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Automated bone mineral density prediction and
fracture risk assessment using plain radiographs
via deep learning
Chen-I Hsieh 1, Kang Zheng 2, Chihung Lin3, Ling Mei4, Le Lu 2, Weijian Li2, Fang-Ping Chen 5,6,

Yirui Wang 2, Xiaoyun Zhou 2, Fakai Wang 2, Guotong Xie 7, Jing Xiao 7, Shun Miao 2✉ &

Chang-Fu Kuo 1,2,5✉

Dual-energy X-ray absorptiometry (DXA) is underutilized to measure bone mineral density

(BMD) and evaluate fracture risk. We present an automated tool to identify fractures, predict

BMD, and evaluate fracture risk using plain radiographs. The tool performance is evaluated on

5164 and 18175 patients with pelvis/lumbar spine radiographs and Hologic DXA. The model is

well calibrated with minimal bias in the hip (slope= 0.982, calibration-in-the-large=−0.003)

and the lumbar spine BMD (slope= 0.978, calibration-in-the-large = 0.003). The area under

the precision-recall curve and accuracy are 0.89 and 91.7% for hip osteoporosis, 0.89 and

86.2% for spine osteoporosis, 0.83 and 95.0% for high 10-year major fracture risk, and 0.96

and 90.0% for high hip fracture risk. The tool classifies 5206 (84.8%) patients with 95%

positive or negative predictive value for osteoporosis, compared to 3008 DXA conducted at

the same study period. This automated tool may help identify high-risk patients for

osteoporosis.
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Osteoporosis is a common bone disease1 that increases the
global health burden2. All major types of osteoporosis-
related fragility fractures are associated with chronic pain,

disability, functional dependence3, high morbidity4, and a two-
fold to three-fold increase in mortality5, despite the availability of
effective anti-osteoporotic drugs6. Dual-energy X-ray absorptio-
metry (DXA) is the preferred modality for the measurement of
bone mineral density (BMD) in the human hip or lumbar spine,
which is an essential component of the fracture risk assessment
tool (FRAX) used to estimate the 10-year risk of hip or major
osteoporotic fracture7. According to International Osteoporosis
Foundation, DXA is falling short of the minimum service
requirement for DXA of 11 units per million population8 in most
parts of Eastern Europe and Central Asia9, the Middle East and
Africa10, Asia Pacific11 and Latin America12, and ten member
states in European Union13. The US is well-resourced but both
DXA and FRAX seem underutilized14. Among Medicare bene-
ficiaries ≥65 years of age, only 30% of women and 4% of men
were tested for BMD with DXA15. Among people with fragility
fractures, only 10.2% of female16 and 6% of male patients17 have
undergone BMD testing before the index event. Furthermore,
DXA utilization seems to be decreasing in post-menopausal
women in the US18.

Opportunistic screening for osteoporosis using imaging mod-
alities other than DXA is a potential strategy to stratify the
unscreened population into distinct risk groups of osteoporosis
and fragility fractures. This approach used radiographs ‘already
been taken’ for other clinical indications to screen osteoporosis at
no additional cost, time, or radiation exposure to patients. For
example, several studies used computed tomography (CT)-based
metrics to estimate BMD19–21, classify osteoporosis22, simulate
DXA T-scores23, and predict fracture outcomes24. However, the
performance, radiation dose, and population coverage of CT-
based screening strategies are barriers to their use in clinical
settings. Unlike DXA and CT, plain radiography has greater
availability, broader indications, lower radiation dose, and overall
costs. In addition, the spatial resolution of radiographs is excel-
lent, allowing the visualization of fine bone texture, which is
correlated with bone density25 and can distinguish patients with
osteoporotic fractures from controls25–27. Therefore, an auto-
mated tool based on hip or spine radiographs for identifying hip
fracture and vertebral compression fracture (VCF), predicting
BMD, and evaluating fracture risk can help identify patients with
greater fracture risk among individuals undergoing radiography
of the hip or spine for other reasons.

Deep learning algorithms have achieved performance superior
to traditional methods in visual recognition tasks28, which is the
foundation of clinical applications such as fracture detection29,
retinopathy grading30, and lung nodule identification31. There-
fore, this retrospective cohort study was performed to test the
hypothesis that an automated deep neural network-based tool
could effectively predict BMD and risk of fragility fractures using
plain radiographs of the pelvis and lumbar spine. Here, we pro-
posed and validated a fully automated deep learning-based tool to
1. extract the hip and spine region of interests (ROIs), 2. identify
hip fracture, VCF, or morphological abnormalities, 3. check the
radiograph quality to ensure that implants and foreign bodies
were absent from the ROIs, 4. predict BMD and estimate the
probability of a fracture within the next 10 years based on the
FRAX (Fig. 1). We compared the predicted BMD with the BMD
measured by central DXA. We also compared the risks of 10-year
hip and major osteoporotic fractures (https://www.sheffield.ac.uk/
FRAX/) using only clinical parameters (FRAX-NB, age, sex,
weight, and height), clinical parameters and DXA-measured
BMD (FRAX-MB) or predicted BMD (FRAX-PB). We also
conducted a real-world test on consecutive patients to prove the

clinical applicability of our tool, and its impact on osteoporosis
screening strategy.

