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Abstract

Background: A dysbiosis in the intestinal microbiome plays a role in the pathogenesis of several immunological
diseases. These diseases often show a sex bias, suggesting sex differences in immune responses and in the intestinal
microbiome. We hypothesized that sex differences in immune responses are associated with sex differences in
microbiota composition.

Methods: Fecal microbiota composition (MITchip), mRNA expression in intestinal tissue (microarray), and immune cell
populations in mesenteric lymph nodes (MLNs) were studied in male and female mice of two mouse strains (C5781/
60laHsd and Balb/cOlaHsd). Transcriptomics and microbiota data were combined to identify bacterial species which
may potentially be related to sex-specific differences in intestinal immune related genes.

Results: We found clear sex differences in intestinal microbiota species, diversity, and richness in healthy mice.
However, the nature of the sex effects appeared to be determined by the mouse strain as different bacterial species
were enriched in males and females of the two strains. For example, Lactobacillus plantarum and Bacteroides distasonis
were enriched in B6 females as compared to B6 males, while Bifidobacterium was enriched BALB/c females as
compared to BALB/c males. The strain-dependent sex effects were also observed in the expression of immunological
genes in the colon. We found that the abundance of various bacteria (e.g, Clostridium leptum et rel.) which were
enriched in B6 females positively correlated with the expression of several genes (e.g., /I-2rb, Ccr3, and Cd80) which
could be related to immunological functions, such as inflalmmatory responses and migration of leukocytes. The
abundance of several bacteria (e.g., Faecalibacterium prausnitzii et rel. and Coprobacillus et rel.- Clostridium ramosum et
rel) which were enriched in BALB/c males positively correlated to the expression of several genes (e.g., Apoe, Il-1b, and
Stat4) related to several immunological functions, such as proliferation and quantity of lymphocytes. The net result was
the same, since both mouse strains showed similar sex induced differences in immune cell populations in the MLNs.

Conclusions: Our data suggests a correlation between microbiota and intestinal immune populations in a sex and
strain-specific way. These findings may contribute to the development of more sex and genetic specific treatments
for intestinal-related disorders.
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Background

The human gut harbors trillions of microbes [1]. The re-
cent change of the traditional view that gut microbiota
not only affect fermentation of food components, but
also influence metabolism and immune status, has led to
the realization that these microbes can impact health on
different levels and that they are instrumental for
maintaining health [2-4]. Microbes in the intestine can
substantially be influenced by external factors such as diet
and antibiotics, which may disturb the microbiota-host in-
teractions in an undesirable way and can ultimately lead
to disease [5]. However, these findings also demonstrate
the potential to improve human health or to treat and pre-
vent diseases by using nutrition or drugs [5, 6].

During recent years, a disbalance in intestinal micro-
biota communities (intestinal dysbiosis) has been found
to play a significant role in the pathogenesis of a large
number of immunological Western diseases, such as
inflammatory bowel disease (IBD), other autoimmune
diseases, and metabolic syndrome [7, 8]. This growing
list of Western-world diseases correlates with changes in
microbiota composition [9-11]. Microbiota-derived mol-
ecules, such as short-chain fatty acids (SCFAs), have
been recognized to influence intestinal immune cells
[12, 13]. For example, the SCFA butyrate has been
shown to induce the differentiation of T regulatory
(Tregs) in the colon [14]. Furthermore, some microbiota
are involved in the generation of specific regulatory re-
sponses in T-cells [12, 15], while others stimulate spe-
cific T helper 17 (Th17) cell responses [16].

There is a sex bias in the prevalence of many of the
aforementioned Western-world diseases [17-19]. It is
currently unknown whether this sex bias is influenced
by sex-dependent differences in immune modulating
microbiota. Sex differences in peripheral immune re-
sponses are well known [20, 21], and in general, it is
thought that females have a stronger innate and adaptive
immune response as compared with males [22]. How-
ever, also here the influence of microbiota differences
has gained minor attention. Although several studies
showed the existence of sex differences in microbiota
composition [23-28], minor knowledge is available on
sex differences in intestinal immunology and on the in-
fluence of microbiota on sex-specific immune responses.
Markle et al. and Yurkovetskiy et al. both showed that
microbiota and sex hormones contribute to the effector
mechanism of sex bias in type 1 diabetes in non-obese
diabetic (NOD) mice [23, 27]. If sex-dependent micro-
biota differences underlie the differences in sex-specific
immunity, it might open new venues for designing ef-
fective strategies to improve human health by manipu-
lating microbiota and associated immune responses in a
sex-specific way. Therefore, in this study, we investigated
the relationship between sex differences in immune
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populations and sex differences in microbiota in healthy
mice.

As various factors, such as the reproductive condition,
genetic background, and diet, can interfere with the sex
effects [25, 28, 29], we compared male and female mice
from two different strains (C57B1/60laHsd (B6) and
Balb/cOlaHsd (BALB/c)) with two difference genetic
backgrounds under exactly the same reproductive and
dietary conditions. The B6 and BALB/c strains were
specifically chosen, because of their known difference in
intestinal immune responses during Dextran sulfate so-
dium (DSS)-induced colitis [30, 31]. In mice from both
sexes and mouse strains, we analyzed the microbiota
composition and we performed a microarray on colonic
tissue. We combined the transcriptomics data and the
microbiota data and performed a bio-mathematical ana-
lysis, in order to find bacterial species, which may poten-
tially be related to sex-specific differences in intestinal
gene expression. Subsequently, key immunological
changes found in the microarray were studied in the
MLN using flow cytometry. The MLN are used as intes-
tinal reference site, as this is the place where lympho-
cytes are primed and activated by intestinal DCs
deriving from the gut [32].

Methods

Study design

This study was designed to assess the effect of sex on in-
testinal microbiota and intestinal immune cell compos-
ition in mice. Two different mice strains were used;
C57B1/60laHsd (B6) and Balb/cOlaHsd (BALB/c). In
both strains (n = 20 per strain) two groups were present;
female and male mice (n =10 per sex). Between an age
of 11 and 23 weeks, all mice were sacrificed by cervical
dislocation under anesthesia (isoflurane and oxygen).
Table 1 provides an overview of the characteristics of all
mice (7 =10 per group), and Table 2 provides an over-
view of the characteristics of the mice which were, per
strain and sex, randomly selected from two cages for
microbiota and microarray analysis (#=5 per group).
Subsequently, their mesenteric lymph nodes (MLN)
were removed for immune cell analysis. During sacrifice,
feces from the distal colon were collected for MITChip
analysis. Approximately 1 c¢cm of proximal colon was

Table 1 Overview of mice characteristics. No significant
differences in age at sacrifice were found between males and
females within each mouse strain (Kruskal-Wallis test followed
by Dunn’s multiple comparison test, p < 0.05)

BALB/c male  BALB/c female B6 male  B6 female
Number of 10 10 10 10
mice
Age at sacrifice 128 (24) 153 (34) 17.0 34) 188 ((3.3)

(weeks)
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Table 2 Overview of mice characteristics selected for microbiota
and microarray analysis. No significant differences in age at
sacrifice were found between males and females within each
mouse strain (Kruskal-Wallis test followed by Dunn’s multiple
comparison test, p < 0.05)

BALB/c male  BALB/c female B6 male  B6 female
Number of 5 5 5 5
mice
Age at sacrifice 139 (4.3) 18.5 (3.5) 19.7 (14) 182 (04)

(weeks)

removed for microarray analysis. All female mice were
sacrificed during the diestrus phase of their ovarian cycle
to ensure low stable levels progesterone and estrogens.

Mice

Male and female wild-type B6 and BALB/c mice were
purchased from Harlan (Harlan, Horst, the Netherlands)
at an age of 8 weeks. Mice were co-housed (five mice
per cage, according to sex and strain) in isolated
ventilated cages to limit environmental influences. The
animals had ad libitum access to food (D12450B diet
from Research Diets Services, Wijk bij Duurstede, the
Netherlands) and water.

Bacterial DNA extraction and microbiota profiling

Total DNA was extracted from the fecal samples (n=5
mice per group, divided over at least two different cages)
using the repeated bead-beating-plus column (RBB + C)
method [33]. The microbiota composition was deter-
mined using the mouse intestinal tract chip (MITChip),
a diagnostic 16S rRNA array, which consists of 3580
unique probes designed to profile murine intestinal
microbiota [34]. Briefly, for MITChip, 16S rRNA gene
amplification of the bacterial DNA, in vitro transcrip-
tion, labeling, and hybridization were carried out as de-
scribed previously [35]. Data were normalized and
analyzed using a set of R-based scripts in combination
with a custom-designed relational database, which oper-
ates under the MySQL database management system.
For microbial profiling, the Robust Probabilistic Aver-
aging (RPA) signal intensities of 2667 specific probes for
the 94 genus-level bacterial groups detected on the
MITChip, were used [36]. Diversity calculations were
performed using a microbiome R-script package (https://
github.com/microbiome). The redundancy analysis
(RDA) was performed in Canoco 5.0, where variables
were tested for their significance by the Monte Carlo
permutation and visualized in triplots [37].

