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The objective of the study was to elucidate the microRNA (miRNA) profile of an enriched human corneal 
epithelial stem cell (CESC) population in comparison to differentiated central corneal epithelial cells 
(CCECs) by small RNA sequencing. The CESCs were enriched by differential enzymatic treatment to 
isolate the basal limbal epithelial cells followed by laser capture microdissection of cells with nucleus 
to cytoplasm ratio ≥0.7, from donor tissues. Small RNA sequencing was carried out using Illumina 
NextSeq. 500 platform and the validation of differentially expressed miRNAs by quantitative real-time 
PCR (qPCR) and locked nucleic acid miRNA in-situ hybridization (LNA-ISH). The sequencing identified 
62 miRNAs in CESCs and 611 in CCECs. Six miRNAs: hsa-miR-21-5p, 3168, 143-3p, 10a-5p, 150-5p and 
1910-5p were found to be significantly upregulated in enriched CESCs, which was further confirmed 
by qPCR and LNA-ISH. The expression of hsa-miR-143-3p was exclusive to clusters of limbal basal 
epithelial cells. The targets of the upregulated miRNAs were predicted to be associated with signaling 
pathways -Wnt, PI3K-AKT, MAPK and pathways that regulate pluripotency of stem cells, cell migration, 
growth and proliferation. Further studies are essential to elucidate their functional role in maintenance 
of stemness. The findings of the study also hypothesize the inherent potential of hsa-miR-143-3p to 
serve as a biomarker for identifying CESCs.

The anterior surface of the human eye is defined by the tear film and cornea. The cornea acts as the natural barrier 
by preventing the underlying delicate structures from harmful radiation and potent infections1. The terminally 
differentiated cells in the superficial layer of the human corneal epithelium are normally shed and the cell loss 
is replenished by the progeny of the corneal epithelial stem cells (CESCs) that reside in the basal epithelial layer 
of the limbus to maintain tissue homeostasis. The CESCs give rise to cells that can proliferate, differentiate and 
migrate centripetally2,3. These adult stem cells possess slow cycling4, label retaining cell property5 and has the 
ability to form holoclones6,7. Loss or dysfunction of the CESCs results in conjunctivalization, vascularization and 
loss of vision, a condition termed as limbal stem cell deficiency8,9.

Even though it is well accepted that the limbus is the site of stem cells for corneal epithelial homeostasis10–12, 
the regulatory mechanism governing the maintenance of these CESCs is still not clear. MicroRNAs (miRNAs) are 
non-coding RNAs approximately 22-nucleotide-long and they act as key players in regulating gene expression by 
RNAi machinery. In the last decade, the importance of miRNAs as a potential epigenetic regulator of stem cell 
potency, proliferation, differentiation and survival in embryonic stem cells13,14, induced pluripotent stem cells15,16 
and adult tissue resident stem cells like human skin/hair follicle17 has been reported.

It has been demonstrated that only 25% of the isolated limbal basal epithelial cells are stem cells based on the 
analysis of two parameters, high levels of p63 expression and greater nucleus to cytoplasmic area7. It is crucial to 
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make use of a highly enriched CESCs in order to identify the profile of miRNA specific to adult tissue resident 
stem cells. Therefore, in this study we have made use of the strategy we have developed earlier7,18 to enrich CESCs 
to the extent of 80% and this enriched population are known to express stem cell markers ΔNp63α and ABCG218. 
It was thus possible to identify a specific profile of miRNA, significantly up-regulated in CESCs compared to 
differentiated CCECs19. Accordingly, the major findings of the study will serve as a platform to decipher the unre-
solved questions relating to the miRNA regulation of CESCs.

Methods
Samples. Human donor tissues were handled in accordance with the tenets of the Declaration of Helsinki 
and the study was approved by Institutional Ethics Committee Aravind Medical Research Foundation 
(RES2013038BAS). Informed consent was obtained for all donor eyes including the minors from the legally 
authorized representative - either the donor’s parents or family through the Eye Banks of Aravind Eye Care 
System (Madurai, Coimbatore, Pondicherry and Tirunelveli). The donor globes not suitable for transplantation 
(procured within 8 hours of death and received within 24 hours for research) and limbal rims obtained after 
corneal transplantation (received within 10 days of storage in Cornisol media at 4 °C in sterile condition) were 
included in this study. Inclusion criteria were donor age less than 70 years (range: 11 to 70 years), non-vascular-
ized, with no history of diabetes and ocular infection. The donor globes were observed under stereo binocular 
microscope and those with intact limbus with radial ridges of palisades of Vogt were used for the study.

Enrichment of corneal epithelial stem cells. The corneal region together with adjacent sclera was dis-
sected out from the donor globes and the corneal endothelium was removed using a sterile cotton tip20,21. Central 
cornea was punched out using 8 mm trephine and the central corneal epithelial cells (CCECs) were isolated fol-
lowing the protocol of Arpitha et al.20. Briefly, the corneal epithelial sheet was separated by dispase II (2 mg/ml) 
treatment and the individual cells were obtained after 0.25% trypsin treatment. For enrichment of the CESCs, a 
two step-protocol was followed18. The limbal basal epithelial cells (LBECs) were isolated from limbal tissues by 
differential enzymatic treatment – 0.25% trypsin followed by 2 mg/ml dispase II treatment7. The cytosmears of 
isolated LBECs on membrane slide were stained with Giemsa. The cells were focused with 20X magnification and 
the image was projected on the computer monitor connected to an automated microscope. The area of nucleus 
and cytoplasm of each cell and the nucleus to cytoplasmic (N/C) ratio was then calculated using PALM Robo 
Software 4.3 SP2. The corneal epithelial stem cells (CESCs) with N/C ratio >0.7 were selectively marked and cut 
using Positioning and Ablation Laser MicroBeam (PALM) and collected on the adhesive cap of the collection 
tube which positioned to overhang the area under focus. Catapulted cells collected in the adhesive cap can be 
checked by moving it directly over the objective lens at any point of time during the collection. The enriched 
CESCs in the adhesive cap of the collection tube were then incubated for 30 minutes at 42 °C in 15 µL of extraction 
buffer (ARCTURUS PicoPure RNA Isolation Kit) and collected to the bottom of the tube from the cap by a brief 
centrifugation. The collected cell lysate was stored at −80 °C until RNA isolation18,22.