Results
Data source. From 2006 to 2020, 30,958 and 86,977 patients aged
40–90 years with paired DXA-pelvis or paired DXA-lateral
radiographs of the lumbar spine (18.6% and 18.2% of patients
with hip or lumbar spine radiographs) were screened to identify
hip and spine cohorts for analysis. Of these, 18,097 and 58,149
patients in the respective cohorts were excluded due to a DXA-
radiograph interval >180 days, lack of detailed reports, inadequate
image quality, positions, or analyzable ROIs. The final cohorts
included 10,797 patients with Hologic DXA-hip radiograph
pairs and 25,482 patients with Hologic DXA- spine radiograph
pairs (Supplementary Fig. 1). No patient was included in more
than one group. As Table 1 shows, the final study population
included 5164 patients (3997 women [77.4%], mean age, 72.2
[standard deviation, SD, 11.2] years) in the hip testing set and
18,175 patients (14,469 women [79.6%], mean age, 67.1 [SD,
10.6] years) in the spine testing set. The median time between
DXA and plain radiographs was 29 and 16 days, respectively. The
DXA identified 1110 patients (21.5%) in the hip and 7860
patients (43.3%) in the spine cohort as osteoporotic.

Performance for BMD prediction. Table 2 summarizes the
model performance to predict BMD. Pearson’s correlation coef-
ficients between DXA-measured and model-predicted BMD were
0.92 for the hip and 0.90 for the lumbar spine. The linear
regression model showed excellent predictive performance of
predicted BMD with regard to measured BMD (hip: R2= 0.84,
root mean square error [RMSE]= 0.062; spine: R2= 0.81,
RMSE= 0.081). The model was well calibrated with minimal bias
in the hip (slope= 0.982, calibration-in-the-large=−0.003) and
the lumbar spine BMD (slope= 0.978, calibration-in-the-large =
0.003) (Fig. 2). The model performance remained robust across
various age and sex strata.

Performance for osteoporosis and fracture risk prediction.
Table 3 illustrates the discriminatory performance of the model to
classify hip or spine osteoporosis, and identify patients with
greater 10-year risks of major osteoporotic fractures (≥20%) and
hip fractures (≥3%). The algorithm provided a high degree of
discrimination for osteoporosis (area under the precision-recall
curve [AUPRC], 0.89 for both the hip and spine models). The
overall accuracies were 91.7% for hip osteoporosis and 86.2% for
lumbar spine osteoporosis. The median FRAX 10-year major
fracture (8.84% vs. 8.76%, p= 0.24) and hip fracture risks (2.48%
vs. 2.46%, p= 0.06) did not significantly differ, when scores were
based on the predicted BMD (FRAX-PB) or measured BMD
(FRAX-MB) plus clinical parameters (age, sex, height, and
weight). The area under the precision-recall curve (AUPRC)
values for major osteoporotic and fractures were 0.83 and 0.96 for
(FRAX-PB), compared to 0.40 and 0.83 for the FRAX tool
without BMD input (FRAX-NB) (Supplementary Figs. 2 and 3).
Supplementary Table 1 shows robust model discriminatory per-
formances across age and sex strata.

Next, we identified predicted BMD thresholds that correspond
to a positive predictive value (PPV) of 95% to classify and a
negative predicted value (NPV) of 95% to exclude osteoporosis
(Table 4). Overall, 88.2% of the predicted values in the hip cohort
and 70.4% in the spine cohort have an excellent PPV or NPV for
osteoporosis. Among the hip cohort, FRAX-PB provides excellent
discriminatory performance to classify high fracture risk patients.
The proportion of the study population who would be referred
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for DXA was 11.8% in the hip cohort and 29.6% in the spine
cohort.

External validation. We identified 2060 patients with paired GE
DXA-pelvis radiographs and 3346 patients with paired GE DXA-
lumbar spine radiographs (Supplementary Table 2). The GE
BMD values were converted to Hologic values using the
manufacturer-provided equations (Supplementary table 3). Sup-
plementary Table 4 summarizes the model performance by
comparing model-predicted BMD and GE DXA-measured BMD
and Supplementary Table 5 summarized the discriminatory
performance. The Pearson’s correlation coefficients between GE
DXA-measured and model-predicted BMD were 0.90 for the hip
and 0.89 for the hip and lumbar spine (Supplementary Fig. 4).
The model remains robust with good linear correlation, calibra-
tion and minimal bias across different age and sex strata. The
discriminatory performance is also excellent, with an AUPRC of
0.87 for the hip and 0.89 for the spine model. We further test our
tool using 34 pairs of GE DXA-hip radiographs and 179 pairs of
DXA-lumbar spine radiographs from the Wuhan Hospital of

Traditional Chinese Medicine. The Pearson correlation coefficient
was 0.93 for the hip model and 0.86 for the spine model.

