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Abstract.

Background: The REFLECT trials were conducted to examine the treatment of mild-to-moderate Alzheimer’s disease
utilizing a peroxisome proliferator-activated receptor gamma agonist.

Objective: To generate a predictive biomarker indicative of positive treatment response using samples from the previously
conducted REFLECT trials.

Methods: Data were analyzed on 360 participants spanning multiple negative REFLECT trials, which included treatment
with rosiglitazone and rosiglitazone XR. Support vector machine analyses were conducted to generate a predictive biomarker
profile.

Results: A pre-defined 6-protein predictive biomarker (IL6, IL10, CRP, TNFa, FABP-3, and PPY) correctly classified
treatment response with 100% accuracy across study arms for REFLECT Phase II trial (AVA100193) and multiple Phase II1
trials (AVA105640, AV102672, and AVA102670). When the data was combined across all rosiglitazone trial arms, a global
RSG-predictive biomarker with the same 6-protein predictive biomarker was able to accurately classify 98% of treatment
responders.

Conclusion: A predictive biomarker comprising of metabolic and inflammatory markers was highly accurate in identifying
those patients most likely to experience positive treatment response across the REFLECT trials. This study provides additional
proof-of-concept that a predictive biomarker can be utilized to help with screening and predicting treatment response, which
holds tremendous benefit for clinical trials.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
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is the 5™ leading cause of death for those over the age
of 65 [2]. AD has an annual healthcare cost similar to
that of cardiovascular disease (CVD) and more than
that of cancer [3]. While death rates due to CVD and
cancer have declined in recent decades, death rates
due to AD have steadily increased [1] likely due to
ineffective therapies. It is our hypothesis that AD is a
heterogeneous condition and, therefore, a paradigm
shift is required to identify specific subpopulations
for targeted—precision medicine [4] —interventions
[5-7]. In fact, the complexity of AD may be the very
key to addressing this devastating disease.

In fact, biomarker guided therapies in oncology
have resulted in drastically improved patient out-
comes [4, 8]. A precision medicine approach has been
proposed for numerous diseases [9—11], including
neurological diseases such as multiple sclerosis [12,
13] and AD [5, 6, 14]. Despite the proposed use of
precision medicine for AD, few studies to date have
provided direct empirical support. By leveraging pre-
viously conducted clinical trial biorepositories, it is
possible to provide proof-of-concept data for the pre-
cision medicine approach in AD [14, 15]. In fact, we
have previously utilized stored samples to demon-
strate the utility of a precision medicine approach to
treating AD using NSAIDs therapy [14].

The FDA defines a “Predictive Biomarker” as “a
biomarker used to identify individuals who are more
likely than similar patients without the biomarker to
experience a favorable or unfavorable effect from a

AD Patient Population

specific intervention or exposure [16].” It is our view
that the failure of clinical trials targeting AD is due
to the fact that “most medical treatments are design-
ed for the ‘average patient’; as a one-size-fits-all
approach” [4]. This approach does not consider the
substantial biological heterogeneity among patients
[5, 6]. As seen in Fig. 1, we hypothesize that there
are multiple subgroups of patients within the larger
AD patient population. Therefore, if “Treatment A”
was appropriate and effective in only 20% of the pop-
ulation (or 1 subgroup), the clinical trial was doomed
to fail as 80% of the patients selected were inappro-
priate. However, targeting that specific 20% of pat-
ients based on his/her biological dysfunction driving
his/her dementia, optimal treatment outcomes can be
seen that may have been impossible to find due to the
trial design itself [14]. Predictive biomarkers can be
used to only enroll the specific group of patients most
likely to benefit from the trial-specific intervention.
There is substantial literature linking diabetes and
AD. In clinic samples, AD cases have been shown
to have higher blood glucose levels [17], and diabet-
ics with AD have been found to have increased rates
of decline [18] as well as significantly greater corti-
cal atrophy than non-diabetic AD cases [19]. Among
epidemiological studies, the increased risk for AD
and cognitive dysfunction among those with diabetes
has been shown in the Rotterdam Study [20, 21], the
Canadian Study of Health and Aging [22], Fram-
ingham Heart Study [23], the Washington Heights
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Fig. 1. Precision medicine approach to trial enrollment with predictive biomarkers.
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Inwood Columbia Aging Project (WHICAP) [24],
the Honolulu-Asia Aging Study [25], the Religious
Orders Study [26] and the Sacramento Area Latino
Study on Aging (SALSA) [27]. Based on these find-
ings, numerous clinical trials have been undertaken
to treat or prevent AD with anti-diabetic medications.