Intestinal microarray analysis

For microarray analysis, RNA was purified from the
proximal colon of mice (n =5 per group) using TRIzol
(Life Technologies, Calsbad, CA, USA) followed by an
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additional round of purification with RNeasy Minikit col-
umns (Qiagen, Venlo, the Netherlands). The quality of
RNA was determined using RNA 6000 nanochips on the
Agilent 2100 Dbioanalyzer (Agilent Technologies,
Amsterdam, the Netherlands). Purified RNA (100 ng) was
labeled with the Affymetrix WT PLUS reagent kit (Affy-
metrix, Santa Clara, CA, USA) and hybridized to an Affy-
metrix Mouse Gene 1.1 ST array plate (Affymetrix, Santa
Clara, CA, USA). Hybridization, washing, and scanning
were carried out on an Affymetrix GeneTitan platform ac-
cording to the manufacturer’s instructions. Arrays were
normalized using the robust multiarray average method
[38, 39]. Probe sets were defined according to Dai et al.
(2005) [40]. In this method, probes are assigned to Entrez
IDs as a unique gene identifier. The p values were calcu-
lated using an intensity-based moderated ¢ statistic
(IBMT) [41]. Only probe sets with a fold-change of at least
1.2 (up/down) and a p value < 0.05 were considered to be
significantly different. The microarray data was validated
by real-time quantitative PCR (see Additional file 1 for the
used method and results).

To gain insight into the biological role of the sexually
dimorphically expressed genes, we investigated the func-
tions in which these genes are involved using Ingenuity
Pathway Analysis (IPA) (Ingenuity System). The IPA out-
put includes biological functions and signaling pathways
with statistical assessment of the significance of their
representation based on Fisher’s exact test. Here, this
test calculates the probability that genes participate in a
given biological function relative to their occurrence in
all other biological function annotations. Our IPA ana-
lyses included comparison of differentially regulated
genes in the colon of males and females in both B6 and
BALB/c mice.

Multivariate integration and correlation analysis

To gain insight in the relationship between the colonic
gene expression and microbiota composition, the micro-
array and MITChip datasets were combined, using the
linear multivariate method partial least squares (PLS)
[42], as described previously [43]. This integration of
datasets per individual mouse gives a direct correlation
between gene expression and microbiota composition in
these samples. For 15 mice, both gene expression and
data on microbiota composition were available (n =3-5
per group). Both datasets were log2 transformed before
analysis, and the canonical correlation framework of PLS
was used [44]. The correlation matrices were visualized
in clustered image maps [45]. Analyses were performed
in R using the library mixOmics [46]. A positive correl-
ation between bacteria and genes indicates that a higher
abundance of the bacteria is associated with a higher ex-
pression of the particular cluster of genes. A negative
correlation between bacteria and genes indicates that a
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lower abundance of the bacteria is associated with a
lower expression of the particular cluster of genes.

Mesenteric lymph node cell isolation

Single cell suspensions of the MLN were made by mech-
anical disruption of the tissues between two object
glasses in 2 ml ice cold RPMI containing 10% heat inac-
tivated fetal calf serum (FCS). Falcon tubes with cell
strainer caps (Corning, Amsterdam, the Netherlands)
(35 um) were used to remove cell clumps before the
cells were counted and used for staining.

Cell staining

MLN cells were stained for T lymphocytes (CD3"), T cyto-
toxic cells (CD8") and T helper cells (CD4"). Expression of
CD69, o437, CD62L, and CD44 was measured within the
CD8" and CD4" cell subsets. Specifications of the anti-
bodies used are described in Table 3. All antibodies were di-
luted in a volume of 25 pl, supplemented to a volume of
25 ul with FACS buffer (PBS +10% FCS (v/v)). Approxi-
mately 0.5 x 10° MLN cells were incubated for 20 min in
FACS buffer (10% FCS (v/v)) containing 20% (v/v) normal
rat serum (Jackson, Newmarket, UK) and 2% (v/v) Fc block
(CD16/32) (Biolegend, Uithoorn, the Netherlands) to pre-
vent non-specific antibody binding followed by incubation
in the primary antibody mix for 30 min. Next, the cells
were incubated with a biotinylated antibody (streptavidin--
Pacific Orange) for 30 min and subsequently fixed in FACS
lysing solution (BD Biosciences, Breda, the Netherlands) for
30 min. Washing was performed in between all incubation
steps. The whole procedure was performed on ice and in
the dark. Isotype control antibodies were used at the same
concentration and purchased from the same company as
the primary and secondary antibodies.

Flow cytometry

Cell samples were analyzed using the LSR-II Flow
Cytometer system (BD Biosciences, Breda, the Netherlands)
using FACS Diva software. Analysis was performed using
FlowJo version 10 software (FlowJo, LLC, OR, USA). Lym-
phocytes were gated based on size in the forward side

Table 3 Antibody specifications
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scatter plot, and T cells were determined by selecting CD3*
cells. Within the CD3" cells, CD4" and CD8" cells were se-
lected. Within both the CD4" and CD8" population, the
percentage of cells expressing CD69, a4fi7, CD62L, and
CD44 was measured. Therefore, all their isotype controls
were set at 1% and these gates were copied to the samples
with the antibody mix (see also Figs. 4 and 5).

Statistical analysis

For flow cytometry data, Shannon diversity, microbiota
richness and the Firmicutes/Bacteroidetes ratio, data are
expressed as the mean with standard error of the mean
(SEM). The Kolmogorov-Smirnov test was used to deter-
mine normal distribution of the data. When the data were
not normally distributed a log transformation was per-
formed before analysis. The data were analyzed with a
two-way ANOVA followed by a Bonferroni post-test when
interaction was found. For analyzing significant effects of
sex and strain on the abundance of bacteria groups a
Mann—Whitney U test was used. p values of 0.05 or
smaller were considered statistically significant and p
values between 0.05 and 0.1 were defined as a trend.

Results
Sex influenced intestinal microbiota composition in a
mouse strain-dependent way
The microbial composition in the feces of males and fe-
males of both BALB/c and B6 mice was determined
using the phylogenetic microarray, the mouse intestinal
tract Chip (MITChip). Additionally, we determined the
richness (number of unique species) and Shannon diver-
sity (calculation between richness and evenness (abun-
dances over species) of the microbiota composition.
Overall, males had a lower diversity (two-way ANOVA,
p=0.046) and richness (two-way ANOVA, p=0.027)
than females (Fig. la, b), while there was no effect of
strain. A higher ratio of Firmicutes/Bacteroidetes was
found in BALB/c mice (two-way ANOVA, p =0.009);
however, this ratio was not influenced by sex (Fig. 1c).
Redundancy analysis showed that the total variation in
microbiota composition explained by the variables

Specificity Clone name Fluorchrome Concentration Dilution® Supplier

CcD3 17A2 Pacific blue 0.5 mg/ml 80x Biolegend
(@S 53-6.7 A700 0.5 mg/ml 50x Biolegend
(@) GK1.5 PE-Cy7 0.2 mg/ml 100x Biolegend
(@] H1.2F3 FitC 0.5 mg/ml 25x% Biolegend
a4f7 DATK32 APC 0.2 mg/ml 25x% Biolegend
CDheé2L MEL-14 Biotin 0.5 mg/ml 200x Biolegend

Streptavidin-Pacific Orange T mg/ml 100x ThermoFisher

CD44 IM7 APC-Cy7 0.2 mg/ml 100x Biolegend

“Dilution used in a total volume of 25 pl supplemented with PBS + 10% FCS
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Fig. 1 Effect of sex and strain on fecal microbiota characteristics. Shannon diversity (a), richness (b), and the Firmicutes/Bacteroidetes (c) ratio in
the fecal microbiota of male and female BALB/c and B6 mice (5 mice per group). Results are shown as mean + SEM and were tested for overall
strain and sex effects using a two-way ANOVA followed by a Bonferroni post hoc test to test for strain-specific sex effects when interaction was
found. Significant strain effects are indicated with solid lines and significant sex effects are indicated with dashed lines (p < 0.05). RDA plot
showing the variation explained by the components genotype and sex (five mice per group) (d). The total variation that can be explained by the
variables genotype (26.5%) and sex (11.6%) is 38.1%. Both variables are significant in explaining the variation (Monte Carlo permutation, p < 0.05)

genotype and sex is 38.1%. Sex explained 11.6% of the
variance in microbiota composition (Fig. 1d). This was,
however, mouse strain dependent, since the variable
strain explained 26.5% of the variance in the microbial
composition. Table 4 provides an overview of the relative
abundance of the bacteria groups and the differences in
relative abundance between males and females within
each mouse strain.

Sex influenced gene expression profiles in the colon in a
mouse strain-dependent way

Next, we performed a microarray analysis on the colon
of male and female mice. We performed this analysis in
both BALB/c and B6 mice to identify potential mouse

strain-dependent sex effects. In the colon, a total of
1110 genes in BALB/c mice and 3309 genes in B6 mice
were differently expressed between males and females.
The two mice strains shared 531 genes that were differ-
ently expressed between males and females in the colon
(both up- and downregulated).

