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The milpa is a traditional maize-based polyculture in Mexico that is typically practiced as
rainfed agriculture. Because milpa cultivation has been practiced over a vast range of
environmental and cultural conditions, this agroecosystem is recognized as an important
repository of biological and cultural diversity. As for any agroecosystem, the relationship
between plant development and the biogeochemical processes of the soil is critical.
Although the milpa has been studied from different perspectives, the diversity and
structure of microbial communities within milpa soils remain largely unexplored. In this
study, we surveyed a milpa system in Central Mexico across cropping season: before
planting (dry season; t1), during the early growth of plants (onset of the rainy season;
t2), and before harvest (end of the rainy season; t3). In order to examine changes in
community structure through time, we characterized bacterial diversity through high-
throughput sequencing of 16S rRNA gene amplicons and recorded the nutrient status of
multiple (5–10) soil samples from our milpa plots. We estimated microbial diversity from a
total of 90 samples and constructed co-occurrence networks. Although we did not find
significant changes in diversity or composition of bacterial communities across time, we
identified significant rearrangements in their co-occurrence network structure. We found
particularly drastic changes between the first and second time points. Co-occurrence
analyses showed that the bacterial community changed from a less structured network
at (t1) into modules with a non-random composition of taxonomic groups at (t2).
We conclude that changes in bacterial communities undetected by standard diversity
analyses can become evident when performing co-occurrence network analyses. We
also postulate possible functional associations among keystone groups suggested by
biogeochemical processes. This study represents the first contribution on soil microbial
diversity of a maize-based polyculture and shows its dynamic nature in short-term
scales.

Keywords: milpa, bacterial diversity, co-occurrence networks, seasonal agriculture, Actinobacteria,
Proteobacteria, Chloroflexi
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INTRODUCTION

Soil microbes play a primary role in ecosystem functions
and sustainability, including agricultural ecosystems (Wardle
et al., 2004; van der Heijden et al., 2008). In agroecosystems,
productivity, resilience to perturbations, nutrient cycling, and
resistance to plagues is strongly influenced by soil microbial
biodiversity (Van Bruggen and Semenov, 2000). Microbial
communities change their composition and function as a
consequence of environmental changes and farming practices
(Fierer et al., 2007; Strickland et al., 2009; Lage et al., 2010);
however, there is still little understanding about the nature
and relative contribution of the specific factors that affect the
composition and structure of soil microbial communities in time
and space (Barberán et al., 2011; Wood et al., 2015; Shi et al.,
2016).

In recent years, the composition and structure of microbial
communities has been reported in many ecosystems; many
studies on this topic have been published thanks to the
development of high-throughput sequencing technologies
(Metzker, 2010; Caporaso et al., 2011) and the use of analytic
methods such as co-occurrence networks (Barberán et al.,
2011). The use of these methods has helped identify some
of the factors that contribute to soil microbial diversity and
structure within agroecosystems (Shi et al., 2016). In studies
with maize and rice, for example, large effects on microbial
diversity are associated with soil type and cultivation practices
(Peiffer et al., 2013; Edwards et al., 2015). However, bacterial
diversity surveys for agricultural soils have focused mainly on the
characterization of microbial communities assessed in a single
time-point and mostly on crop monocultures. Crop polycultures,
however, are very important because of their central role in the
development of sustainable agriculture (Perfecto et al., 2009;
Chappell et al., 2013). Moreover, they are often subjected to
drastic environmental and management changes throughout the
year, while being highly dependent on rainwater. For example,
nearly three quarters of the agricultural production in rural
Mexico is rainfed (SAGARPA, 2014). Given seasonal variation
in rainfall, studies of polycultures should include longitudinal
sampling that captures potential seasonal changes.

The milpa is a traditional polyculture in Mexico and
Mesoamerica that is based on maize and has been recognized
as an invaluable repository of biological and cultural diversity
(Altieri, 2004; García-Barrios et al., 2009; Chappell et al., 2013).
The milpa typically includes intercropping of maize and common
beans but often features additional crops such as tomato,
squash, chili, jicama, and avocado. Over thousands of years, this
polyculture has been adapted to a variety of climatic, edaphic,
and cultural conditions, and it has been the foundation of food
security in many Latin American rural communities (Altieri
et al., 2012). The milpa system has been studied from different
perspectives. Some of the bacterial diversity associated with milpa
soils has been characterized but only for particular microbial
species and families (Silva et al., 2003, 2005). Nevertheless, to
our knowledge, no studies have been conducted on the structure
and diversity of milpa-associated bacterial communities. Taking
into account the recognized values of the milpa, it is of

interest to investigate its associated microbiota, particularly for
the conservation or restoration of the microorganism-mediated
biogeochemical processes that can be the base of an input-free
and sustainable agriculture (Chappell et al., 2013; FAO, 2015).