Peroxisome proliferator-activated receptor gamma
(PPARY) agonist are widely used for treatment of
diabetes. PPARy agonists such as rosiglitazone mod-
ulate many cellular processes, including several ass-
ociated with AD through its reduction of tau and
amyloid pathology and inhibition of inflammation
[28-30]. Rosiglitazone was examined in multiple
trials (Phase II and Phase III) as a potential treat-
ment for mild-to-moderate AD in the REFLECT
trials [31, 32], but these clinical trials did not meet
clinical endpoints. However, we hypothesize that
the one-size-fits-all approach to the clinical trial
design masked the therapeutic benefit experienced
by a subset of patients. Therefore, we tested our
previously generated methods [14] to create a pre-
dictive biomarker that identifies those specific AD
patients that benefited from rosiglitazone therapy in
the REFLECT trials.

METHODS

Participants and methods for REFLECT trials
[31, 32]

The current study includes samples and data from
multiple trials of rosiglitazone therapy in AD incl-
uding a Phase IIb (NCT00334568) study of 2mg,
4mg, and 8 mg. Three REFLECT trials included
multiple studies of 2mg or 8 mg rosiglitazone XR
as a potential therapy for mild-to-moderate AD.
REFLECT-1 (AVA105640; NCT00428090) was a
24-week, double-blind, double-dummy, randomized,
parallel-group Phase III study. REFLECT-5 (AVA
102677; NCT00550420) open-label extension of
REFLECT-1, REFLECT-2 (Study AVA10267, NCT
00348309) and REFLECT-3 (study AVA102670;
NCT00348140), was a 52-week, randomized, doub-
le-blind, placebo-controlled, parallel-group study of
rosiglitazone XR as an adjunctive therapy to ongo-
ing acetylcholinesterase inhibitor (AChEI) treatment
for 48 weeks. Participants who completed either
study could then enroll into the open-label exten-
sion REFLECT-4 study for longer-term treatment.
The sample size randomized per trial were as fol-
lows: REFLECT-1 n=581, REFLECT-2 n=1,496,
and REFLECT-3 n=1,485. The samples and data

from these trials were provided to the ADCS for aca-
demic research use and utilized for the purposes of
this study. All clinical trials were conducted under
IRB approved protocols and all patients or informants
provided written informed consent. Due to funding
limitations, only subsets of samples were assayed
from each of the trials.

Participant screening criteria for the REFLECT
trials

Inclusion criteria

Age 50-90 years with a diagnosis of mild-to-
moderate AD according to NINDS-ADRDA criteria
[33], Mini-Mental Status Examination (MMSE)
score between 10-26 at screening and at least 6-
months of ongoing donepezil or other approved
AChEI therapy with stable dosing for at least 2
months prior to enrollment.

Exclusion criteria

Vascular dementia diagnosis; history or evidence
of another cause of dementia; history of seizures;
history of congestive heart failure; significant psy-
chiatric illness that in the opinion of the investigator
would interfere with the study; participants with
controlled behavioral symptoms on stable doses of
atypical antipsychotics, SSRIs, or anxiolytics were
allowed; participants with untreated active major
depressive disorder were excluded; type 1 and type 2
diabetes treated with insulin/PPARy agonists/insulin
secretagogues and agents with incretin effects were
excluded; subjects with type 2 diabetes controlled by
diet or exercise or metformin were allowed to enter
the study if HbAlc <8.5% at screening.