Real-world experiment. Next, we implemented the tools in the
central inference platform connected to the picture archiving and
communication system (PACS) in the Chang Gung Memorial
Hospital (CGMH, Linkou branch) to study the real impact of our
tool to screen osteoporosis. The hospital PACS relayed all newly
acquired images to the inference platform daily. In total, 2388
consecutive pelvis (1858 patients, 43.2% women) and 9741
lumbar spine radiographs (5336 patients, 40.8% women) in those
aged 40–90 years were conducted between January and May 2021.
The tool excluded 816 pelvis radiographs and 1715 spine radio-
graphs due to poor image quality, inappropriate positions,
implants, and fractures that may impede BMD estimation. The
percentages of images passing through the entire pipeline and
successfully reporting a predicted BMD were 79.0% for pelvis
radiographs and 82.3% for spine radiographs. Among these, 5206
(84.8%) patients with hip or spine radiographs were classified or
excluded as osteoporotic with high PPV or NPV for osteoporosis
using thresholds reported in Table 4. Finally, only 933 (15.2%)

Fig. 1 Schematic representation of the workflow for hip and spine BMD estimation.

Table 1 Patient characteristics of the study population.

Hip testing set Spine testing set

Hologic training Hologic testing p*** Hologic training Hologic testing p***

Number 5633 5164 7307 18,175
Female, n (%) 4380 (77.8) 3997 (77.4) 0.66 5815 (79.6) 14,469 (79.6) 0.96
Mean age (sd), years 72.8 (11.0) 72.2 (11.2) 0.004 67.2 (12.5) 67.1 (10.6) <0.001
Median time (IQR) between DXA and
radiographs

31 (8, 81) 29 (8, 77) 0.13 24 (22, 27) 16 (5, 48) <0.001

Mean BMI (sd), kg/m2* 23.8 (3.9) 23.9 (3.9) 0.08 24.6 (3.8) 24.5 (3.8) 0.06
Mean BMD (sd) g/cm2 0.678 (0.159) 0.689 (0.156) <0.001 0.740 (0.173)** 0.762 (0.176)** <0.001
Median T-score (IQR) −1.6 (−2.4, −0.6) −1.5 (−2.3, −0.6) <0.001 −2.3 (−3.3, −1.3)** −2.2 (−3.1, −1.1)** <0.001
Osteoporosis, n (%) 1356 (24.1) 1110 (21.5) <0.001 3291 (45.0)** 7860 (43.3)** 0.009

*BMI was not available in 330/66 patients in the hip training/testing sets and 223 and 623 in the spine training/testing sets.
**Calculated based on vertebrae with the lowest BMD.
***Categorical variables (gender and osteoporosis) were compared using Chi-square test. Means were compared using student t-test and medians were compared using Wilcoxon rank-sum test. Two-
sided p values were reported.
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patients were advised to take the DXA examination (Supple-
mentary Fig. 5). At the same period, 3008 DXA examinations
were conducted in CGMH, Linkou branch.

Discussion
Osteoporosis is a silent disease before fragility fractures, leading
to multiple morbidities and increased mortality in affected
patients4. Therefore, population-based screening is imperative for
identifying at-risk patients and implementing preventive mea-
sures. DXA is the preferred screening modality to screen osteo-
porosis but is of limited availability, especially for the developing
counties8–13 and underutilized in the well-resourced area such as
the US15. In addition to improving DXA availability and utili-
zation, opportunistic osteoporosis screening using other imaging
modalities is a potential strategy to expand screening populations.
In CGMH, approximately 80% of patients aged 40–90 years with
pelvis or spine radiographs had not been screened by DXA pre-
viously. Our automated, reliable tool can evaluate fracture risk
using these radiographs “already” conducted for other indications
to identify at-risk patients, who are not screened by DXA without
additional cost, time, and radiation.