In the present study, we report the composition and structure
of soil prokaryotic communities associated with milpa plots
in the central highlands of Mexico, in a region where small
farmers practice rain-fed maize agriculture with several plants
in association or in rotation (Figure 1). Given the marked
seasonality of milpa agriculture in this region we explore
not only the composition and structure of soil prokaryotic
communities but also their seasonal change along the cropping
season. We hypothesize that nutrient profiles, bacterial diversity,
bacterial composition, and co-occurrence networks exhibit
seasonal changes. For testing this hypothesis, we have collected
soil samples from four plots at three key time points in the
agricultural cycle. We determined the pH and the total content
of nitrogen, carbon and phosphorus, and characterized the
microbial community by means of high-throughput 16S rRNA
amplicon sequencing. Finally, we interpreted the correlations
among microbial taxa in terms of their ecological roles and
putative interactions (Dunne et al., 2002; Montoya and Solé,
2002).

MATERIALS AND METHODS

Study Site
The four milpa plots for this study (F, L, T, and R) are
located in the Españita municipality, in the state of Tlaxcala
in Mexico (around 19◦07′08′′N 98◦10′12′′W; Figure 1). Since
1997, This municipality has been influenced by the “Proyecto
de Desarrollo Rural Integral Vicente Guerrero”, a small rural
farming organization that practices and promotes agroecological
strategies (Holt-Jimenez, 2008). Agriculture in this community is
performed by small farmers in plots that range from 0.5 to 2 Ha.
We investigated the management history of each plot through
informal interviews with the farmers and with the organization
representatives, and found that all plots cultivate a diversity of
plants besides maize (beans, squash, tomato, etc.), usually in
association but sometimes in a rotation scheme. Considering this,
the chosen plots were a reasonable representation of the milpa
grown throughout the central Mexican highlands.

Sampling
We sampled four milpa plots for bulk soil (Figure 1). In all cases,
we sampled at three time points: (i) before planting (dry season;
t1), (ii) during the early growth of plants (onset of the rainy
season; t2), and (iii) before harvest (end of the rainy season; t3).
The first time-point was done in May, the second in July and the
third in September, all in 2013. For each plot and time point we
sampled 5 to 10 plot-replicates in a longitudinal transect: detailed
samples sizes used for community analysis (90 in total) and
nutrient composition (60 in total) are shown in Supplementary
Table S1. The difference in the total number of samples we
analyzed between physicochemical and community analyses is
due to the fact that in t2 and t3 we collected two samples per
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FIGURE 1 | Plots of rain-fed milpa Tlaxcala, Mexico. Four plots of maize-based polyculture were sampled in three key time points (before planting/dry season, early
growth of plants/beginning of the rain season, before harvest/end of the rain season). Within each plot, five points were sampled with replicates, adding to 90 soil
and DNA samples for the whole study. Images were obtained in true color from the satellite Sentinel-2 covering the Españita municipality in Tlaxcala, Mexico. In order
to illustrate the drastic seasonality of the site, an image from the 2016 rainy season (left) is compared with an image from the 2017 dry season (right).

site only for the community analyses obtaining a total of 100
samples. However, 10 of these samples did not retrieve optimal
sequencing results so we ended up with a total of 90 samples
(see Supplementary Table S1 for details). In t2 and t3, plants were
already growing, thus the two samples per sites corresponded to
5 and 20 cm distance from the plants. After analysis, the distance
from the plant did not explain any differences in microbial
diversity or composition; thus, these samples were considered as
duplicates.

For the genomic procedures, we collected approximately 30 g
of surface soil; for t2 and t3 we marked plants and sampled
the same spot. All samples were immediately frozen in liquid
nitrogen in the field and transported to the laboratory for further
procedures. For soil physicochemical parameters analysis (60
samples in total), we collected 500 g of bulk soil for the same
sampling points described above.