Proteomic assays

All blood biomarker assays were conducted in the
Institute for Translational Research (ITR) Biomarker
Core.

Sample preparation

Preparation of samples for proteomic assay was
conducted using the Hamilton Robotics StarPlus sys-
tem, which facilitates substantially improved quality
of assays, increased QA/QC monitoring, as well as
increased proteomic capacity in the laboratory. Any
re-aliquoting was conducted via the Hamilton easy-
Blood robotic system.



560 S.E. O’Bryant et al. / Precision Medicine Approach to Alzheimer’s Disease

Sample assay

Plasma samples were assayed via multi-plex bio-
marker assay platform using electrochemilumines-
cence (ECL). All plasma samples were assayed for
targeted markers of our proinflammatory endophe-
notype and metabolic endophenotype: C-reactive
protein (CRP), interleukin (IL)-6, IL-10, tumor
necrosis factor alpha (TNFa), fatty acid binding pro-
tein (FABP)-3, and pancreatic polypeptide (PPY).
Additional markers were assayed as part of the ITR
Biomarker Core standard panel. The ITR laboratory
has assayed over n >20,000 samples on these markers
using this system. This set of six proteins was selected
from our larger 21-protein panel that has been shown
to be highly accurate in detecting AD; inter- and intra-
assay variability has been excellent [34-36]. Average
CVs (>3000 samples) for these assays are all < 10%
with the majority being <5%.

Statistical analyses

The predictive biomarker profile was generated
using support vector machine (SVM) analyses. SVM
is based on the concept of decision planes that
define decision boundaries and serves primarily as
a classifier method by performing classification tasks
through constructing hyperplanes in a multidimen-
sional space that can separate cases of different class
labels. SVM has the capacity to simultaneously take
into account a large volume of data in order to gener-
ate an overall profile (e.g., over and under-expression
of select proteins) that most accurately classifies mul-
tiple outcomes rather than only binary outcomes. As
with all learning machine methods, a primary con-
cern is for overfitting the data. In order to avoid
this problem we: 1) restricted the number of pro-
teins included in the predictive model to a total of
six pre-specified inflammatory and metabolic mark-
ers each with a substantial literature linking them
with AD and cognitive decline from our previously
established larger blood-based profile [20, 37] and
our previously published predictive biomarker [14];
2) built the predictive biomarker based on responders
versus non-responders (i.e., only 2 groups). Treat-
ment responder was defined as an MMSE score that
was stable or improved over trial duration whereas
non-responder was defined as any decline in MMSE
scores over the clinical trial duration. The goal of
responder was to identify those who experience
clinically meaningful outcomes rather than slowed
decline. The purpose of this approach was to have

a predictive biomarker that could selectively iden-
tify only those most likely to respond while all
others would be ruled out; 3) conducted internal
five-fold cross-validation within the sample with the
SVM analyses. The SVM analyses were conducted
with the el071 package (v1.6-8) in R (v3.4.2). In
order to build an SVM model to predict treatment
response, the radial basis function kernel was used
together with five-fold cross-validation, cost=100
and gamma=0.001. The original data was randomly
partitioned into 5 equal sized subsamples. A single
subsample was retained as a testing set while the rem-
aining 4 subsamples were used as training sets. For
each model, we ran the cross-validation randomly
five times. The W weights of SVM in Libsvm when
RBF kernel is used can be calculated by w =coef”*
SVs. Then the decision values are calculated accord-
ing to w’*x. And subsequently, the labels are predi-
cted according to sign(w’*x+b) where b is some
threshold. If the label is positive, it belongs to the pos-
itive class, if it is negative it belongs to the negative
class. The absolute value of SVM weight W can be
used to determine the importance of each feature. The
closer to zero that the absolute W is, the less useful
the corresponding feature is for separating the data.
The higher the absolute W is, the more important the
corresponding feature is for the SVM classifier.
Additionally, to avoid influence of outliers, all
outliers beyond the fifth quintile were set at the
fifth quintile. Finally, due to instability of assays at
extremely low levels, any assay values below the stan-
dard curve were set at the least detectable limit for
the assay. These approaches restricted any influence
of outliers in any direction. SVM does not assume
normality and, therefore, raw data were utilized. The
analyses were restricted to rosiglitazone arms across
trials as the goal was specifically to identify a pre-
dictive biomarker of treatment response. The SVM
models were first generated by trial x arm and then
by dosage combined across trials, where possible.
Of note, SVM was selected over other power classi-
fication algorithms, such as Random Forest, because
of the objective for the classification tasks proposed in
this study. SVM has been shown to perform better on
specific datasets such as imaging and microarray data
[38]. Therefore, SVM was the ideal choice for our
protein microarray dataset, particularly as there was
not mixture of numerical and categorical features for
binary classification problems. Additionally, SVM
was also the better choice for our data given that out-
liers were removed and missing values imputed prior
to analysis. Lastly, SVM was the ideal classification
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algorithm choice for datasets with small sample sizes
such as ours.