To gain insight into the biological role of the genes
which were differently expressed between the sexes, we
first studied the physiological activities and molecular
and cellular functions per mouse strain in which these
genes are involved using Ingenuity Pathway Analysis
(IPA). We specifically focused on functions related to
immunology. In the colon in both mouse strains, IPA
showed enrichment for genes related to, among others,
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Table 4 Relative abundance of bacteria groups in BALB/c and B6 male and female mice (n = 5). Differences between males and
females within each mouse strain were determined with a Mann-Whitney U test. Significant differences are highlighted in italics

Bacteria group BALB/c female BALB/c male p value B6 female B6 male p value B6
Acholeplasma et rel. 0.0041% 0.0061% 0.095 0.0084% 0.0096% 0.690
Aerococcus urinaeequi et rel. 0.0074% 0.0117% 0.095 0.0098% 0.0097% 0.841
Alistipes et rel. 0.9156% 0.3753% 0.095 0.5414% 0.3036% 0.095
Allobaculum et rel. 02716% 0.2299% 0.548 4.0636% 74252% 0.095
Anaerovorax et rel. 0.0644% 0.0841% 0.222 0.0513% 0.0578% 0.548
Atopobium 0.0046% 0.0078% 0.032 0.0096% 0.0150% 0310
Bacteroides distasonis et rel. 0.1100% 0.0266% 0.690 0.1126% 0.0373% 0.016
Bacteroides vulgatus et rel. 0.2397% 0.0924% 0.151 0.0631% 0.0585% 0.548
Bifidobacterium 0.0828% 0.0250% 0.008 1.8595% 2.9444% 1.000
Bilophila et rel. 0.0179% 0.0196% 0421 0.0155% 0.0138% 1.000
Catenibacterium 0.0140% 0.0202% 0.056 0.0259% 0.0330% 0.548
Clostridium difficile et rel. 0.9357% 0.7979% 0310 1.1169% 0.2468% 0.032
Clostridium herbivorans et rel. 0.0083% 0.0134% 0.095 0.0132% 0.0143% 0.690
Clostridium lactifermentans et rel. 0.3127% 0.3251% 0.841 0.1212% 0.1025% 0421
Clostridium leptum et rel. 0.5591% 04151% 0.095 0.4190% 0.1997% 0.008
Clostridium perfringens et rel. 23301% 2.7132% 0.690 0.3328% 0.0963% 0016
Clostridium symbosium et rel. 0.5136% 0.5040% 0.841 0.7587% 0.3233% 0.056
Coprobacillus catenoformis et rel. 0.0230% 0.0483% 0.008 0.0273% 0.0410% 0.222
Coprobacillus et rel.- Clostridium 0.1377% 0.2504% 0.032 0.2859% 0.3510% 0.690
ramosum et rel.

Corynebacterium et rel. 0.0067% 0.0104% 0.056 0.0108% 0.0128% 0.548
Desulfovibrio et rel. 0.0789% 0.0904% 0.548 0.0454% 0.0355% 0.841
Dialister et rel. 0.0027% 0.0044% 0.095 0.0044% 0.0048% 0.548
Dorea et rel. 34135% 8.6217% 0.095 23603% 24100% 0.841
Eggerthella et rel. 0.2295% 0.4959% 0016 0.2927% 0.5021% 0.032
Enterococcus 0.2846% 0.4653% 0310 0.1058% 0.0130% 0.008
Eubacterium cylindroides et rel. 0.0141% 0.0225% 0.095 0.0232% 0.0263% 0.690
Eubacterium hallii et rel. 0.0026% 0.0043% 0.095 0.0043% 0.0047% 0.548
Eubacterium siraeum et rel. 0.0084% 0.0139% 0.095 0.0135% 0.0145% 0.548
Faecalibacterium prausnitzii et rel. 0.0029% 0.0046% 0.095 0.0051% 0.0050% 0.690
Lachnobacillus bovis et rel. 1.9742% 2.1309% 0.841 1.6788% 1.0041% 0421
Lachnospira pectinoschiza et rel. 0.9649% 0.4554% 0310 0.3867% 0.3047% 0421
Lactobacillus acidophilus et rel. 0.0418% 0.0592% 0.222 04314% 0.0518% 0016
Lactobacillus delbrueckii et rel. 0.0062% 0.0097% 0.222 0.0176% 0.0100% 0.548
Lactobacillus paracasei et rel. 0.0121% 0.0182% 0.095 0.0153% 0.0129% 0.690
Lactobacillus plantarum et rel. 0.0222% 0.0300% 0.222 0.3977% 0.0452% 0.032
Lactobacillus salivarius et rel. 0.5801% 1.9226% 0.095 1.1330% 0.7385% 1.000
Lactococcus et rel. 0.0029% 0.0047% 0.056 0.0048% 0.0054% 0.548
Mucispirillum schaedleri et rel. 0.1270% 0.1483% 0.690 0.0544% 0.0260% 0.222
Papillibacter cinnamivorans et rel. 0.1624% 0.1898% 0.548 0.0784% 0.0734% 0.841
Propionibacterium 0.0036% 0.0055% 0.056 0.0067% 0.0082% 0.548
Roseburia intestinalis et rel. 0.0210% 0.0344% 0.056 0.0324% 0.0333% 0.690
Ruminobacter amylophilus et rel. 0.0035% 0.0056% 0.056 0.0054% 0.0056% 0.548
Ruminococcus callidus et rel 0.0197% 0.0268% 0.095 0.0241% 0.0242% 0.548
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Table 4 Relative abundance of bacteria groups in BALB/c and B6 male and female mice (n = 5). Differences between males and
females within each mouse strain were determined with a Mann-Whitney U test. Significant differences are highlighted in italics

(Continued)

Bacteria group BALB/c female BALB/c male p value B6 female B6 male p value B6
Ruminococcus obeum et rel. 0.0063% 0.0107% 0.095 0.0091% 0.0098% 0.690
Solobacterium moorei et rel. 0.0116% 0.0184% 0.056 0.0231% 0.0275% 0.690
Sporobacter termitidis et rel. 17.1016% 13.7342% 0421 8.8797% 5.9207% 0.222
Staphylococcus aureus et rel. 0.0171% 0.0669% 0.008 0.0216% 0.0238% 0.690
Streptococcus intermedius et rel. 0.0067% 0.0112% 0.032 0.0101% 0.0085% 0.690
Subdoligranulum et rel. 0.0046% 0.0073% 0.056 0.0061% 0.0065% 0.548
Sutterella wadsworthia et rel. 0.0127% 0.0205% 0.056 0.0300% 0.1068% 0310
Turicibacter et rel. 0.6261% 0.4110% 0421 0.3876% 0.0261% 0.008
Unclassified Bacteroidetes 0.0029% 0.0044% 0.095 0.0046% 0.0049% 0.548
Unclassified Clostridiales | 0.0617% 0.1277% 0.056 0.1199% 0.1494% 0.690
Unclassified Clostridiales Il 0.1700% 0.2517% 0.032 0.1490% 0.1350% 1.000
Unclassified Clostridiales XIVa—close 0.0210% 0.0329% 0.056 0.0305% 0.0311% 0.690
to Anaerostipes caccae

Unclassified Clostridiales XVI 0.0751% 0.1497% 0.056 0.1577% 0.1977% 0.548
Unclassified Mollicutes 0.1218% 0.1663% 0.016 0.2794% 0.3999% 0.548
Unclassified Porphyromonadaceae 34.4807% 31.7121% 0.841 44.8531% 52.5080% 0421
Unclassified Prevotella 1.1225% 0.3418% 0.690 0.2821% 0.2037% 0.095
Uncultured Clostridiales 0.2248% 0.1868% 0.151 0.1670% 0.1381% 0.690
Veilonella 0.0026% 0.0043% 0.095 0.0044% 0.0048% 0.548

hematological system development and immune cell
trafficking (Table 5).

Subsequently, we analyzed in more detail the functions
of the genes that were differently expressed between the
sexes and in both mouse strains. IPA listed 500 func-
tions that were enriched, in both or one of the two
strains, from the genes displaying sexually dimorphic
expression. Again, we specifically focused on functions
related to immune response (Table 6). We found that
sex altered the expression of genes related to several

immune functions in the colon in both mouse strains.
Many functions were related to T lymphocytes, and
more specifically to T cell activation, development,
proliferation capacity, and homing and migration.
However, for most functions, we found that sex did
not have the same effect in both strains. For example,
the quantity of T lymphocytes was increased in
BALB/c males as compared with BALB/c females,
while reduced in B6 males as compared with B6
females.

Table 5 The top physiological activities and molecular and cellular functions related to the sexually dimorphic expressed genes in
the proximal colon of both BALB/c and B6 mice (fold-change of 1.2 (up/down) and a p value < 0.05)

Group Physiological system development and function p value # Mol?