Laboratory Procedures
DNA Extraction
Soil samples were sieved through a 2 mm soil mesh to remove
small branches, leaves and rocks. Genomic DNA was extracted
using PowerSoil DNA Isolate KitTM (MoBio Laboratories, Solana
Beach CA, United States), with a slightly modified protocol
(0.25 g of sample, all 4◦C incubation times increased to 20 min,
and addition of a 55◦C incubation step prior to DNA elution).

Amplification and Sequencing
The 16S rRNA gene was amplified with the 515F/806R primers
that target the V4 region (Caporaso et al., 2011). PCR
amplifications were performed in a total volume of 25 µl
and included 1 µl of template DNA, along with 0.2 µM of

each PCR primer. PCR conditions followed those of Caporaso
et al. (2011). Individual PCR products were quantified on a
Qubit fluorometer (Singapore) and combined into a multiplex,
which was purified on Qiaquick columns (Qiagen, Valencia, CA,
United States). The eluted multiplex was then size-fractionated
on a low temperature 1% agarose gel; a band of the expected
size of ∼300 bp was extracted, and the band was purified using
QIAQuick Gel Extraction KitTM (Qiagen from Qiagen, Valencia,
CA, United States). The pooled sample was sequenced on an
Illumina HiSeq2500, using 250 bp paired-end reads of 150 cycles.

Soil Physicochemical Parameters Determination
Soil pH was measured with a digital pH meter (Corning), using
deionized water (1:2 w/v). Previous to nutrient determination, a
100 g aliquot of soil was oven-dried at 75◦C to constant weight.
Total C was determined by dry combustion and coulometric
determination (Huffman, 1977) using a Total Carbon Analyzer
(UIC Mod. CM5012; Chicago, United States). Total N and P
in soil were extracted by acid digestion with H2SO4, H2O2,
K2SO4, and CuSO4 at 360◦C. Total N concentration was
determined using a modified Kjeldahl method (Bremmer, 1996)
and P concentration was determined by colorimetry, using the
molybdate-ascorbic acid method (Murphy and Riley, 1962).
Both were quantified with a Bran-Luebbe Auto Analyzer III
(Norderstedt, Germany).

Nutrient Contents Data Analysis
Statistical Analyses
All statistical analysis for the nutrient data were conducted in
R (R Core Team, 2014) using the vegan package (Oksanen
et al., 2016). Given the nested nature of our sample scheme
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(samples from different plots in different sampling times), we
conducted a non-parametric nested analysis of variance based
on 1000 permutations (PERMANOVA using adonis function),
and a post hoc Wilcoxon test, in order to distinguish differences
in nutrient content associated with the sample origin (plot) and
sampling time. All the scripts developed in R are available online
at: https://github.com/LANCIS-escalante-lab/milpa.

16S rDNA Sequences Analyses
De-multiplexing, Filtering, and Chimera Check
Illumina raw sequences were processed with Quantitative
Insights Into Microbial Ecology pipeline, QIIME (Caporaso
et al., 2010a). First, sequences were de-multiplexed, using local
scripts. Next, paired-end reads were joined into contigs using
join_paired_ends.py with default arguments. Joined sequences
were filtered for quality based on two criteria: (i) sequences with
more than 2 N’s were removed and (ii) sequences with overall
(average) phred quality scores <20 were discarded. These steps
removed 48.4% of the total number of reads, leaving 32,965,400
total reads, an average of 343,389.6 for each of the samples.
The presence of chimeras was checked with Chimeraslayer (Haas
et al., 2011). Chimeric sequences (1.7% of the total reads) were
eliminated and the rest of the sequences were filtered by size
keeping only the sequences with 228–230 bp in length.

The raw data (paired end files) were deposited in the
NCBI sequence read archive (SRA) with the accession numbers
SRR5957113 (Biosample SAMN07501976) for R1 files and
SRR5942330 (Biosample SAMN07501975) for R2 files. Both files
can be found as part of the Bioproject PRJNA398138.