RESULTS

A total of 534 samples were assayed as part of this
proof-of-concept study. Table 1 provide the descrip-
tive statistics of the study population by clinical
trial. First, the predictive biomarker was examined
using our pre-specified inflammatory and metabolic
markers, which included IL-6, IL-10, CRP, TNFq,
FABP-3, and PPY. These markers were used to pre-
dict treatment response versus non-response (based
on change in MMSE score) within each clinical trial.

In the Phase II trial (AVA100193), there was a total
of 31 responders and 19 non-responders in the 2 mg
arm, 28 responders and 24 non-responders in the 4 mg
arm, and 26 responders and 17 non-responders in the
8 mg arm. Using our 6-protein algorithm, 100% of
patients were correctly classified across study arms
(Fig. 2).

In the Phase III trial (AVA105640), there was
20 responders and 25 non-responders in the 2 mg
XR group and 22 responders and 23 non-responders
in the 8 mg XR group. Using the 6-protein predic-
tive biomarker algorithm, 100% of the patients were
correctly classified as responder or non-responder
(Fig. 3).

Table 1
All patients randomized and patients who are responders and non-
responders
S Total Responder Non-responder
All patients
No. randomized 534 251 283
Age percentiles
50 73 73 73
25,75 67,78 67.0,78.5 67.5,78.0
0, 100 50, 90 50, 90 50, 90
Gender,%
Female 60.7 64.9 56.9
Male 39.3 35.1 43.1
Total Responder Non-responder
2mg RSG XR
No. randomized 99 34 65
Age percentiles
50 73 74 73
25,75 67.0,78.5 67.0,79.8 67,78
0, 100 51, 89 55,87 51, 89
Gender, %
Female 535 67.6 46.2
Male 46.5 324 53.8
Total Responder Non-responder
8 mg RSG XR
No. randomized 116 54 62
Age percentiles
50 74 75 73

Table 1
(Continued)
S Total Responder  Non-responder
25,75 67.8,78.2  68.2,79.0 65.2,78.0
0, 100 50, 86 50, 86 51,85
Gender,%
Female 55.2 53.7 56.5
Male 44.8 46.3 43.5
Total Responder ~ Non-responder
Donepezil (10 mg)
No. randomized 21 15 6
Age percentiles
50 74 74 715
25,75 70, 80 70.5,79.0 67.2,81.8
0,100 59, 84 59, 84 62, 84
Gender,%
Female 66.7 66.7 66.7
Male 333 333 333
Total Responder ~ Non-responder
Placebo
No. randomized 153 63 90
Age percentiles
50 74 73 75
25,75 68,79 67, 80 69.0, 78.8
0, 100 50, 90 52,90 50, 90
Gender, %
Female 69.9 74.6 66.7
Male 30.1 25.4 333
Total Responder ~ Non-responder
RSG 2mg
No. randomized 50 31 19
Age percentiles
50 72 72 72
25,75 67,75 67.0,75.5 68.5,74.5
0, 100 50, 83 54,83 50, 81
Gender,%
Female 64 64.5 63.2
Male 36 355 36.8
Total Responder ~ Non-responder
RSG 4mg
No. randomized 52 28 24
Age percentiles
50 72.5 70 735
25,75 59.8,76.2 588,752 62.2,77.5
0, 100 52,83 52,82 53,83
Gender,%
Female 51.9 57.1 45.8
Male 48.1 429 54.2
Total Responder  Non-responder
RSG 8 mg
No. randomized 43 26 17
Age percentiles
50 72 72 71
25,75 66.0,75.5 65.5,75.0 68, 77
0, 100 53,84 54,83 53,84
Gender, %
Female 62.8 69.2 52.9
Male 37.2 30.8 47.1