BALB/c Hematological system development and function 6.67E-04-1.74E-13 170
Tissue morphology 6.56E-04-4.43E-13 157
Cell-mediated immune response 6.37E-04-3.59E-12 67
Immune cell trafficking 6.67E-04-3.59E-12 110

B6 Hematopoiesis 6.44E-04-2.71E-09 80
Tissue morphology 2.67E-07-121E-29 614
Immune cell trafficking 4.90E-07-3.62E-29 360
Hematological system development and function 4.90E-07-3.07E-26 577
Cardiovascular system development and function 2.56E-07-2.40E-24 424
Organismal development 4.33E-07-2.40E-24 808

“Number of molecules included in the indicated functions
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Table 6 Selection of immunological functions that are related to the genes with a different expression in males and females in both
BALB/c and B6 mice in the proximal colon. The z score gives an indication of the activation or inhibition of the functions in males
versus females. The number of molecules includes the number of molecules involved in the indicated function (fold-change of 1.2

(up/down) and a p value < 0.05)

Diseases or functions annotation z score BALB/c z score B6 p value BALB/c p value B6 # Mol. BALB/c® # Mol. B6®
Quantity of leukocytes 2.743 —5.066 2.57E-11 4.64E-21 113 292
Quantity of lymphocytes 2.803 —5853 2.71E-09 245E-14 87 215
Quantity of T lymphocytes 2638 —4628 440E-07 146E-09 64 154
Quantity of granulocytes -0018 0.063 5.13E-07 4.60E-12 42 104
Quantity of antigen presenting cells 2556 —-1933 6.91E-06 342E-08 35 82
Quantity of macrophages 1.925 1.03E-04 25

Quantity of B lymphocytes 1.750 —3.840 3.85E-05 3.11E-09 40 104
Quantity of dendritic cells 2.980 1.62E-04 17

Proliferation of immune cells 0.895 —2.700 517E-1 3.03E-12 100 228
Proliferation of lymphocytes 1.046 —1.941 5.22E-10 3.57E-11 91 208
Proliferation of T lymphocytes 0311 9.85E-10 78

Homing of leukocytes 4.371 —4.686 1.81E-08 2.24E-12 52 122
Homing of lymphocytes 4.226 2.67E-08 28

Homing of T lymphocytes 3.798 4.00E-10 26

Homing of helper T lymphocytes 2.805 141E-06 9

Homing of regulatory T lymphocytes 1.980 1.69E-04 4

Activation of leukocytes 2.053 —3.085 1.15E-05 4.66E-18 74 225
Activation of T lymphocytes 1.303 —1.944 1.01E-04 1.88E-08 40 105
Differentiation of neutrophils 0.599 2.62E-04 8

Differentiation of leukocytes 2423 —-3410 6.65E-04 240E-10 64 190
Differentiation of T lymphocytes 0.697 6.75E-04 39

T cell development 1.636 3.74E-04 51

Inflammatory response 3496 —3.851 7.30E-10 1.19E-22 95 259
Bacterial Infections 0.179 2.86E-05 46

“Number of molecules included in the indicated functions

Correlation between microbiota composition and gene
expression profile in the colon
To investigate the relation between microbiota species
and immunological gene expression, we combined
microbiota and colonic gene expression data from each
BALB/c and B6 male and female mice individually, to
evaluate direct correlations between gene expression and
microbiota composition in these samples. We performed
two separate correlations within each mouse strain to
determine the effect of sex independent of mouse strain
(Figs. 2 and 3). We integrated these datasets using a
PLS-based canonical correlation approach. In total, 600
genes and 30 bacterial groups were retained for the first
three components, and clustering of the correlation co-
efficients revealed six main clusters of host genes that
correlated positively (red) or negatively (blue) to specific
bacteria.

Within the B6 strain (Fig. 2), a strong positive correl-
ation was found between gene expression cluster 5 and

several bacteria which were or tended to be enriched in
the females (such as Clostridium leptum et rel., Clostrid-
ium difficile et rel., Enterococcus, and Clostridium sym-
bosium et rel.). The genes in this cluster are related to,
among others, inflammatory response and migration of
leukocytes (Table 7). Within the BALB/c strain (Fig. 3),
we found four gene expression clusters which strongly
correlated to certain bacteria groups. Both gene expres-
sion clusters 1 and 3 showed a strong positive correl-
ation with bacteria which tended to be enriched in males
(Eubacterium cylindroides et rel., Eubacterium hallii et
rel., Clostridium herbivorans et rel. Dialister et rel., Veilo-
nella, Eubacterium siraeum et rel., and Faecalibacterium
prausnitzii et rel. in cluster 1 and Unclassified Clostri-
diales XVI, Coprobacillus et rel.-Clostridium ramosum et
rel., and Lactobacillus salivarius et rel. in cluster 3). The
genes in cluster 1 are related to, among others, prolifera-
tion of lymphocytes and quantity of leukocytes, whereas
the genes in cluster 3 are related to, among others,
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Fig. 2 Correlation between microbiota species and gene expression in the colon of B6 mice. Heatmap of correlation analysis of MITChip (vertical)
and microarray (horizontal) datasets of male and female B6 mice. The integration of datasets was done per individual mouse (five mice per
group) and gives the direct correlations between gene expression and microbiota composition from these samples. In deep red, the cluster of
genes that most positively correlated with a respective group of bacteria. In deep blue, the cluster of genes that most negatively correlated with
a respective group of bacteria. Five main gene clusters (1-5) and four main bacteria clusters (A-D) were identified. The cluster framed in black is
discussed in more detail in the text. A positive correlation between bacteria and genes indicates that a higher abundance of the bacteria is
associated with a higher expression of the particular cluster of genes. A negative correlation between bacteria and genes indicates that a lower
abundance of the bacteria is associated with a lower expression of the particular cluster of genes. The functions to which these genes are related
to are presented in Table 7. Note that the bacteria and intestinal genes that were selected for the correlation were the ones most explanatory for
variation between sex and mouse strain, and therefore the genes in a specific cluster do not necessarily have a significantly different expression
between the sexes. Moreover, a positive correlation between bacteria and genes not necessary indicates that the particular function related to
these genes is upregulated, as the genes involved may also have a suppressive effect on the function. Asterisks (*) and hashtags (#) indicate that

the specific bacteria has a significantly/or tend to have a higher abundance in B6 females as compared to B6 males, respectively

expansion of T (helper) lymphocytes (Table 7). The gene
expression clusters 4 and 6 showed a strong negative
correlation with bacteria which tended to be enriched in
males. Gene cluster 4 is related to, among others, quan-
tity of leukocytes and chemotaxis of phagocytes, whereas
gene cluster 6 is not related to immune functions
(Table 7). The bacteria and intestinal genes that were se-
lected for the correlation were the ones most explana-
tory for variation between sex and mouse strain, and
therefore the genes in a specific cluster do not necessar-
ily have a significantly different expression between the
sexes. Moreover, a positive correlation between bacteria
and genes not necessarily indicates that the particular
function related to these genes is upregulated, as the
genes involved may also have a suppressive effect on the
function.

Both sex and strain influenced T cell activation,

migration, and maturation in the mesenteric lymph nodes
The results of the microarray showed that the expression
of several genes which can be related to immunological
functions (e.g., T cell trafficking, activation, and matur-
ation) were up- or downregulated by sex (Table 6).
Therefore, we evaluated the effect of sex on T lympho-
cytes in the mesenteric lymph nodes (MLN) using flow
cytometry. We chose the MLN, since this is an import-
ant site for the induction of intestinal immune responses
[32]. We measured the percentages of T lymphocytes, T
helper (CD4") cells, and T cytotoxic (CD8") cells. Fur-
thermore, we measured their expression of the early ac-
tivation marker (CD69), their expression of gut-homing
receptor o437 and their maturation status (CD62L and
CD44). Overall, male mice had a lower percentage of T
lymphocytes in their MLN than female mice (two-way
ANOVA, p=0.010) (Fig. 4a). Interaction between sex
and strain was found in the CD4"/CD8" ratio (two-way
ANOVA, p =0.004); BALB/c males had a lower CD4"/
CD8" ratio than BALB/c females (Bonferroni, p < 0.01),
while no effect of sex was seen in the B6 strain (Fig. 4b).

The percentage of CD8" or CD4" cells expressing of
CD69 was not affected by sex (Fig. 4c, d). The expres-
sion of integrin a4f37 (homing marker) on CD8" and
CD4" was lower in male mice as compared to female
mice (two-way ANOVA, p=0.001 and p=0.046, re-
spectively) (Fig. 4e, f). In addition, males showed an in-
creased percentage of naive CD8" cells as compared to
females (two-way ANOVA, p=0.031) (Fig. 5a). Inter-
action was found between sex and strain in the percent-
age of central memory (CM) CD8" cells (two-way
ANOVA, p =0.001); BALB/c males had a lower percent-
age of CM CD8" cells than BALB/c females (Bonferroni,
p<0.01), while sex had no effect on the B6 strain
(Fig. 5b). We observed no effect of sex on CD8" effector
memory (EM) cells (Fig. 5¢). Sex did not influence the
percentage of naive, CM, or EM CD4" cells (Fig. 5d—f).