OTU Assignment
De-multiplexed and filtered sequences (30,138,961 of reads) were
clustered into operational taxonomic units (OTUs) at a sequence
similarity threshold of 97% with the UCLUST method (Edgar,
2010). Sequences were matched against the Greengenes database
(May 2013 release; McDonald et al., 2012), and those that did
not match the database were clustered as de novo. Taxonomy
was assigned using the RDP classifier (Wang et al., 2007) and the
Greengenes database. Representative sequences were aligned to
the Greengenes database with PyNAST (Caporaso et al., 2010b),
and a ML phylogenetic tree was constructed with FastTree 2
(Price et al., 2010). The obtained OTU table was filtered using a
minimum cluster size of 0.001% of the total number of reads, i.e.,
we kept OTUs with more than 300 reads (Bokulich et al., 2013).

Statistical Analyses of Molecular Data
Diversity and Statistical Analyses
To evaluate differences across times and plots, the Shannon
diversity index was calculated, and ANOVA and post hoc Tukey
tests were conducted using R (R Core Team, 2014). To evaluate
if the sample size had an effect on Shannon diversity per time,
we performed 1000 random subsamplings of the data set so that
t1, t2, and t3 had equal sample size (17 samples). We performed
1000 ANOVAs and identified the proportion of P > 0.05.
To calculate beta diversity, we obtained a Weighted Unifrac
distance matrix and distances were visualized with a Principal
Coordinates Analysis (PCoA). Differences in beta diversity across

time were tested with a two factor non-parametric analysis of
variance based on 999 permutations (PERMANOVA) using the
software PRIMER-E (Clarke and Gorley, 2006). To evaluate
if the sample size had an effect on beta diversity per time,
we resampled the Weighted Unifrac matrix (1000 times) so
that t1, t2, and t3 had equal sample size (17 samples). We
performed 1000 PERMANOVAs and identified the proportion
of P > 0.05. All alpha and beta diversity metrics, PCoAs, and
relative abundance descriptions of the soil communities at the
phylum level were obtained with QIIME (Caporaso et al., 2010a).
Sample based subsampling trials to test the effect of sample size
on alpha and beta diversity were done in R (R Core Team,
2014).

Network Inference Analysis
The networks were constructed with the software CoNet v1.1.0
(Faust and Raes, 2016) by using tables of OTUs abundances at the
family level obtained with QIIME (see above). We constructed
one network with all the samples pooled together, and separate
networks among the different plots (F, L, T, and R) and among
the different time points (t1, t2, and t3).

We set a minimum of occurrences among replicates to
20–25% and normalized the values. The co-occurrences were
tested statistically with Pearson, Spearman, and Kendall tests as
well as with the dissimilarity index of Bray–Curtis. For all tests,
only correlations >0.5 (and Bray–Curtis distances <0.5) and with
P < 0.05 were considered as significant. Edges were established
when the co-occurrences/exclusions were supported by at least
three out of the four (correlations/dissimilarity) indices. The
values of the edges corresponded to the average value among
indexes. We also applied a multi-test correction with both a
Fisher’s Z and the Benjamini–Hochberg procedure (Benjamini
and Hochberg, 1995), with q-values set to 0.05.

To describe the structure of the inferred networks we
calculated standard network indexes, tested a fit of the
distribution of connectivity to a power law, and calculated
modules. The calculation of network indexes as well as the
visualization and manipulation of networks were all carried out
in the software Cytoscape v3.3.0 (Cline et al., 2007), which also
assisted the construction of networks by running CoNet. To
test if the taxa appeared randomly distributed among modules,
we applied a contingency table test with the frequencies of
taxa inside modules. We assessed the re-allocation of nodes in
modules by computing the ratios of nodes that persisted in
modules between t1 and t2, and between t2 and t3, and visualized
those changes by means of alluvial diagrams, constructed with
the MapEquation online engine (Rosvall and Bergstrom, 2010).
Further, we investigated if modules displayed not only temporal
changes in their nodes composition but also changes in their
internal structure. For that goal, we compared the sets of nodes’
pairwise distances between consecutive time-points. The distance
between nodes that we employed was the length of the shortest
path between nodes pairs, which was the sum of absolute edges’
weights subtracted from one (recall that edges weights were
average correlation values). We obtained the distances patterns
for both modules and taxa, and compared those patterns between
successive time-points by means of a correlation coefficient R2.
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We assessed the consistency of modules by computing the
entire network modularity with four methods: the Greedy
Modularity Optimization, Short Random Walks, Matrix
Eigenvector, and Simulated Annealing.