The performance of the tool is robust with DXA as a reference
and compared favorably with other opportunistic osteoporosis

screening tools based on CT attenuation of the spine (area under
the receiver-operator curve [AUROC], 0.83)22 and machine-
learning-based T-score simulation (accuracy, 82%)23. In com-
parison, our tool correlated well with gold standard Hologic or
GE DXA-measured BMD in both internal and external testing
sets with excellent discriminatory performance to classify hip and
spine osteoporosis (AUROC, 0.97 and 0.92, respectively) and
stratify patient fracture risks. Clinical testing of our automated
tool in consecutive patients with pelvis or spine radiographs
found that approximately 80% of them could be automatically
screened for osteoporosis. Among them, our tool classified
osteoporosis with excellent PPV or NPV for osteoporosis for 5206
patients who were mostly not examined by DXA; during the same
period, 3008 DXA examinations were conducted. The real-world
evidence demonstrated that our automated tool could expand
opportunistic screening to a broader population at risk.

BMD is not the only determinant of fracture risk32. A history
of osteoporotic fracture is one of the clinical risk factors for FRAX
but often are unnoticed because many patients with occult hip
fractures and VCFs are asymptomatic22,33. We exploited the
excellent spatial resolution of radiographs to identify hip implants
and unsuspected fragility fractures before estimation of BMD.
The tool incorporates our previously published PelviXNet34 to

Fig. 2 The calibration plots for predicted-measured BMD. The calibration plots show predicted BMD values against DXA-measured BMD values for
assessment of model performance. a Five thousand one hundred and sixty-four pairs of predicted-measured hip BMD (5164 patients), and b 57,662 pairs
of predicted-measured lumbar vertebral BMD (18,175 patients). Each point represents a data pair of predicted and measure BMD. The points close to the
diagonal line suggests good calibration.

Table 3 Discriminatory performance (%) of the predicted BMD to classify hip/lumbar vertebral osteoporosis and high-risk
groups for major osteoporotic or hip fractures.

Discriminatory
measures

Hip osteoporosis (T-
score ≤ −2.5

Lumbar vertebral osteoporosis
(vertebrae with the lowest T-
score ≤2.5)

10-year risk of major
osteoporotic fracture ≥20%

10-year risk of hip
fracture ≥3%

Number of patients, % 1110, 21.5 7860, 43.3 530, 10.4 2254, 44.2
OR (95% CI) 74.80 (61.05–91.65) 38.22 (35.12–41.59) 107.92 (81.98–142.06) 79.29 (66.03–95.24)
AUROC/AUPRC 0.97/0.89 0.92/0.89 0.97/0.83 0.97/0.96
Accuracy (%; 95% CI) 91.7 (90.9–92.5) 86.2 (85.7–86.7) 95.0 (94.3–95.6) 90.0 (89.1–90.8)
Sensitivity (%; 95% CI) 80.2 (77.7–82.5) 83.5 (82.7–84.3) 69.6 (65.5–73.5) 88.2 (86.8–89.5)
Specificity (%; 95% CI) 94.9 (94.1–95.5) 88.3 (87.7–88.9) 97.9 (97.5–98.3) 91.4 (90.3–92.4)
PPV (%; 95% CI) 81.1 (78.9–83.1) 84.5 (83.8–85.2) 79.5 (76.0–82.7) 89.1 (87.8–90.2)
NPV (%; 95% CI) 94.6 (94.0–95.2) 87.6 (87.0–88.0) 96.5 (96.1–96.9) 90.7 (89.7–91.6)
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detect hip fracture and newly developed algorithms to detect hip
implants. Furthermore, we developed a VCF assessment algo-
rithm based on a Deep Adaptive Graph network (DAG)35, which
determines anatomical landmarks for standard six-point vertebral
morphometry that facilitates VCF detection using the widely
accepted semiquantitative Genant visual method36,37. Therefore,
our tool could evaluate fragility fracture risk based on a single
radiograph. However, other patient-related clinical risk factors
(e.g., comorbidity, medication, and lifestyle) require input from
electronic medical records.

Opportunistic osteoporosis screening using other imaging
modalities has been reported previously, but none had been
clinically examined as comprehensive as our study. The best-
studied strategy is the use of abdominal CT to predict spine
BMD19,20,23, classify osteoporosis based on CT attenuation22,
simulated BMD19, 20, T-score23, or detect osteoporotic
fractures38; or use imaging biomarkers to predict the risk of
fractures24. Julien Smets et al. reviewed machine learning solu-
tions for osteoporosis39. Among five studies using CT scans to
predict BMD, the best correlation coefficient between estimated
and CT-simulated spine BMD was 0.9421. An earlier study
compared the CT Hounsfield units over a manually annotated

ROI involving vertebral body trabecular bone with its paired
DXA T-score; this approach for detection of osteoporosis yielded
an AUROC of 0.8322. Deep learning-based models provided a
better correlation between predicted and reference values, but
were only validated in small datasets19,20,23. A larger study testing
the performance of simulated T-scores on a larger dataset of 1843
CT-DXA pairs achieved an accuracy of 82% to detect
osteoporosis23. This algorithm was integrated with VCF identi-
fication and CT trabecular density as biomarkers, and its per-
formance for the prediction of 5-year fracture risks was compared
favorably with the performance of FRAX-NB24. Osteoporosis and
fragility fracture risk have also been assessed on dental40,41,
hip42,43, and spine radiographs41,44, and magnetic resonance
imaging45. However, only three were validated against standard
DXA-based hip or spine BMD. The best AUROC was 0.92 for
hip42 and 0.73 for spine osteoporosis classification using small
testing sets (131 and 345 patients, respectively)44. These studies
demonstrated the feasibility of using non-DXA modalities to
screen osteoporosis, although the applicability and usability of
such tools in real clinical settings are questionable.