Discussion

In this study, we demonstrated clear sex differences in
intestinal microbiota, intestinal gene expression, and im-
mune cell composition. We validated the sex effects by
using two mouse strains with different genetic back-
grounds and microbiota profiles [47]. Although sex sig-
nificantly explained part of the variance in microbiota
composition, this was mouse strain-dependent. Further-
more, we found that the expression of many colonic
(mucosal) genes related to immunological functions
(e.g., T cell trafficking, activation, and maturation) were
up- or downregulated by sex, again in a mouse
strain-dependent way. As sex effects in microbiota and
sex effects in mucosal gene expression were both strain
dependent, we correlated microbiota species with muco-
sal gene expression data per mouse strain. We found
correlations between genes associated with immune
populations and certain sex-specific bacteria. Despite
these strain-dependent effects of sex on microbiota com-
position and mucosal immune responses, almost similar
sex differences in immune cell populations in the MLN
in the two mouse strains were found.
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females, respectively

Fig. 3 Correlation between microbiota species and gene expression in the colon of BALB/c mice. Heatmap of correlation analysis of MITChip
(vertical) and microarray (horizontal) datasets of male and female BALB/c mice. The integration of datasets was done per individual mouse (five
mice per group) and gives the direct correlations between gene expression and microbiota composition from these samples. In deep red, the
cluster of genes that most positively correlated with a respective group of bacteria. In deep blue, the cluster of genes that most negatively
correlated with a respective group of bacteria. Six main gene clusters (1-6) and four main bacteria clusters (A-D) were identified. The clusters
framed in black are discussed in more detail in the text. A positive correlation between bacteria and genes indicates that a higher abundance of
the bacteria is associated with a higher expression of the particular cluster of genes. A negative correlation between bacteria and genes indicates
that a lower abundance of the bacteria is associated with a lower expression of the particular cluster of genes. The functions to which these
genes are related to are presented in Table 7. Note that the bacteria and intestinal genes that were selected for the correlation were the ones
most explanatory for variation between sex and mouse strain, and therefore the genes in a specific cluster do not necessarily have a significantly
different expression between the sexes. Moreover, a positive correlation between bacteria and genes not necessary indicates that the particular
function related to these genes is upregulated, as the genes involved may also have a suppressive effect on the function. Asterisks (*) and
hashtags (#) indicate that the specific bacteria has a significantly/or tend to have a higher abundance in BALB/c males as compared to BALB/c

This study demonstrated sex differences in intestinal
microbiota composition in healthy mice of two differ-
ent genetic backgrounds. We showed that sex influ-
enced the microbial diversity and richness and found
that males had a lower microbial diversity and rich-
ness than females. These findings are in line with our
previous study in which we, among others, focused
on sex-specific effects of aging on the microbiota
composition (B6 mice) [48]. Additionally, this corrob-
orates the findings of Yurkovetskiy et al. and Xiao
et al., who also found a higher microbiota diversity in

female mice than in male mice [23, 26]. In general, it is as-
sumed that a microbiome with a higher diversity and rich-
ness is beneficial for host health [49]. High microbial
richness is linked to microbiota stability [49], whereas
a lower microbial richness and diversity is linked to
several disorders, including obesity [9, 11], and IBD
[10]. Therefore, the reduced microbial diversity and
richness in male mice in this study may support the
results and conclusions of Babickova et al. (2015)
who found that male mice (B6) have a higher sensi-
tivity to develop DSS-induced colitis (used as IBD

Table 7 Selection of immunological functions that are related to the genes in cluster 5 (B6 mice) and clusters 1, 3, and 6 (BALB/c

mice) from the correlation analysis of MITChip and microarray

Gene cluster Diseases or Functions Annotation p value # Mol.
Cluster 5 (B6) Inflammatory response 6.46E-05 20
Leukocyte migration 3.55E-04 20
Infection of CD4+ T-lymphocytes 481E-04 2
Quantity of leukocytes 6.13E-04 20
Activation of leukocytes 8.90E-04 16
Cluster 1 (BALB/c) Proliferation of lymphocytes 5.22E-05 34
Quantity of leukocytes 5.78E-05 40
Quantity of lymphoid cells 7.54E-05 33
Quantity of myeloid cells 1.24E-04 24
Quantity of mononuclear leukocytes 1.53E-04 33
Cluster 3 (BALB/c) Expansion of T lymphocytes 1.60E-05 7
Expansion of helper T lymphocytes 2.12E-05 4
Immune response of leukocytes 1.06E-04 9
Immune response of phagocytes 1.64E-04 7
Leukocyte migration 5.60E-04 15
Cluster 4 (BALB/c) Cell death of chronic lymphocytic leukemia B cells 1.65E-05 3
Quantity of leukocytes 2.83E-05 17
Chemotaxis of phagocytes 3.32E-05 9
Quantity of mononuclear leukocytes 1.17E-04 14
Quantity of phagocytes 1.32E-04 10

“Number of molecules included in the indicated functions
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Fig. 4 Effect of sex and strain on T lymphocytes in the mesenteric lymph nodes. Gating strategy for determination of T cell subsets in the
mesenteric lymph nodes (a). Lymphocytes were gated based on size and scatter in the forward side scatter plot. T cells were determined by
selecting CD3™ cells. Within the CD3" cells, CD8" (Tc cells) and CD4" (Th cells) cells were selected. Within both the CD8" and CD4" population,
the percentage of CD69 and a4R7 were measured. All isotype controls were set at 1%. Frequency of CD3* T lymphocytes (b), the ratio of T
helper cells (CD4)/T cytotoxic cells (CD8) (c), frequency of CD69* CD8 (d), CD69* CD4 (e), 437" CD8 (f), and 437" CD4 (g) in the mesenteric
lymph nodes of male and female BALB/c and B6 mice (10 mice per group). T cytotoxic and T helper cells are expressed as the frequency of CD8"
and CD4" cells within the CD3* population, respectively. Results are shown as mean + SEM and were tested for overall strain and sex effects
using a two-way ANOVA followed by a Bonferroni post hoc test to test for strain-specific sex effects when interaction was found. Significant strain
effects are indicated with solid lines and significant sex effects are indicated with dashed lines (p < 0.05)

model) than female mice (B6) [50]. However, this
needs to be confirmed in future studies.

When focusing on the microbiota composition at
species-like level we also found sex-specific differences,
these were also strain dependent. We found that B6 fe-
males had a relative higher abundance of, among others,
Lactobacillus plantarum and Bacteroides distasonis et
rel. as compared to B6 males. These species have been
shown to influence immune responses, such as enhan-
cing Tregs [51, 52]. BALB/c females had a relative higher
abundance of Bifidobacterium as compared to BALB/c
males. Bifidobacteria were shown to have beneficial
effects against a variety of gastrointestinal disorders, in-
cluding colitis [53], and have also been shown to be able
to induce regulatory T cells [54]. Also other studies have
shown sex-specific microbiota in mice [23, 26-28]. It is
interesting to note that the study of Org et al. (2016)
also showed that sex differences in the microbiota of
mice depends on the genetic background [28]. Pertinent
sex differences in microbiota composition in the various
studies, however, are difficult to compare, since they are
dependent on the strain [28], diet [25] and probably also
vendor [55]. Additionally, stress and the gut microbiome
also showed to interact which each other and the sensi-
tivity for stress seems to be dependent on genetic back-
ground but also sex [56]. Moreover, maternal stress
showed to modulate sex differences in the microbiota
composition of the offspring [57]. Taken together, stress
also may be an interfering factor on dimorphism in
microbiota composition and may be either an underling
factor or consequence. Our data show that the mouse
strain-dependent sex differences in microbiota compos-
ition highlight the importance of considering the genetic
background when selecting an animal model and the
need for standardization on genetic background and
other interfering factors in human studies.

The causes of the sex differences in the intestinal
microbiota composition are probably multifold. Sex hor-
mones may play a role, since differences in microbiota
profiles between males and females in NOD mice disap-
peared after castration of the males [23], suggesting the
involvement of testosterone. However, in view of the
strain differences, it is likely that genetic differences also
play an important role. Genetic differences might for

instance be variations in mucus composition, which
affect microbiota composition [58]. Also maternal
differences in oligosaccharide composition of mother milk
are genetically determined and affect the development of
the microbiota composition of the offspring [59, 60].
Whether sex differences in the microbiome also appear in
humans is difficult to conclude as human studies on sex
differences are still scarce and influenced by many con-
founding factors. Some human studies found small sex
differences in the microbiome [61-64], while others did
not [65-67]. Confounding factors might be heterogeneity
in genetics, but also the reproductive condition of females
(e.g., menstrual cycle, the use of oral contraceptives, and
menopause), which is often not taken into account.
Such factors can not only interfere with immune re-
sponses [68, 69], and with microbiota composition,
but may also modulate the sex effects.

A major goal of this study was to correlate sex-specific
intestinal immune differences with specific microbiota.
The bacteria and intestinal genes that were selected for
this correlation were the most explanatory for variation
between sex and mouse strain. For B6 mice, we showed
that various female-specific bacteria positively correlated
with one cluster of genes, which were, among others, as-
sociated with inflammatory responses and leukocyte mi-
gration. In BALB/c mice, we found four clusters of
genes correlating with various male specific bacteria
(bacteria which were or tended to be significantly in-
creased in males), which were involved in, among others,
differentiation of lymphocytes and expansion of helper T
cells, while the clusters which were negatively correlat-
ing with the male bacteria were involved in, among
others, chemotaxis and quantity of phagocytes. Our data
do suggest that microbiota may influence immunological
gene expression in the gut. Although genes in the path-
way of expansion of T helper cells were positively corre-
lated with various bacteria increased in BALB/c males,
this does not necessarily mean that this is associated
with increased numbers of T helper cells, since genes in
this pathway may also inhibit expansion of T helper
cells. Indeed, our flow cytometry data show decreased
numbers of T helper cells in the MLN in BALB/c mice.