The pipeline we followed has several measures for improving
robustness, including some that would weaken edges established
by statistical artifacts associated to small or uneven sampling. In
particular, from all the measures available in CoNet, the three
tests and the distances that we used are not reported among those
that are particularly sensitive to sample number (Faust and Raes,
2016). However, since the number of samples is different between
t1 and t2/t3, we re-built networks for each time-point taking
a random downsample for times t2 and t3. For this exercise,
we performed a double randomization step as a measure to
improve robustness due to small sampling following Faust and
Raes (2016).

RESULTS

Soil Physicochemical Parameters Show
Differences in Time
Results from the nutrient analysis are presented in Table 1.
From these data, we investigated the variation in nutrient
contents among plots and across time points through a non-
parametric nested analysis of variance (PERMANOVA). The
results showed significant differences in nutrient content among
sampling times (time; F = 2.6412, P = 0.035). In addition, plot
explained differences in nutrient content (plot; F = 11.4215,
P = 0.000999), but we did not detect a significant interaction
between plot and time (interaction F = 1.9281, P = 0.06939).
Post hoc Wilcoxon tests identified differences across time points:
we found a significant difference between t2 and the other two
sampling times due to pH (Table 1). Finally, we found that t1 and
t3 differ in the C:P ratio (Supplementary Table S2).

Bacterial Diversity and Community
Structure Do Not Exhibit Seasonal
Changes
A total of 7,183 OTUs were identified from the 90 soil
samples collected during three time points (after filtering to
119,062 reads the total number of reads for the collection of
samples was 10,715,580). Considering all time points, the five
dominant phyla were Proteobacteria (41.35%), Actinobacteria
(17.33%), Acidobacteria (12.47%), Gemmatimonadetes (7.53%),
and Verrucomicrobia (6.41%) (Figure 2B). According to
Shannon index estimates, no significant differences in alpha
diversity were found across time (Figure 2A, ANOVA) or
among plots with the exception of plot R, which differed from
plots L and T only at t2 (Supplementary Figure S1; ANOVA
F(3,35) = 3.747, P = 0.0196). Random subsamplings of the data
set to balance sample size, showed that 99.5% of the time
the effect of Time was not significant (ANOVA P > 0.05).
Principal coordinate analyses (Supplementary Figure S2) showed
no significant differences across time according to beta diversity TA
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FIGURE 2 | Soil microbial community diversity across three time points of
pooled samples. (A) Box plot of alpha diversity estimates (Shannon index)
obtained from soil microbial communities. (B) Mean relative abundance of the
12 most abundant bacterial and archaeal phyla.

estimates using Weighted Unifrac distances (Adonis test: Pseudo-
F(2,87) = 1.4254, P = 0.102). However random subsampling
of the Weighted Unifrac distance matrix indicated that, when
sample size per time is equal (17 samples), the effect of time was
significant 21.3% of the time (PERMANOVA P < 0.05).

Co-occurrence Patterns Show
Significant Changes in Time
We obtained co-occurrence networks for the four plots, the three
time-points, and the combination of both categories.

The networks obtained for the three time points (t1, t2,
and t3) fitted a Power law (R2 = 0.75–0.81) and displayed
strong modularity and hierarchical properties (see below), all of
which have been associated with network complexity (Ravasz
and Barabási, 2003; Barabási and Oltvai, 2004). Moreover, a
significant Power law fit was also observed in sub-networks
that constitute taxonomic groups even when lower taxonomic
hierarchies were used, or when taxa were taken inside modules.

The comparisons between plots, which were made by pooling
together the three time-points, showed no relevant differences
in size and network indexes (Supplementary Table S3). In
agreement with the network indexes, these networks looked
similar and compact (Supplementary Figure S4). Networks
inferred for each combination of plot and time-point retained
some complexity properties as a power law distribution of
degree and modularity. However, they were too small and
did not displayed remarkable differences (see Supplementary
File S1).

The comparison between time-points showed statistically
relevant differences in their size, network indexes, and
modularity (Table 2 and Figure 3). The differences were
larger between t1 and t2 than between t2 and t3, in good
agreement with the analyses of soil physicochemical parameters
in which t1 and t2 showed larger differences than t2 and t3
(Table 1 and Supplementary Table S3). For instance, the t1 and
t2 networks shared 205 edges (which represent 12 and 31% of t1
and t2 networks, respectively) while t2 and t3 shared 252 edges
(which represent 38 and 30% of t2 and t3 networks, respectively),
and t3 and t1 shared 244 edges (representing 35 and 17%,
respectively). The t1 network was more densely connected
(d = 0.038) than t2 and t3 (d = 0.018 and 0.021, respectively;
Table 2 and Figure 3). The overall differences between networks
at different time-points were maintained after performing the
robustness test suggested by Faust and Raes (2016) (data not
shown).

