HRESIMS (positive) m/z 355.1550 [M + H]+ (calcd.
for C21H23O5, 355.1545); 1H- and 13C-NMR data see Table 1.

(+)-S-Arugosin K (1a): [α]27
D +27.8 (c 0.5, CHCl3); ECD (c 8.5 × 10−5 M, MeOH) λmax (∆ε) 208 (+12.50),

294 (−5.71), 334 (+3.76), 382 (−1.77) nm.

(−)-R-Arugosin K (1b): [α]27
D −27.0 (c 0.5, CHCl3); ECD (c 8.5 × 10−5 M, MeOH) λmax (∆ε) 208 (−11.38),

295 (+6.96), 334 (−3.88), 382 (+2.82) nm.

(±)-Arugosin L (2): yellow solid; UV (MeOH) λmax (log ε) 206 (3.70), 222 (3.57), 304 (3.30), 359 (3.23) nm;
IR (KBr) νmax 3440, 2916, 1624, 1590, 1422, 1206, 1057 cm−1; ESI-MS (positive): m/z 369 [M + H]+;
ESI-MS (negative): m/z 367 [M − H]−; HRESIMS (positive) m/z 369.1695 [M + H] + (calcd. for
C22H25O5, 369.1702); 1H- and 13C-NMR data see Table 1.
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(+)-S-Arugosin L (2a): [α]27
D +27.4 (c 0.5, CHCl3); ECD (c 6.8 × 10−5 M, MeOH) λmax (∆ε) 208 (+13.90),

295 (−6.07), 335 (+5.07), 382 (−1.91) nm.

(−)-R-Arugosin L (2b): [α]27
D −26.8 (c 0.5, CHCl3); ECD (c 6.8 × 10−5 M, MeOH) λmax (∆ε) 208 (−13.79),

295 (+7.98), 335 (−3.44), 382 (+3.40) nm.

(±)-Arugosin M (3): yellow solid; UV (MeOH) λmax (log ε) 206 (3.85), 221 (3.73), 299 (3.42), 357 (3.36) nm;
IR (KBr) νmax 3441, 2913, 1620, 1464, 1202, 1050 cm−1; ESI-MS (positive): m/z 355 [M + H]+, ESI-MS
(negative): m/z 353 [M − H]−; HRESIMS (positive) m/z 355.1541 [M + H]+ (calcd. for C21H23O5,
355.1545); 1H- and 13C-NMR data see Table 1.

(+)-S-Arugosin M (3a): [α]27
D +28.4 (c 0.5, CHCl3); ECD (c 8.5 × 10−5 M, MeOH) λmax (∆ε) 209 (+14.24),

290 (−6.29), 334 (+6.67), 381 (−3.30) nm.

(−)-R-Arugosin M (3b): [α]27
D −27.6 (c 0.5, CHCl3); ECD (c 8.5× 10−5 M, MeOH) λmax (∆ε) 209 (−12.84),

292 (+7.26), 334 (−5.93), 381 (+4.27) nm.

Arugosin N (4): 1,6,10-trihydroxy-8-methyl-2-(3-methyl-2-butenyl)-dibenz[b,e]oxepin-11(6H)-one (5):
yellow solid; UV (MeOH) λmax (log ε) 206 (3.75), 222 (3.65), 286 (3.29), 356 (3.16) nm; IR (KBr) νmax

3443, 2917, 1628, 1589, 1420, 1353, 1173, 1052 cm−1; ESI-MS (positive): m/z 341 [M + H]+, m/z 363
[M + Na]+; ESI-MS (negative): m/z 339 [M − H]−; HRESIMS (positive) m/z 363.1213 [M + Na]+ (calcd.
for C20H20O5Na, 363.1208); 1H- and 13C-NMR data see Table 2.

3.6. ECD Calculation

Before molecular initial 3D structures were generated with CORINA version 3.4 (Molecular
Networks GmbH, Erlangen, Germany), the molecules of (5S)-1, (5R)-1, (5S)-3, and (5R)-3 were
converted into SMILES codes, respectively. Conformer databases were generated in CONFLEX
version 7.0 (CONFLEX Corporation, Tokyo, Japan) using the MMFF94s force-field, with an energy
window for acceptable conformers (ewindow) of 5 kcal·mol−1 above the ground state, a maximum
number of conformations per molecule (maxconfs) of 100, and an RMSD cutoff (rmsd) of 0.5 Å.
Then each conformer of the acceptable conformers was optimized with HF/6-31G(d) method in
Gaussian09 [19]. Further optimization at the APFD/6-31G(d) level led the dihedral angles to be got.
After that, eight lowest energy conformers of (5S)-1 and (5R)-1 (see Supplementary Materials Table S6
and Figure S3) were found out. Six lowest energy conformers of (5S)-3 and (5R)-3 (see Supplementary
Materials Table S7 and Figure S4) were found out. The optimized conformers were taken for the ECD
calculations, which were performed with Gaussian09 (APFD/6-311++G(2d,p)). The solvent effect was
taken into account by the polarizable-conductor calculation model (IEFPCM, methanol as the solvent).
Comparisons of the experimental and calculated spectra were done with the software SpecDis [20,21].
It was also used to apply a UV shift to the ECD spectra, Gaussian broadening of the excitations, and
Boltzmann weighting of the spectra.

4. Conclusions

Up to now, about nine isopentenyl dibenzo[b,e]oxepinones with intact 6-7-6 tricyclic
systems have been reported from the genera of Aspergillus, Emericella, Pestalotiopsis, Graphiopsis,
and Penicilium. Except the absolute configuration of cephalanone D that had been verified by
X-ray crystallography [6], the absolute configurations of the others had not been not investigated.
In our study, the absolute configurations of the three pairs of enantiomers ((+)-(5S)-1a, (−)-(5R)-1b,
(+)-(5S)-2a, (−)-(5R)-2b, (+)-(5S)-3a, (−)-(5R)-3b), isolated for the first time from the genus Talaromyces,
were determined by quantum chemical ECD calculations, which is the first report for the
absolute configuration of isopentenyl dibenzo[b,e]oxepinones established by ECD experiments.
Furthermore, 1,6,10-trihydroxy-8-methyl-2-(3-methyl-2-butenyl)-dibenz[b,e]oxepin-11(6H)-one (5) is
a known compound, but no NMR data was previously reported. The assignments of NMR data of 5
are thus provided for the first time.
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