Our study was merely observational. However, another
study from our lab showed that sex-specific microbiota
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Fig. 5 Effect of sex and strain on maturation of T lymphocytes in the mesenteric lymph nodes. Gating strategy for determination of T cell subsets
in the mesenteric lymph nodes (a). Lymphocytes were gated based on size and scatter in the forward side scatter plot. T cells were determined
by selecting CD3" cells. Within the CD3™" cells, CD8" (Tc cells) and CD4" (Th cells) cells were selected. Within both the CD8" and CD4" population, the
percentage of CD62L and CD44 were measured. All isotype controls were set at 1%. Frequency of CD62L"CD44 ™ naive CD8 (b) and CD4 (e),
CD62LCD44" central memory CD8 (c) and CD4 (f) and CD62L CD44" effector memory CD8 (d) and CD4 (g) in the mesenteric lymph nodes of male
and female BALB/c and B6 mice (10 mice per group). T cytotoxic cells are expressed as the frequency of CD8" cells within the CD3* population,
whereas T helper cells are expressed as the frequency of CD4" cells within the CD3™ population. Results are shown as mean + SEM and were tested
for overall strain and sex effects using a two-way ANOVA followed by a Bonferroni post hoc test to test for strain-specific sex effects when interaction
was found. Significant strain effects are indicated with solid lines and significant sex effects are indicated with dashed lines (p < 0.05)

may indeed affect immune responses. Fransen et al. (2017)
performed a microbiota transfer study in germ-free mice
by transferring male microbiota into female germ-free
mice and female microbiota into germ-free male mice
[70]. Fransen observed that germ-free male recipients of
male microbiota had a higher percentages of RORyt"
Foxp3"* cells in the PPs and MLN as compared with
germ-free male recipients of female microbiota, indicating
that indeed sex differences in microbiota may induce sex
differences in immune responses [70]. However, they also
found that males in general had a higher percentages of
conventional Tregs, independent of whether they received
microbiota from male or female mice, suggesting not all
sex differences in immune response are dependent on the
microbiome [70].

We also found sex differences in immune cell popula-
tions in the MLN of both strains and despite the differ-
ent sex effects in the microbiota and gene expression in
the two strains, we observed similar sex differences in
immune cell populations in the MLN in both strains,
and also in the spleen (21). Analysis of the microarray
data showed that the expression of several genes which
can be related to immunological functions (e.g., T cell
trafficking, activation, and maturation) were up- or
downregulated by sex. Therefore, we focused on T cells
and T cell functions in the MLN, and we found that fe-
males had a higher percentage of total T cells, with an
increased percentage of these T cells expressing the
homing receptor a4f7 (T cell trafficking) than males.
Furthermore, female mice had a lower percentage of
naive T cytotoxic cells (T cell maturation) than male
mice. The higher percentage of T cells and lower per-
centage of naive T cells fits with the general idea that fe-
males have a stronger adaptive immune arm than males
[22]. It is unknown from this study how these changes
are induced, but as indicated above, sex differences in
microbiota species may be involved. Also in the MLN,
we found that some of the sex effects in the immune cell
composition were strain dependent, although less appar-
ent: only the CD4"/CD8" ratio and central memory
CD8" cells were affected by sex in a strain-dependent
way. Similar results were recently found in the Peyer’s
patches (PP) and the spleen: sex effects on immune cell
populations were mainly strain independent [21].

Conclusions

This study demonstrated sex differences in intestinal
microbiota species, diversity, and richness in healthy
mice of two different mouse strains. The nature of the
sex effects, however, appeared to be determined by the
mouse strain, since different bacterial species were
enriched in males and females in the two strains. The
strain-dependent sex effects were also observed in the
expression of immunological genes in the colon. The
correlations we found between male and female specific
bacteria with various immunological gene pathways,
suggest that sex differences in the microbiome may be
involved in sex differences in immune responses. To our
opinion, this is an important observation and not only
implies that preventive measures for disease develop-
ment may require a sex- and genetic-specific approach,
but it also shows that in microbiome studies, both sex
and genetic background should be taken into consider-
ation. Our study may also shed light on the conflicting
results in studies with respect to sex differences in the
microbiome, especially in human studies. Conflicting re-
sults found in human studies [25, 61-67] may be due to
the lack of standardization with respect to sex and gen-
etic background.

Additional file

Additional file 1: Method and results RT gPCR for validation microarray.
(DOCX 27 kb)

Abbreviations

B6: C57B1/60laHsd mice; BALB/c: Balb/cOlaHsd mice; CM: Central memory
cells; DSS: Dextran sulfate sodium; EM: Effector memory cells; FCS: Fetal calf
serum; IBD: Inflammatory bowel disease; IBMT: Intensity-based moderated ¢
statistic; IPA: Ingenuity pathway analysis; MITChip: Mouse intestinal tract chip;
MLN: Mesenteric lymph nodes; NOD: Non-obese diabetic; PLS: Partial least
squares; PP: Peyer’s patches; RBB + C: Bead-beating-plus column; RDA: Redundancy
analysis; RPA: Robust probabilistic averaging; SCFAs: Short-chain fatty acids; Th: T
helper cells; Tregs: T regulatory cells

Acknowledgements
The authors would like to thank Jenny Jansen (Division of Human Nutrition,
Wageningen University) for technical support in the microarray analysis.

Funding
This work was supported by a project from the Top Institute Food and
Nutrition, Wageningen, The Netherlands (Grant number GH002). The funders


https://doi.org/10.1186/s13293-018-0186-6

Elderman et al. Biology of Sex Differences (2018) 9:26

had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Availability of data and materials
The datasets (microarray) supporting the conclusions of this article are available in
the gene expression omnibus from NCBI under ID number GSE85913.

Authors’ contributions

ME, FH, CB, MB, AvB, HS, PdV, and MF helped conceive and design the
experiments. ME, FH, AvB, and BdH performed the experiments. ME and F.H
analyzed the data. ME, FH, PdV, and MF wrote the paper. All authors read
and approved the final manuscript.

Ethics approval

This study was carried out in accordance with the recommendations of the
Animal Care Committee of the Groningen University. The protocol was
approved by the Animal Care Committee of the Groningen University
(approval number 6349A).

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Top Institute Food and Nutrition, Wageningen, the Netherlands. “Division of
Medical Biology, Department of Pathology and Medical Biology, University of
Groningen and University Medical Centre Groningen, 9713, GZ, Groningen,
the Netherlands. *Laboratory of Microbiology, Wageningen University and
Research, 6703, WE, Wageningen, the Netherlands. “Division of Human
Nutrition, Wageningen University and Research, 6703, WE, Wageningen, the
Netherlands. *Cell Biology and Immunology, Wageningen University and
Research, 6708 WD, Wageningen, the Netherlands. ®Department of Obstetrics
and Gynecology, University of Groningen and University Medical Centre
Groningen, 9713, GZ, Groningen, the Netherlands.

Received: 22 December 2017 Accepted: 5 June 2018
Published online: 18 June 2018

References

1. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al.
Metagenomic analysis of the human distal gut microbiome. Science. 2006;
312(5778):1355-9. https//doi.org/10.1126/science.1124234.

2. Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut
microbiota: friends or foes? Nat Rev Immunol. 2010;10:735-44. https://doi.
0rg/10.1038/nri2850.

3. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al.
The gut microbiota and host health: a new clinical frontier. Gut. 2016,65(2):
330-9. https;//doi.org/10.1136/gutjnl-2015-309990 [doi].

4. Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C. Gut
microbiota: next frontier in understanding human health and development
of biotherapeutics. Biol Targets Ther. 2011;5:71-86. https://doi.org/10.2147/
BTT.S19099.

5. Foxx-Orenstein AE, Chey WD. Manipulation of the gut microbiota as a novel
treatment strategy for gastrointestinal disorders. Am J Gastroenterol Suppl.
2012;,1:41-6.

6. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity,
stability and resilience of the human gut microbiota. Nature. 2012;489(7415):
220-30. https://doi.org/10.1038/nature11550.

7. Parekh PJ, Balart LA, Johnson DA. The influence of the gut microbiome on
obesity, metabolic syndrome and gastrointestinal disease. Clin Transl
Gastroenterol. 2015;6 https://doi.org/10.1038/ctg.2015.16.

8. Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and
autoimmunity. Gut Microbes. 2012;3(1)4-14. https.//doi.org/104161/gmic.19320.

9. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE,
et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:
480-4.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Page 17 of 18

Norman J, Handley S, Baldridge M, Droit L, Liu C, Keller B, et al. Disease-
specific alterations in the enteric virome in inflammatory bowel disease.
Cell. 2015;160(3):447-60. https://doi.org/10.1016/j.cell.2015.01.002.

Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al.
Richness of human gut microbiome correlates with metabolic markers.
Nature. 2015;500:541-6.

Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly- YM, et al.
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell
homeostasis. Science. 2013;341(6145):569-73. https://doi.org/10.1126/
science.1241165.

Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation
by short chain fatty acids. Nutrients. 2011,3(10):858-76. https://doi.org/10.
3390/nu3100858 [doi.

Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al.
Commensal microbe-derived butyrate induces the differentiation of colonic
regulatory T cells. Nature. 2013;504(7480):446-50. https://doi.org/10.1038/
nature12721.

Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, et al.
Peripheral education of the immune system by colonic commensal
microbiota. Nature. 2011;478(7368):250-4. https://doi.org/10.1038/
nature10434.

Ivanov I, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, et al.
Specific microbiota direct the differentiation of IL-17-producing T-helper
cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4(4):337-
49. https://doi.org/10.1016/j.chom.2008.09.009.

Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease.
Front Neuroendocrinol. 2014;35(3):347-69. https;//doi.org/10.1016/jyfrne.
2014.04.004.

Pradhan AD. Sex differences in the metabolic syndrome: implications for
cardiovascular health in women. Clin Chem. 2014;60(1):44-52. https//doi.
0rg/10.1373/clinchem.2013.202549.

Zelinkova Z, der Woude CJ. Gender and inflammatory bowel disease. J Clin
Cell Immunol. 2014;5(4):245-50. https://doi.org/10.4172/2155-9899.1000245.
Bouman A, Schipper M, Heineman M, Faas M. Gender difference in the non-
specific and specific immune response in humans. Am J Reprod Immunol.
2004;52(1):19-26. https://doi.org/10.1111/j.1600-0897.2004.00177 x.

Elderman M, van Beek A, Brandsma E, de Haan B, Savelkoul H, de Vos P,

et al. Sex impacts Th1, Treg, and DCs in both the intestinal and systemic
immunity in a mouse strain and location dependent manner. Biol Sex Differ.
2016;7 https:;//doi.org/10.1186/513293-016-0075-9.

Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev
Immunol. 2016;16(10):626-38. https://doi.org/10.1038/nri.2016.90.
Yurkovetskiy L, Burrows M, Khan A, Graham L, Volchkov P, Becker L, et al.
Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;
39(2):400-12. https.//doi.org/10.1016/j.immuni.2013.08.013.

Bernbom N, Norrung B, Saadbye P, Molbak L, Vogensen FK, Licht TR.
Comparison of methods and animal models commonly used for
investigation of fecal microbiota: effects of time, host and gender. J
Microbiol Methods. 2006;66(1):87-95. https://doi.org/10.1016/j.mimet.2005.
10.014.

Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Org E, Parks B, et al.
Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat
Commun. 2014;5:4500. https://doi.org/10.1038/ncomms5500.

Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X, et al. A catalog of the
mouse gut metagenome. Nat Biotechnol. 2015;33:1103-8. https://doi.org/10.
1038/nbt.3353.

Markle JGM, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-
Kamkezyk U, et al. Sex differences in the gut microbiome drive hormone-
dependent regulation of autoimmunity. Science. 2013;339:1084-8. https://
doi.org/10.1126/science.1233521.

Org E, Mehrabian M, Parks BW, Shipkova P, Liu X, Drake TA, et al. Sex
differences and hormonal effects on gut microbiota composition in mice.
Gut Microbes. 2016;7(4):313-22. https://doi.org/10.1080/19490976.2016.
1203502.

Org E, Parks BW, Joo JW, Emert B, Schwartzman W, Kang EY, et al. Genetic
and environmental control of host-gut microbiota interactions. Genome
Res. 2015;25(10):1558-69. https://doi.org/10.1101/gr.194118.115.

Melgar S, Karlsson A, Michaélsson E. Acute colitis induced by dextran sulfate
sodium progresses to chronicity in C57BL/6 but not in BALB/c mice:
correlation between symptoms and inflammation. Am J Physiol Gastrointest
Liver Physiol. 2005;(6):1328-38.


https://doi.org/10.1126/science.1124234
https://doi.org/10.1038/nri2850
https://doi.org/10.1038/nri2850
https://doi.org/10.1136/gutjnl-2015-309990 <doi>.
https://doi.org/10.2147/BTT.S19099
https://doi.org/10.2147/BTT.S19099
https://doi.org/10.1038/nature11550
https://doi.org/10.1038/ctg.2015.16.
https://doi.org/10.4161/gmic.19320
https://doi.org/10.1016/j.cell.2015.01.002
https://doi.org/10.1126/science.1241165
https://doi.org/10.1126/science.1241165
https://doi.org/10.3390/nu3100858 <doi>.
https://doi.org/10.3390/nu3100858 <doi>.
https://doi.org/10.1038/nature12721
https://doi.org/10.1038/nature12721
https://doi.org/10.1038/nature10434
https://doi.org/10.1038/nature10434
https://doi.org/10.1016/j.chom.2008.09.009.
https://doi.org/10.1016/j.yfrne.2014.04.004.
https://doi.org/10.1016/j.yfrne.2014.04.004.
https://doi.org/10.1373/clinchem.2013.202549
https://doi.org/10.1373/clinchem.2013.202549
https://doi.org/10.4172/2155-9899.1000245
https://doi.org/10.1111/j.1600-0897.2004.00177.x
https://doi.org/10.1186/s13293-016-0075-9
https://doi.org/10.1038/nri.2016.90.
https://doi.org/10.1016/j.immuni.2013.08.013.
https://doi.org/10.1016/j.mimet.2005.10.014
https://doi.org/10.1016/j.mimet.2005.10.014
https://doi.org/10.1038/ncomms5500
https://doi.org/10.1038/nbt.3353
https://doi.org/10.1038/nbt.3353
https://doi.org/10.1126/science.1233521
https://doi.org/10.1126/science.1233521
https://doi.org/10.1080/19490976.2016.1203502
https://doi.org/10.1080/19490976.2016.1203502
https://doi.org/10.1101/gr.194118.115

Elderman et al. Biology of Sex Differences (2018) 9:26

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

Tsuchiya T, Fukuda S, Hamada H, Nakamura A, Kohama Y, Ishikawa H, et al.
Role of gamma delta T cells in the inflammatory response of experimental
colitis mice. J Immunol. 2003;15:5507-13.

Macpherson AJ, Smith K. Mesenteric lymph nodes at the center of immune
anatomy. J Exp Med. 2006;203(3):497-500. https://doi.org/10.1084/jem.
20060227.

Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from
digesta and fecal samples. BioTechniques. 2004;36(5):808-12.

Geurts L, Lazarevic V, Derrien M, Everard A, Van Roye M, Knauf C, et al.
Altered gut microbiota and endocannabinoid system tone in obese and
diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue.
Front Microbiol. 2011,2:149. https;//doi.org/10.3389/fmicb.2011.00149.
Rajilic-Stojanovic M, Heilig HG, Molenaar D, Kajander K, Surakka A, Smidt
H, et al. Development and application of the human intestinal tract
chip, a phylogenetic microarray: analysis of universally conserved
phylotypes in the abundant microbiota of young and elderly adults.
Environ Microbiol. 2009;11(7):1736-51. https://doi.org/10.1111/j.1462-
2920.2009.01900.x.

Lahti L, Elo LL, Aittokallio T, Kaski S. Probabilistic analysis of probe reliability
in differential gene expression studies with short oligonucleotide arrays.
IEEE/ACM Trans Comput Biol Bioinform. 2011,8:217-25.

Braak CJF, Smilauer P. Canoco Reference Manual and User's Guide: Software
for Ordination (Version 5.0). Ithaca: NH; 2012.

Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of
Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003;31(4):e15.
Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization
methods for high density oligonucleotide array data based on variance and
bias. Bioinformatics. 2003;19:185-93.

Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, et al. Evolving gene/
transcript definitions significantly alter the interpretation of GeneChip data.
Nucleic Acids Res. 2005;33(20):e175.

Sartor MA, Tomlinson CR, Wesselkamper SC, Sivaganesan S, Leikauf GD,
Medvedovic M. Intensity-based hierarchical Bayes method improves testing
for differentially expressed genes in microarray experiments. BMC
Bioinformatics. 2006;19:538.

Boulesteix AL, Strimmer K. Partial least squares: a versatile tool for the
analysis of high-dimensional genomic data. Brief Bioinform. 2007,8(1):32-44.
doi: bbl016 [pi]

Lange K, Hugenholtz F, Jonathan MC, Schols HA, Kleerebezem M, Smidt H,
et al. Comparison of the effects of five dietary fibers on mucosal
transcriptional profiles, and luminal microbiota composition and SCFA
concentrations in murine colon. Mol Nutr Food Res. 2015:59(8):1590-602.
https://doi.org/10.1002/mnfr.201400597.

Le Cao KA, Martin PG, Robert-Granie C, Besse P. Sparse canonical methods
for biological data integration: application to a cross-platform study. BMC
Bioinformatics. 2009:10-34. https://doi.org/10.1186/1471-2105-10-34.
Gonzalez I, Cao KA, Davis MJ, Dejean S. Visualising associations between
paired ‘omics’ data sets. BioData Min. 2012;5(1):19. https://doi.org/10.1186/
1756-0381-5-19.

Le Cao KA, Gonzalez I, Dejean S. integrOmics: an R package to unravel
relationships between two omics datasets. Bioinformatics. 2009;25(21):2855-
6. https://doi.org/10.1093/bioinformatics/btp515.

Fransen F, Zagato E, Mazzini E, Fosso B, Manzari C, El Aidy S, et al. BALB/c
and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the
generation of antigen-specific IgA and microbiota diversity. Immunity. 2015;
43(3):527-40. https://doi.org/10.1016/jimmuni.2015.08.011.