Figures 3, 4 and Supplementary Figure S3 show that taxa
re-allocation in modules occurred extensively between time-
points t1 and t2 and moderately between t2 and t3, especially
for three phyla: Actinobacteria, Chloroflexi and Proteobacteria.
The proportional representation of taxa in modules was non-
random (t1: χ2 = 263, d.f. = 56, P < 0.001; t2: χ2

= 165, d.f. = 48,
P < 0.001; t3: χ2

= 158, d.f. = 56, P < 0.001). As for the modules
persistence, the three largest modules of t1 had a low persistence
in t2 (11.9, 27.3, and 25%) but the five largest modules of t2 were
highly persistent in t3 (55.4, 75, 35.3, 20, and 63.2%; Figure 4 and
Supplementary Figure S3). The structure of pairwise distances of
modules followed a similar pattern: low persistence between t1
and t2 (R2 = 0.2 to 0.47, mean = 0.28) and noticeably a higher
persistence between t2 and t3 (R2 = 0.18 to 0.62, mean = 0.47)
(Supplementary Figure S5). When we compared the sets of
pairwise distances of taxa in the different time-points, we found
the same tendency of being more similar between t2 and t3 than
between t1 and t2 (R2 = 0.04 to 0.69, mean = 0.35 for t1–t2
and R2 = 0.42 to 0.83, mean = 0.63 for t2–t3) (Supplementary
Figure S6).

DISCUSSION

Seasonal Changes Are Associated with
Changes in Physicochemical Soil
Parameters
Management of soil in the milpa agriculture is tightly associated
with rain and its accompanying environmental changes. Due to

Frontiers in Microbiology | www.frontiersin.org 6 December 2017 | Volume 8 | Article 2478

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-08-02478 December 14, 2017 Time: 18:6 # 7

Rebollar et al. Milpa Soil Bacterial Diversity

the rainfed nature of the milpa agricultural system, moisture
can be considered one of the key environmental parameters,
which has been reported (for other soil study systems) as an
influential variable affecting bacterial community structure as
well as carbon and nitrogen transformations (Fierer and Schimel,
2002; Fierer et al., 2003). Seasonal changes in the milpa system,
as in other agroecosystems, also include anthropogenic changes
associated with cropping including tillage and fertilization,
which have also been associated with changes in microbial
communities (Yin et al., 2010). Finally, temperature, humidity,
and microbial activity are additional potential drivers of
ecosystem changes.

In the present study, we characterized some of the potential
outputs of seasonality and cultivation practices on soil properties.
Although we do not have specifics about the inputs (e.g.,
tillage type, fertilization) associated with management, we
did document the practices of plot owners through informal
communication, particularly with respect to management
strategies associated with preparing the land for planting
(between t1 and t2). Among the physicochemical variables
measured from the studied soil samples, pH best explains the
differences among sampling time points, specifically acidification
in t2. This may be caused by the application of fertilizer
inputs, which were applied prior to planting and hence prior
to t2. Previous studies have shown that the physicochemical
reactions that take place after the fertilizer application reduce
pH by enhancing proton release nitrification and ammonium
uptake by the plants (Francioli et al., 2016). Acidification of
soil in turn can lead to nutrient depletion (Barack et al.,
1997), affecting microbial biomass (Lupwayi et al., 2011;
Lazcano et al., 2013) and enzyme activities (Nannipieri and
Gianfreda, 1998; Guo et al., 2011; Gianfreda and Ruggiero,
2006). In fact, soil pH has been widely accepted as a
critical factor impacting composition and diversity of soil
bacterial communities (Fierer and Jackson, 2006; Lauber
et al., 2009; Zhalnina et al., 2014), and recent evidence
shows that different types of fertilization can affect soil

microbial communities in maize agroecosystems (Zhang et al.,
2017). Regardless of the specific physicochemical or microbial
changes throughout the cropping season, our observations
show the importance of a short-term temporal perspective of
agroecosystems.