In contrast, the present study provided a fully automated tool
enabling opportunistic screening for osteoporosis and evaluating
fragility fracture risk using plain radiographs of the hip and spine.
Our tool utilizes ubiquitous, low-cost radiographs that involve
substantially lower radiation exposure than CT-based tools to
assess both the hip rather than the spine alone (e.g., using CT-
based tools). Furthermore, we envision that other musculoskeletal
radiographs may also be used to predict bone density and fracture
risks, regardless of the original purpose of the images. This
strategy used radiographs already taken for other indications,
therefore requiring no additional patient time or radiation
exposure with minimal costs but may substantially improve the
risk profiling for fragility fractures.

This study had several limitations. First, CGMH is a medical
center in which the patients tend to have more severe diseases. A
large proportion of patients have fractures or implants. Our study
population may not have represented the healthier population.
However, because the tool was developed based on the more
complex population, the ROI localization, quality check, and
BMD prediction processes can presumably be readily adapted to
populations with fewer complications. In addition, the perfor-
mance of our tool remains robust when testing on external data.
Second, the calculation of FRAX in this study did not consider
past medical history, medication use, family medical history,
alcohol consumption, and smoking status because this informa-
tion requires input from the hospital information system. How-
ever, the performance assessment should not vary much because
these parameters are identical for FRAX based on the DXA-
measured or model-predicted BMD. The clinical implementation
of the tool can report full FRAX results when digital data are
available. Third, the tool was created using the reference BMD
values reported by Hologic DXA scanners alone. However, the
model’s performance remains robust in a test set of paired GE
DXA and plain radiographs and external sources. The GE BMD
measurements were converted to corresponding Hologic BMD
values using the algorithm provided by the Hologic manufacturer.
It seems the conversion has a small negative effect on model
performance. A specific model for GE DXA is needed to max-
imize performance. Fourth, the performance of the prediction
tool is influenced by the radiograph image quality. In addition to
existing fractures, accurate BMD prediction may be impeded by
foreign bodies, implants, bowel gas, and bone pathologies (e.g.,
avascular necrosis or severe osteoarthritis). The actual rate of
radiographs that could be evaluated for BMD and fracture risk is
around 80% in our real-world test. Depending on a patient’s
specific indications, radiographs are often examined repeatedly.

Table 4 Osteoporosis classification results at 95% PPV and
95% NPV thresholds on Hologic testing data.

Threshold with high PPV ≥95%

Hip Spine

Threshold BMD (g/cm2), T-score
(T1)

0.513, −2.9 −3.0*

PPV for osteoporosis
TP/(TP+ FP), n/N 524/549 4750/5030
PPV (95% CI) 95.5

(93.5–96.8)
94.4
(93.8–95.0)

PPV for 10-year major fracture
risk ≥20%

NA

TP/(TP+ FP), n/N 230/283
PPV (%, 95% CI) 81.3

(76.9–85.0)
PPV for 10-year hip fracture risk ≥3% NA
TP/(TP+ FP), n/N 492/498
PPV (95% CI) 98.8

(97.4–99.5)
Threshold with high NPV ≥95%
Threshold BMD (g/cm2), T-score
(T2)

0.580, −2.3 −2.1*

NPV for osteoporosis
TN/(TN+ FN), n/N 3812/4008 7418/7765
NPV (95% CI) 95.1

(94.5–95.6)
95.5
(95.1–96.0)

NPV for 10-year major fracture
risk ≥20%

NA

TN/(TN+ FN), n/N 3884/3953
NPV (95% CI) 98.3

(97.8–98.6)
NPV for 10-year hip fracture risk ≥3% NA
TN/(TN+ FN), n/N 2575/2839
NPV (95% CI) 90.7

(89.8–91.5)
Prediction categorization
Patient number (%)
Predicted BMD or T-score <T1 549 (10.6) 5030 (27.7)
T1≤ predicted BMD or T-score <T2 607 (11.8) 5380 (29.6)
Predicted BMD or T-score ≥T2 4008 (77.6) 7765 (42.7)

FN false negative, FP false positive, NA not available, NPV negative predictive value, PPV positive
predictive value, TN true negative, TP true positive.
*Based on the vertebrae with the lowest T-score.
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Therefore, the per-patient success rate will potentially increase as
more radiographs become available over time.