In the Phase III trial (AV102672), there was 7
responders and 17 non-responders in the 2 mg XR
arm and 12 responders and 17 non-responders in the
8mg XR arm. The 6-protein predictive biomarker
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AVA100193 AVA100193 AVA100193
RSG 2mg Actual RSG 4mg Actual RSG 8mg Actual
Predicted = response = nonresponse Predicted = response = nonresponse Predicted = response = nonresponse
response 31 0 response 28 0 response 26 0
nonresponse 0 19 nonresponse 0 24 nonresponse 0 17
Precision/PPV 100.00% Precision/PPV 100.00% Precision/PPV 100.00%
Accuracy 100.00% Accuracy 100.00% Accuracy 100.00%
Sensitivity 100.00% Sensitivity 100.00% Sensitivity 100.00%
Specificity 100.00% Specificity 100.00% Specificity 100.00%
NPV 100.00% NPV 100.00% NPV 100.00%
AUC 100.00% AUC 100.00% AUC 100.00%
o v SVM \mpnnanz:e Score ® ¢ SVM Importance s:;UDm ® 9 S‘\alM Importance Score =
Fig. 2. Predictive biomarker accuracy in predicting treatment response in the Phase 2 trial.
AVA105640 AVA105640
Actual Actual
REFLECT 2mg REFLECT 8mg
Predicted response nonresponse Predicted response nonresponse
response 20 0 response 22 0
nonresponse 0 25 nonresponse 0 23
Precision/PPV 100.00% Precision/PPV 100.00%
Accuracy 100.00% Accuracy 100.00%
Sensitivity 100.00% Sensitivity 100.00%
Specificity 100.00% Specificity 100.00%
NPV 100.00% NPV 100.00%
AUC 100.00% AUC 100.00%
PPY - CRP-
IL6- TNFA-
TNFA- IL10-
CRP- PPY- ———o—— &
L10- ————————— Le- —————————————
FABP3- ——e FABP3- —e
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Fig. 3. Predictive biomarker accuracy in identifying responders versus non-responders in the Phase 3 trial AV105640.
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AVA102672
REFLECT-2 Actual
2mg
Predicted response nonresponse
response 7 0
nonresponse 0 17
Precision/PPV 100.00%
Accuracy 100.00%
Sensitivity 100.00%
Specificity 100.00%
NPV 100.00%
AUC 100.00%
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AVA102672
REFLECT-2 Actual
8mg
Predicted response nonresponse
response 12 0
nonresponse 0 17
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Accuracy 100.00%
Sensitivity 100.00%
Specificity 100.00%
NPV 100.00%
AUC 100.00%
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Fig. 4. Predictive biomarker accuracy in identifying responders versus non-responders in the Phase 3 trial AV102672.

algorithm was 100% accurate in identifying respon-
ders versus non-responders (Fig. 4).

In the Phase III trial (AVA102670), there were 7
responders and 23 non-responders in the 2 mg XR
arm and 20 responders and 22 non-responders in the
8mg XR arm. The 6-protein predictive biomarker
algorithm was 100% accurate in identifying respon-
der versus non-responder (Fig. 5).

Next, data was combined across the 2 mg XR and
8 mg XR arms across trials. There were 34 respon-
ders and 65 non-responders in the 2 mg XR arm and
54 responders and 62 non-responders in the 8 mg
XR arm. When the data was combined across these
arms, the 6-protein predictive biomarker algorithm
was again 100% accurate in identifying responders
versus non-responders to rosiglitazone (Fig. 6).