Seasonality Is Not Reflected in Microbial
Diversity
Despite the fact that we found significant changes in at
least two physicochemical variables among sampling times, no
significant changes were observed in alpha and beta diversity
across time points. Even though diversity estimates are useful
to describe communities, these are not always informative
about the consequences of different treatments/conditions, as
typified by this study where no statistically significant differences
were observed across time points. However, we were able to
distinguish trends in which the relative abundance of certain
taxa (e.g., Proteobacteria, Actinobacteria), change slightly from
t1 to t2–t3 (Figure 2). In addition, beta-diversity analysis
shows a similar situation, in which t1 samples correspond
to a slightly different ordination than t2–t3 (Supplementary
Figure S2). As indicated by previous studies (Anderson and
Walsh, 2013), beta diversity estimates can be influenced
by unbalanced sample sizes. Considering the latter, in this
study we identified a significant effect of time (21.3% of
the time) when we performed subsamplings of the matrix
equalizing the sample size per time. These results suggest
that the trend observed in Supplementary Figure S2 could
be obscured by different sample sizes on each time point
(17, 39, 34).

The lack of significant differences in diversity are in
contrast with previous studies in which significant differences
in diversity can be found across both time and space
(e.g., Buckley and Schmidt, 2003). In this context, we
presume either that the temporal scale for the sample is
inappropriate to document changes in microbial diversity
or that the system (rain fed agriculture) is more resilient

TABLE 2 | Network indices for three time points: (t1), before planting (dry season); (t2) during the early growth of plants (onset of the rainy season), and (t3) before
harvest (end of the rainy season).

Sampling time

Network index t1 t2 t3

Number of nodes 302 266 267

Number of edges 1685 650 825

Connectivity 11.159 ± 9.210 7.0695 ± 7.954 8.192 ± 8.165

Clustering coefficient 0.210 ± 0.166 0.149 ± 0.198 0.157 ± 0.208

Betweenness centrality 0.007 ± 0.008 0.015 ± 0.020 0.022 ± 0.099

Closeness centrality 0.327 ± 0.094 0.273 ± 0.161 0.309 ± 0.146

Average shortest path length 3.213 ± 0.686 4.105 ± 1.199 3.555 ± 1.037

Network density 0.037 0.018 0.023

Network heterogeneity 0.824 0.826 0.817

Network centralization 0.106 0.057 0.067

Power law of node degree, R2 0.752 0.809 0.799

When applicable, ± values correspond to standard deviation. Network inference was done considering diversity at the family taxonomic level.
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FIGURE 3 | Complex co-occurrence networks of microbial communities of milpa soil. Networks correspond to three time points: t1 = before planting (dry season);
t2 = during the early growth of plants (onset of the rainy season); and t3 = before harvest (end of the rainy season). Charts at left show the original networks with
nodes colored by taxa while charts at right show the condensed networks where each circle represent a module with their size being equivalent to the size of the
module (nr. of nodes), and the taxa share displayed as a pie chart. Line thickness indicates amount of “flow” (edges) between modules. Network inference was done
considering diversity at family level.
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FIGURE 4 | Focused alluvial diagram of three times. Each column represents a time (t1 = before planting (dry season); t2 = during the early growth of plants (onset of
the rainy season); t3 = before harvest (end of the rainy season)) and the blocks at each time the network modules. The flow lines among times represent the module
re-assignation of groups of OTUs (nodes). Colors correspond to taxa as indicated in the list, but only the two largest modules (at t2) were colored to avoid saturation
of the figure. The top graph is highlighting one dominant module and the bottom graph is showing another dominant module.
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to environmental changes. Further studies that include
sampling in more than one agricultural cycle will be needed
to better understand the mechanisms involved in these
patterns.

Co-occurrence Networks Reveal Other
Aspects of the Microbial Diversity That
Can Inform Further Studies
The inferred co-occurrence networks exhibit a power law
distribution, a high degree of modularity, and a hierarchical
nature. These properties have been found in other biological
networks and have been associated with complexity and
robustness (e.g., Albert et al., 2000; Melián and Bascompte,
2002; Bastolla et al., 2009). From these network properties,
modularity has been proposed to reflect habitat heterogeneity,
divergent selection or phylogenetic clustering of related
species, generating nonrandom patterns of association
(Pimm and Lawton, 1980; Lewinsohn et al., 2006; Olesen
et al., 2007). In this study, we observed a taxonomical
enrichment of modules and found that the power law,
a property of complex networks not necessarily present
in random sub-sets of our networks, was maintained in
subsets defined by taxonomical groups. This suggests that
some complex network properties are brought about by the
ecological relationships inside and among taxa and call for
future studies analyzing the phylogenetic component of the
networks.