This study demonstrated that a robust opportunistic screening
tool for osteoporosis and fracture risk assessment, based on
conventional radiographs obtained for various indications, pro-
vided VCF detection, BMD, and fracture risk estimation in a fully
automated process. This tool leveraged state-of-the-art deep
learning algorithms to provide an efficient strategy for
population-based opportunistic screening with minimal addi-
tional cost. Integrating this automated tool into the hospital
information system may expand osteoporosis screening to a
broader population at risk.

Methods
Setting. This study was approved by the Institutional Review Board at the CGMH
and was conducted in accordance with the tenets of the Declaration of Helsinki.
This study was approved by the Institutional Review Board at the CGMH (approval
number: 202000254B0, 202100346B0, 202101180B0). The requirement for
informed consent was waived because the data used in this paper were fully de-
identified to protect patient confidentiality. This study was performed using data
from CGMH, the largest private hospital system in Taiwan, which includes seven
acute hospitals with 10,050 beds that received 8.2 million outpatient visits and 2.4
million inpatient care visits. The study was conducted in collaboration between the
CGMH and PAII Inc., a research subsidiary of Ping-An Technology that focuses on
state-of-the-art computer vision algorithm development. PAII Inc. used clinical
images and clinical data from CGMH to create automated BMD and fracture risk
estimation tools. The provided data were fully encrypted to prevent patient con-
fidentiality leaks. Except for the training and validation image data, PAII Inc.
remained blinded to other clinical and testing datasets.

The study population consisted of 184,339 patients with at least one central
DXA from January 2006 to December 2020 and were aged 40–90 years on the DXA
index date. The study population was also required to have adequate radiographs of
the pelvis or lumbar spine within 180 days from the index date. For patients with
multiple DXA and plain film radiographs, the earliest pair was used. We performed
a quality check for plain films to ensure that these images were suitable for BMD
prediction; after the exclusion of inadequate plain films, model building and testing
were performed based on a cohort of 10,797 patients with at least one Hologic
DXA-pelvis radiograph pair and 25,482 patients with at least one lateral radiograph
of the lumbar spine–DXA pair (Supplementary Fig. 1). The patients were randomly
allocated into the training and testing set by simple random sampling in which
each patient has an equal probability of selection, and sampling is without
replacement. Patients with GE DXA-plain film pairs were used as the separate
testing sets (hip testing set, n= 2060; spine testing set, n= 3346). We also include
34 pairs of GE DXA-hip radiographs and 179 pairs of DXA-lumbar spine
radiographs from the Wuhan Hospital of Traditional Chinese Medicine to do
external validation.

We also tested the algorithms in a clinical setting to ascertain the number and
proportions of patients with hip or spine radiographs who may benefit from the
tool. The algorithms were packaged in docker containers and implemented on the
PACS-linked inference platform of CGMH, based on the Nvidia Triton
architecture. We tested the model using consecutive radiographs conducted
between January 2021 and May 2021.

BMD measurement. Proximal femoral and lumbar spine DXA scans were per-
formed using a Hologic QDR-4500A fan-beam densitometer (Bedford, MA, USA)
during 2005–2010 and a Hologic Discovery model A densitometer during the
period 2011–2021. The GE DXA scanner was the Lunar iDXA system (Madison,
WI). The scans were analyzed following recommendations issued by the Taiwan
Radiological Society46, amended from the International Society for Clinical Den-
sitometry, ISCD (Supplementary methods)47. Hip T-scores were calculated using
the revised NHANES III white female reference values48,49. Because there is no
international reference standard for the lumbar spine BMD, lumbar T-scores were
calculated using the manufacturer’s reference values. For each patient, the lowest T-
score of the hip or lumbar vertebrae was used to categorize osteoporosis or cal-
culate FRAX risk.

Acquisition and preprocessing of radiographs. The radiographs were collected
from the PACS and anonymized before the study procedure. Most radiographs
were produced using the Canon CDXI 710C (82.5% for the hip and 86% for the
spine). The peak kilovoltage (kVp) range is mainly 70–80 kV for the hip and
90–95 kV for the lumbar spine. No performance difference was observed between
different machines or kVp (Supplementary Table 6). The images were converted to
grayscale and resized to a resolution of 0.15 mm × 0.15 mm pixel spacing, then
stored as 12-bit images. A deep adaptive graph (DAG) landmark detection method
was developed to formulate the anatomical landmarks of the pelvis and spine as
graphs and to robustly and accurately detect these landmarks35. We detected 16
anatomical landmarks on hip radiographs, including 12 landmarks on the pelvic

boundary and four landmarks on the femoral head and trochanter. We detected six
anatomical landmarks for each of the lumbar vertebrae on spine radiographs from
L1 to L4. ROIs were extracted from the radiographs and used as input for the BMD
prediction model based on the detected anatomical landmarks. For hip radio-
graphs, ROIs of the left and right hips were extracted. For the lumbar spine, ROIs
were extracted for each vertebra from L1 to L4. The ROIs were used as input for the
BMD prediction model. A schematic representation of the pipeline, models and
examples of the detected anatomical landmarks and ROIs used to predict BMD is
shown in Fig. 1.