Elderman M, Sovran B, Hugenholtz F, Graversen K, Huijskes M, Houtsma E,
et al. The effect of age on the intestinal mucus thickness, microbiota
composition and immunity in relation to sex in mice. PLoS One. 2017;12(9):
e0184274. https;//doi.org/10.1371/journal.pone.0184274.

Tap J, Furet JP, Bensaada M, Philippe C, Roth H, Rabot S, et al. Gut
microbiota richness promotes its stability upon increased dietary fibre
intake in healthy adults. Environ Microbiol. 2015;17:4954-64.

Babickova J, Tothova L, Lengyelova E, Bartonova A, Hodosy J, Gardlik R,

et al. Sex differences in experimentally induced colitis in mice: a role for
estrogens. Inflammation. 2015;38(5):1996-2006. https://doi.org/10.1007/
$10753-015-0180-7.

Smelt MJ, de Haan BJ, Bron PA, van Swam |, Meijerink M, Wells JM, et al. L.
Plantarum, L. salivarius, and L. lactis attenuate Th2 responses and increase
Treg frequencies in healthy mice in a strain dependent manner. PLoS One.
2012;7(10):e47244. https.//doi.org/10.1371/journal.pone.0047244.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Page 18 of 18

Kverka M, Zakostelska Z, Klimesova K, Sokol D, Hudcovic T, Hrncir T, et al.
Oral administration of Parabacteroides distasonis antigens attenuates
experimental murine colitis through modulation of immunity and
microbiota composition. Clin Exp Immunol. 2011;163(2):250-9. https://doi.
org/10.1111/].1365-2249.2010.04286.x.

Picard C, Fioramonti J, Francois A, Robinson’ T, Neant F, Matuchansky C.
Review article: bifidobacteria as probiotic agents — physiological effects and
clinical benefits. Aliment Pharmacol Ther. 2005;15:495-512.

Konieczna P, Groeger D, Ziegler M, Frei R, Ferstl R, Shanahan F, et al.
Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory
cells in human peripheral blood: potential role for myeloid and
plasmacytoid dendritic cells. Gut. 2012,61:354-66.

Ericsson AC, Davis JW, Spollen W, Bivens N, Givan S, Hagan CE, et al. Effects
of vendor and genetic background on the composition of the fecal
microbiota of inbred mice. PLoS One. 2015;10(2):e0116704. https://doi.org/
10.1371/journal.pone.0116704.

Rea K Dinan TG, Cryan JF. The microbiome: a key regulator of stress and
neuroinflammation. Neurobiol Stress. 2016;4:23-33. https://doi.org/10.1016/j.
ynstr.2016.03.001.

Jasarevic E, Howard CD, Misic AM, Beiting DP, Bale TL. Stress during
pregnancy alters temporal and spatial dynamics of the maternal and
offspring microbiome in a sex-specific manner. Sci Rep. 2017,7:44182.
https://doi.org/10.1038/srep44182.

Sovran B, Lu P, Loonen LM, Hugenholtz F, Belzer C, Stolte EH, et al.
Identification of commensal species positively correlated with early stress
responses to a compromised mucus barrier. Inflamm Bowel Dis. 2016,22(4):
826-40. https://doi.org/10.1097/MIB.0000000000000688.

Fuhrer A, Sprenger N, Kurakevich E, Borsig L, Chassard C, Hennet T. Milk sialyllactose
influences colitis in mice through selective intestinal bacterial colonization. J Exp
Med. 2010;207(13):2843-54. https.//doi.org/10.1084/jem.20101098.
Monteagudo-Mera A, Arthur JC, Jobin C, Keku T, Bruno-Barcena JM,
Azcarate-Peril MA. High purity galacto-oligosaccharides enhance specific
Bifidobacterium species and their metabolic activity in the mouse gut
microbiome. Benef Microbes. 2016;7(2):247-64. https.//doi.org/10.3920/
BM2015.0114.

Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, Hayes RB, et al. Sex, body
mass index, and dietary fiber intake influence the human gut microbiome.
PLOSone. 2015;10(4):1-14. https://doi.org/10.1371/journal.pone.0124599.

Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, et al. Symbiotic
gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U
S A. 2008;105(6):2117-22. https://doi.org/10.1073/pnas.0712038105.

Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, et al. Differences
in fecal microbiota in different European study populations in relation to
age, gender, and country: a cross-sectional study. Appl Environ Microbiol.
2006;72(2):1027-33. https;//doi.org/10.1128/AEM.72.2.1027-1033.2006.

Haro C, Rangel-Zuniga OA, Alcala-Diaz JF, Gomez-Delgado F, Perez-Martinez
P, Delgado-Lista J, et al. Intestinal microbiota is influenced by gender and
body mass index. PLoS One. 2016;11(5):¢0154090. https://doi.org/10.1371/
journal.pone.0154090.

Dicksved J, Floistrup H, Bergstrom A, Rosenquist M, Pershagen G, Scheynius
A, et al. Molecular fingerprinting of the fecal microbiota of children raised
according to different lifestyles. Appl Environ Microbiol. 2007;73(7):2284-9.
https://doi.org/10.1128/AEM.02223-06.

Human Microbiome Project Consortium. Structure, function and diversity of
the healthy human microbiome. Nature. 2012;486(7402):207-14. https.//doi.
0rg/10.1038/nature11234.

Lay G, Rigottier-Gois L, Holmstrom K, Rajilic M, Vaughan EE, de Vos WM,

et al. Colonic microbiota signatures across five northern European countries.
Appl Environ Microbiol. 2005;71(7):4153-5. https://doi.org/10.1128/AEM.71.7.
4153-4155.2005.

Oertelt-Prigione S. The influence of sex and gender on the immune
response. Autoimmun Rev. 2012;11(6-7):A479-85. https.//doi.org/10.1016/].
autrev.2011.11.022.

Auerbach L, Hafner T, Huber JC, Panzer S. Influence of low-dose oral
contraception on peripheral blood lymphocyte subsets at particular phases
of the hormonal cycle. Fertil Steril. 2002;78(1):83-9. https://doi.org/10.1016/
S0015-0282(02)03173-4.

Fransen F, van Beek AA, Borghuis T, Meijer B, Hugenholtz F, van der Gaast-
de Jongh C, et al. The impact of gut microbiota on gender-specific
differences in immunity. Front Immunol. 2017,8:754. https;//doi.org/10.3389/
fimmu.2017.00754.


https://doi.org/10.1084/jem.20060227
https://doi.org/10.1084/jem.20060227
https://doi.org/10.3389/fmicb.2011.00149
https://doi.org/10.1111/j.1462-2920.2009.01900.x
https://doi.org/10.1111/j.1462-2920.2009.01900.x
https://doi.org/10.1002/mnfr.201400597
https://doi.org/10.1186/1471-2105-10-34
https://doi.org/10.1186/1756-0381-5-19
https://doi.org/10.1186/1756-0381-5-19
https://doi.org/10.1093/bioinformatics/btp515
https://doi.org/10.1016/j.immuni.2015.08.011
https://doi.org/10.1371/journal.pone.0184274
https://doi.org/10.1007/s10753-015-0180-7
https://doi.org/10.1007/s10753-015-0180-7
https://doi.org/10.1371/journal.pone.0047244
https://doi.org/10.1111/j.1365-2249.2010.04286.x
https://doi.org/10.1111/j.1365-2249.2010.04286.x
https://doi.org/10.1371/journal.pone.0116704
https://doi.org/10.1371/journal.pone.0116704
https://doi.org/10.1016/j.ynstr.2016.03.001
https://doi.org/10.1016/j.ynstr.2016.03.001
https://doi.org/10.1038/srep44182
https://doi.org/10.1097/MIB.0000000000000688
https://doi.org/10.1084/jem.20101098
https://doi.org/10.3920/BM2015.0114
https://doi.org/10.3920/BM2015.0114
https://doi.org/10.1371/journal.pone.0124599
https://doi.org/10.1073/pnas.0712038105
https://doi.org/10.1128/AEM.72.2.1027-1033.2006
https://doi.org/10.1371/journal.pone.0154090
https://doi.org/10.1371/journal.pone.0154090
https://doi.org/10.1128/AEM.02223-06
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature11234
https://doi.org/10.1128/AEM.71.7.4153-4155.2005
https://doi.org/10.1128/AEM.71.7.4153-4155.2005
https://doi.org/10.1016/j.autrev.2011.11.022
https://doi.org/10.1016/j.autrev.2011.11.022
https://doi.org/10.1016/S0015-0282(02)03173-4
https://doi.org/10.1016/S0015-0282(02)03173-4
https://doi.org/10.3389/fimmu.2017.00754
https://doi.org/10.3389/fimmu.2017.00754

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study design
	Mice
	Bacterial DNA extraction and microbiota profiling
	Intestinal microarray analysis
	Multivariate integration and correlation analysis
	Mesenteric lymph node cell isolation
	Cell staining
	Flow cytometry
	Statistical analysis

	Results
	Sex influenced intestinal microbiota composition in a mouse strain-dependent way
	Sex influenced gene expression profiles in the colon in a mouse strain-dependent way
	Correlation between microbiota composition and gene expression profile in the colon
	Both sex and strain influenced T cell activation, migration, and maturation in the mesenteric lymph nodes

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval
	Competing interests
	Publisher’s Note
	Author details
	References