Significant changes in co-occurrence networks were found
across time points. In contrast to the standard diversity and
composition analyses, the analyses of networks detected large
changes between t1 and t2, including a full scale re-arrangement
of modules, a change in the pattern of distances among nodes of
the entire network, and the redistribution of taxa in modules. One
of the interesting aspects of these co-occurrence networks, is that
some of the main phyla in these communities (Proteobacteria,
Actinobacteria, and Chloroflexi) rearrange across time points.
These co-occurrence patterns are of interest if we think about
them from the perspective of functional ecology, particularly
since the grouping of these phyla happens just after the
onset of the rainy season, when plants start to grow and
fertilizers have been added. While these patterns were robust
to a randomization test and were obtained from a pipeline
that minimizes error associated to small or uneven sampling
(Methods), it is in principle possible that the differences in the
number of samples at t1 and t2/t3 introduce artifacts in the
comparison among t1, t2, and t3 networks. Further studies are
needed to fully assess the potential effect of small or uneven
sampling in the modularity of module composition of co-
occurrence networks.

Previous studies looking at the ecological roles of phyla
in soil have identified Proteobacteria and Firmicutes as
copiotrophs or fast growing organisms that prefer carbon-rich
environments that satisfy their high demands of energy to
maintain their growth rates (Fierer et al., 2007). In contrast,
groups such as Chloroflexi have been reported to be very
slow growers (Davis et al., 2011) that may rely on whatever

minimal resources are available. Finally, members of the
Actinobacteria, one of the predominant phyla in this study,
have been reported to play an important role as organic
matter decomposers (Strap, 2011), which may be of key
importance in maintaining microbially mediated processes when
nutrients become limited after fertilization and plant uptake.
Given this, we could speculate on the cooperative behavior
of these groups; where at the face of nutrient depletion,
Chloroflexi, as a slow grower phyla (Davis et al., 2011) can
thrive given the slow demand of nutrients, while Actinobacteria
act as the decomposers that release the nutrients required by
the fast-growers such as Proteobacteria. This persistence of
co-occurring taxa, with some relative abundance fluctuations
(i.e., Actinobacteria, Chloroflexi, and Proteobacteria) among
time-points suggests that the persistence of these modules
in t2–t3 could represent ecologically meaningful assemblages,
something that has been reported in similar, more controlled,
maize-vegetable rotation systems (Zhang et al., 2017). In
particular, Zhang et al. (2017) reported that Proteobacteria
are always present in agricultural soils, with little or no
fluctuations in time or in response to agricultural practices
that alter some physicochemical properties (i.e., pH), but
groups such as Actinobacteria or Chloroflexi, despite being
present, showed contrasting patterns of relative abundance
in response to fertilization and consequent pH changes.
In this regard, it is tempting to think that the network
modules represent microbial assemblages that play specific
functions in the soil ecosystem of the milpa. Further studies,
looking specifically at agricultural practices and temporal
changes in relative abundance and co-occurrence patterns of
functional groups and genes are needed to investigate these
hypotheses.

CONCLUSION

Given the vast diversity and functional redundancy of
microorganisms, it remains unclear which factors control
specific changes and, to some extent, whether microbial
community structure actually matters for ecosystem functioning
(Allison and Martiny, 2008). In this work, we assessed short-
term temporal changes of bacterial communities in the milpa
agroecosystem and found, by employing diverse experimental
and analytical techniques, that these communities are robust
in their composition and structure in the spatial scale, but
that they change in their overall organization over the
short-term. These temporal changes coincide with seasonal
differences, plant growth, and the addition of fertilizers,
which are followed by physicochemical changes in the soil.
In the context of the current biodiversity and food crisis
(Chappell et al., 2013), it has become crucial to address
the study of agroecosystems and food production from an
interdisciplinary perspective. In this scheme, the study of
microbial communities across time and space is fundamental
to understand nutrient cycling and the role of climate,
especially on rain-fed and diverse agroecosystems like the
milpa.
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