Anatomical landmark detection via deep adaptive graph (DAG). The anato-
mical landmarks were detected using DAG, a method introduced in our previous
publication35. The details of DAG were described in Supplementary methods. In
our experiment, the hip and spine DAG models were trained using 3306 pelvic
radiographs and 1076 spine radiographs with expert annotations, respectively. The
radiographs used to train the DAG models are excluded from the test sets used to
evaluate the BMD estimation models. The DAG models are evaluated on 876 pelvic
and 290 spine radiographs and report 4.29+−3.29 mm and 1.22+−3.23 mm
localization errors.

Automated radiograph quality assessment procedure. Some medical conditions
may affect the hip and vertebra anatomy, making plain films unsuitable for BMD
estimation. The most common conditions include implantation and fracture.
Therefore, we conducted an automated quality assessment to exclude hips and
vertebrae with implants or fractures unsuitable for BMD prediction.

Quality assessment of hip radiographs. We detect hip fracture and implant
(joint prosthesis, screws, plates, or cement) in the quality assessment process and
exclude them from the downstream BMD estimation. An existing model,
PelviXNet34, is used to detect the hip fracture. PelviXNet consists of a DensetNet-
121 backbone neural network and a Feature Pyramid Network and was trained on
5204 pelvic radiographs that had been annotated by experienced physicians using
an efficient and flexible point-based annotation scheme. In addition to detecting
hip fracture, we trained another network with an identical structure to PelviXNet
using 2973 pelvic radiographs to detect implants. The maximum responses of the
fracture and implant detection networks in the hip ROI are calculated as the
classification scores for hip fracture and implant, respectively. The fracture
detection model, PelviXNet, was evaluated on 1888 pelvic radiographs covering
various medical conditions (e.g., implants and periprosthetic fracture) and reports
92.4% sensitivity and 90.8% specificity. The implant detection model was evaluated
on 715 randomly selected pelvic radiographs and reports 99.9% sensitivity and
99.7% specificity.

Quality assessment of spine radiographs. The adult official positions of the
ISCD advise excluding vertebrae that are abnormal and non-assessable or have a
more than a 1.0 T-score difference between the vertebra in question and adjacent
vertebrae50. Therefore, the automated quality assessment procedure for spine
radiographs is performed in three steps: implant and VCF detection, six-point
morphology analysis and assessment for T-score of nearby vertebrae. The implant/
VCF detection model had the same architecture as PelviXNet and was trained on
1485 expert-annotated lateral spine radiographs to produce probability maps for
implant and VCF. The L1 to L4 vertebrae were classified as normal, VCF, and
implant by the annotator. A supervision mask was then generated by filling the
vertebra polygons produced by DAG using the annotated label.

Using the predicted implant and VCF probability maps, the maximum
responses in the vertebrae polygons were regarded as the classification scores.
Vertebrae with a positive implant or VCF detection results were excluded, and the
remaining vertebrae were analyzed by six-point morphology. Specifically, six
landmarks were detected for each vertebra, including two anterior points, two
posterior points, and two middle points of the top and bottom vertebral plates.
Four distances were calculated from these six points: anterior height ha, posterior
height hp, middle height hm, and vertebra width w. The three heights were
calculated as the pairwise distances between the two anterior, posterior, and middle
points. The vertebra width was calculated as the mean distance between the
anterior and posterior points. Three criteria were used to identify vertebrae with
abnormal deformity, following the widely accepted Genant visual semiquantitative
method37, with modifications to facilitate automated measurement and fracture
detection:

minðha; hpÞ
maxðha; hpÞ

< 0:8; ð1Þ

hm
maxðha; hpÞ

< 0:6; ð2Þ

maxðha; hpÞ
w

< 0:55: ð3Þ
The first criterion aimed to detect wedge and crush fractures, where the anterior

and posterior heights were reduced. The second criterion aimed to detect a
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biconcave fracture, where the middle height was reduced. The last criterion aimed
to detect severe VCF cases where the overall height of the vertebra was significantly
reduced. If a vertebra met any of the three criteria, it was considered abnormal and
excluded from downstream processing. These criteria only detected moderate to
severe compression fractures to avoid ambiguity in determining mild or borderline
deformities. The vertebrae with more than one standard deviation difference from
their neighbors were excluded from the analysis. We comply with the ISCD
positions that only those with two or more assessable vertebrae were included for
analysis50.