Finally, data was combined across all rosiglitazone
therapy arms to determine if a global RSG-predictive
biomarker could be generated. When combined acr-
oss arms and trials, there were 173 responders and 187
non-responders. The 6-protein predictive biomarker
was 98% accurate overall with 98% of treatment
responders accurately classified (Fig. 7).

DISCUSSION

The current data suggests that a 6-protein algo-
rithm consisting of markers covering inflammatory
and metabolic pathways can be utilized to generate a
predictive biomarker that can be used to identify those
AD patients most likely to benefit from 2 mg, 4 mg,
and 8 mg rosiglitazone therapy. Therefore, the current
findings offer additional proof-of-concept support for
a precision medicine approach to targeted treatment
among specific subsets of patients suffering from AD.
In fact, when combined with our prior work, we
have now demonstrated two subgroups of patients
that could be screened from the population of AD
patients and enrolled into targeted therapeutic trials
for optimal benefit from NSAID [14] or rosiglitazone
therapies (Fig. 2).

As was shown in our prior work [14], a targeted
panel of markers can be utilized to generate a pre-
dictive biomarker for the identification of specific
subsets of AD patients who would most likely bene-
fit from specified therapies. Previously, we analyzed
data from the ADCS NSAID trial [39], a multicenter,
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AVA102670
REFLECT3 Actual
2mg
Predicted response nonresponse
response 7 0
nonresponse 0 23
Precision/PPV 100.00%
Accuracy 100.00%
Sensitivity 100.00%
Specificity 100.00%
NPV 100.00%
AUC 100.00%
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AVA102670
REFLECT3 Actual
8mg
Predicted response nonresponse
response 20 0
nonresponse 0 22
Precision/PPV 100.00%
Accuracy 100.00%
Sensitivity 100.00%
Specificity 100.00%
NPV 100.00%
AUC 100.00%
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Fig. 5. Predictive biomarker accuracy in identifying responders versus non-responders in the Phase 3 trial AV102670.

randomized, double-blind, placebo-controlled par-
allel group trial with 1-year exposure to study
medications. Individuals who met enrollment criteria
with a diagnosis of probable AD in this trial were ran-
domized to rofecoxib (25 mg once daily), naproxen
(220 mg twice-daily), or placebo. In our study, the
inflammatory-specific predictive biomarker was
97% accurate in identifying treatment response to
naproxen and 98% accurate in identifying treatment
response to rofecoxib.

In this study, we examined a specific a priori def-
ined set of metabolic and inflammatory markers.
Rosiglitazone has well-documented anti-inflamm-
atory and neuroprotective qualities. In fact, rosigli-
tazone has been shown to modulate the inflammatory
markers in our proinflammatory endophenotype
[40-42]. Therefore, we hypothesized that combin-
ing both metabolic and inflammatory markers into
the predictive biomarker would yield optimal suc-
cess. Additional markers were assayed for further
refinement; however, such markers did not need to be
considered given the overall accuracy of the profile.

Our team will continue to conduct supplementary
analyses to determine if there is an optimal set of
proteins to include in the RSG-predictive biomarker.
Of note, our recent work has expanded the metabolic
marker panel to include GLP-1, insulin, peptide
YY, and glucagon with our data showing that these
markers are predictive of a MRI-based marker of
“neurodegeneration” from the AT(N) research frame-
work [43], but only among Mexican Americans (data
under review for publication). Combined, this data
suggests that interventions targeting the metabolic
pathway (such as rosiglitazone) may need to be
ethnically-tailored as vascular factors were more pre-
dictive of N among non-Hispanic whites.

Ours is not the first study to identify potential
biomarkers related to treatment response to rosiglita-
zone among AD patients. Akuffo and colleagues [44]
examined plasma samples from 41 patients enrolled
in the Phase IIb study of rosiglitazone. Protein expres-
sion was related directly to improvement in cognitive
test performance on the ADAS-Cog. In that study,
A2M, complement C1 inhibitor, complement factor
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RSG XR 2mg
Combined Actual
Predicted response nonresponse
response 34 0
nonresponse 0 65
Precision/PPV 100.00%
Accuracy 100.00%
Sensitivity 100.00%
Specificity 100.00%
NPV 100.00%
AUC 100.00%
IL6-
FABP3-
PPY-
IL.10-
TNFA T
CRP- —=

10 15 20
SVM Importance Score

RSG XR 8mg
Combined Actusl
Predicted response nonresponse
response 54 0
nonresponse 0 62
Precision/PPV 100.00%
Accuracy 100.00%
Sensitivity 100.00%
Specificity 100.00%
NPV 100.00%
AUC 100.00%
CRP-
IL6-
IL10-
TNFA- ———————————————e
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PPY- —e
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Fig. 6. Predictive biomarker accuracy in identifying responders versus non-responders in across 2mg XR and 8mg XR arms across trials.

Predicted response Nonresponse

response 170 4

nonresponse 3 183
Precision/PPV 97.70%
Accuracy 98.06%
Sensitivity 98.27%
Specificity 97.86%
NPV 98.39%
AUC 99.10%

TNFA

CRP

IL.10 e

FABP3 —_—

ILs T

PPY{ —e

10 20
SVM Importance Score

Fig. 7. Predictive accuracy in identifying responders versus non-responders dosages.

H and apolipoprotein E expression showed signifi-
cant correlations with ADAS-Cog scores at the higher
doses (4 mg and 8 mg) of rosiglitazone. Given the
well-established, but poorly understood, link between
diabetes and AD, there remains a strong interest in the

possible utility of diabetes medication in the treat-
ment of AD.

There are limitations to the current study. First,
this is a retrospective study of previously conducted
clinical trials. A prospective study that enrolled new
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patients based on the predictive biomarker still needs
to be conducted to fully validate the use of rosigli-
tazone in these specific patients. Second, while this
work spanned multiple clinical trials, the sample size
remained small. Additional work will be undertaken
to assay the remaining samples from the REFLECT
trials to (a) further validate these findings and (b)
determine if change in biomarkers over the course
of treatment can be used as a surrogate outcome.
Further research is ongoing to better characterize
the metabolic and inflammatory endophenotypes,
which have now been shown as predictive biomark-
ers, among Mexican Americans and non-Hispanic
whites in the HABLE study [45] in order to refine and
prepare for prospective application in novel clinical
trials. The addition of genetic and/or neuroimag-
ing biomarkers may aid in the precision medicine
approach and will be investigated in future work.
In our prior work, a subset of these markers pre-
dicted treatment response to NSAID therapy among
AD cases; however, additional work is needed to
determine if this approach as well as these markers
will predict treatment response to additional inter-
ventions or if accuracy varies by disease stage. If this
approach is further validated, the pre-analytic pro-
cessing factors associated with each of these markers
and the predictive biomarker will be examined; how-
ever, this is not possible with the current data given
the long-term storage nature of these samples. A final
limitation to this study is the fact that the trial popu-
lation was selected based on clinical criteria and not
on biomarker confirmation. Overall, these findings
provide further support for our proposed precision
medicine approach to AD.

There are multiple substantial benefits of the pre-
cision medicine approach for enrolling patients using
predictive biomarkers into novel trials as outlined
here. First, by enrolling only those patients most
likely to benefit, the effect size of the trial increases
and, therefore, the sample size decreases substan-
tially. Second, by screening for multiple subgroups
in the AD patient population, multiple trials can
be enrolled simultaneously (Fig. 2) thereby reduc-
ing cost and patient burden. Finally, the predictive
biomarker approach increases likelihood of success
of trials and, therefore, can expedite novel therapeu-
tic interventions to market thereby providing patients
novel treatments sooner and companies extended
patent life. The current data supports the possibility
of a precision-medicine model for AD and, therefore,
it is our stance that the precision medicine model
needs to be further investigated both using existing

biorepository samples as well as in new prospective
clinical trials.
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