To evaluate the performance of the spine radiograph QA module, we randomly
selected 200 spine radiographs from the test set and manually labeled implant and
VCF. The implant and VCF detection module report 91.5% and 93.2% sensitivity
and 99.5% and 91.5% specificity. Some mild VCFs are not detected by the VCF
detection module alone.

Algorithm development and training procedure for BMD prediction. We
developed a deep learning algorithm to estimate the hip/spine BMD from each
corresponding ROI. The neural network employs a backbone network to encode
the input ROI as a feature vector and two consecutive fully connected layers with
ReLU activation functions to produce the estimated BMD. We evaluated multiple
backbone networks (i.e., VGG-11, VGG-16, ResNet-18, ResNet-34) in earlier
experiments and empirically found that VGG-16 and ResNet-34 produce the best
BMD prediction results for spine and hip BMD prediction, respectively. The model
using only image-based features already performs strongly, and the addition of age
and gender does not improve the model’s performance. Therefore, we choose to
use the VGG16 backbone without age and sex in later model development (Sup-
plementary Tables 7 and 8). L1–L4 vertebrae have slightly different geometries and
distinct BMD statistics; therefore, the vertebra index information was required by
the model to predict the BMD accurately. In the spine model, the vertebra index
(from L1 to L4), encoded by a one-hot vector of length 4, appended to the feature
vector in the neural network before the last fully connected layer. During training,
ROIs were augmented by random affine transformation and subsequently resized
to 512 × 512 pixels. The L1 distance between the predicted BMD and the ground
truth BMD obtained from DXA was regarded as the training loss. A fourfold cross-
validation procedure was conducted, and ensemble learning was adopted to
combine the predictions of the four trained models during inference. Pseudocodes
for BMD estimation are provided in the Supplementary Tables 9 and 10.

Evaluation of BMD prediction performance. Evaluation of all performance
measures was performed only on the test datasets. The Bland–Altman plot
visualized the agreement between predicted and measured BMD scores, and
Pearson’s correlation coefficient was calculated. The tool’s calibration was eval-
uated by comparing the mean risk calculated based on predicted BMD and the
mean risk based on DXA-measured BMD. The following measures were calculated
to evaluate the overall calibration: calibration slope and calibration-in-the-large.
Osteoporosis results were considered positive when T-score ≤ −2.5. Ten-year
probabilities of major fracture and hip fracture with total hip BMD were calculated
for each patient using the FRAX tool with risk estimators specific to the Taiwanese
population (https://www.sheffield.ac.uk/FRAX/; FRAX Desktop Multi-Patient
Entry, version 4.0). The FRAX parameters used in this study include age, sex,
weight, height, and BMD. FRAX risks with and without BMD were calculated
separately. For each patient, the lowest BMD was used to calculate the T-score and
FRAX risk. Ten-year risk scores of ≥3% for hip fracture and ≥20% for major
osteoporotic fracture were considered high-risk, based on the intervention
threshold established in the Taiwan Osteoporosis Practice Guidelines51 and the
recommendations of the National Osteoporosis Foundation52. The overall dis-
criminative abilities to discern osteoporosis and high-risk patients were evaluated
using the AUROC and AUPRC. Other measures were also calculated, including
sensitivity, specificity, positive predictive value, and negative predictive value. Two-
sided p values were reported throughout the manuscript. Analyses were conducted
using Stata software, version 16.1 (StataCorp, College Station, TX, USA).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The sample testing imaging data generated in this study have been deposited in the
public repository (https://doi.org/10.5281/zenodo.5216219). The full original imaging
data are available under restricted access for the policy of the Chang Gung Memorial
Hospital and data privacy laws. Researchers who are interested in our work can request
access to the de-identified raw images for academic purposes. The request should be
made to the corresponding author and the access will be granted within a month. Use of
data is limited to research purposes and redistribution of data is not allowed.

Code availability
The code used to train and evaluate the model performance is not openly available due to
the use of proprietary software packages and infrastructures including a general deep
learning model training and evaluation platform that is used not only for the described

study but also across other projects at PAII Lab. Pseudocodes are provided in the
Supplementary Tables 9 and 10. We provided a Gigantum project (https://
gigantum.com/xraybmd/nc-bmd-cpu) to test our model. The instructions for the
Gigantum project are provided at the end of the supplementary materials. The inference
services are available from the corresponding author upon request. Researchers who are
interested in our work can request access to the Gigantum project or inference services
for academic purposes. The request should be made to the corresponding author and the
access will be granted within a month.
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