Small RNA sequencing and data analysis. The total RNA was extracted from pooled CESCs (2046 cells) 
and CCECs (8.55 × 105 cells) using ARCTURUS PicoPure RNA Isolation Kit from two donor tissues (Age: 60 
and 62 years) for small RNA sequencing. Total RNA was used for small RNA library construction using TruSeq 
Small RNA Library Prep Kit (Illumina, California, USA) following manufacturer’s protocol. Libraries were quan-
tified using Qubit dsDNA HS Assay Kit (Invitrogen, California, USA) and validated in bioanalyzer using High 
Sensitivity DNA Kit (Agilent, California, USA). Based on the library QC report, the library generated was suitable 
for sequencing on Illumina. For CCECs, library distribution was in the range of 120bp-180bp and for CESCs 
the range was 120bp-160bp indicating the presence of small RNA inserts. The effective insert length was in the 
range of ~10bp- 40 bp; with combined size of adapters flanking the library being ~120 bp. Cluster generation and 
sequencing was carried out using NextSeq. 500 High-Output v2 Kit (Illumina, Inc.) using 75 cycles chemistry at 
the Genotypic Technology Pvt Ltd (Bangalore, India).

First, the quality assessment of raw deep sequencing data was performed with the FastQC tool. Adapter and 
low-quality reads were discarded from raw sequencing data using our Perl script, allowing no mismatches for 
adapter identification. Further, the data were uploaded into Oasis 2.0 online software23,24 for the miRNA analysis. 
Briefly, the data with the read size (15–32 nt) and low abundance reads (<5 reads) were discarded and remaining 
data were aligned to Homo sapiens hg19 genome reference. For differential expression (DE) analysis, NOISeq R 
software package were applied on the TMM normalized reads (R version 3.5.1). The variable expression of miR-
NAs between two cell types was considered significant when the fold change was 2 or greater and the probability 
score was more than 0.9. The results were represented in the volcano plot constructed by R version 3.5.125 based 
on the NOISeq scores: the M-value and D-value.

Quantitative real time PCR. For confirmation of the sequencing data, quantitative real time PCR was car-
ried out using (i) CESCs from 33 pairs of limbal rims (cells from 11 pairs were pooled as one sample to get around 
3500 cells/pool, n = 3) and CCECs from three pairs of corneal button and (ii) LBECs and CCECs from limbal 
rims and corneal buttons respectively, were pooled to obtain a minimum of 1 × 106 cells each (pool 1: 7 pairs; 
pool 2: 7 pairs; pool 3: 6 pairs of tissues), but after ensuring that there was no bias of age. The RNA concentra-
tion was estimated using Qubit RNA HS Assay Kit (Invitrogen, California, USA) in Qubit2.0. fluorometer. RNA 
(15 ng) from CESCs (n = 3) and CCECs (n = 3) and 1 µg of RNA from LBECs (n = 3) and CCECs (n = 3) was 
reverse transcribed using miScript II RT Kit (Qiagen, Hilden, Germany) according to manufacturer’s protocol. 
Due to the low quantity of RNA (15 ng) obtained, the reverse transcribed cDNA from CESCs was pre-amplified 
using miScript PreAMP PCR Kit (Qiagen, Hilden, Germany) for 12 cycles (Denaturation: 30 seconds at 94 °C 
and annealing/ extension: 3 minutes at 60 °C) preceded by initial activation: 15 minutes at 95 °C. Hence the same 
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protocol was followed for CCECs for comparison. The qPCR amplification was performed for 40 cycles using 2X 
miScript SYBR Green PCR Master Mix, 10X miScript Universal Primer and miRNA specific miScript Primer 
Assays (Supplementary Table S1 for list of miRNA Primer Assays used and Table S2 for custom designed miRNA 
primer sequence). Experiment was done in triplicates and signals were normalized to small nucleolar RNA U6 
(RNU6B) which was run in parallel as reference miRNA. Relative miRNA expression was calculated using com-
parative threshold cycle (Ct) method (2-ΔΔCt) and the result was represented as mean ± SEM. Statistical analysis 
of qPCR data was carried out using Mann-Whitney U test and miRNAs with fold change >2 and p value <0.05 
were considered significant.

LnA in-situ hybridization. For validation of differential expression of miRNAs in its native environment, 
LNA in-situ hybridization was carried out following protocol of Obernosterer et al.26 with some modifica-
tions. Briefly, The corneoscleral region from the donor eye ball was separated and fixed with 4% paraformal-
dehyde (Sigma-Aldrich, Missouri, United States) for 30 minutes at room temperature and then the tissue was 
incubated overnight at 4 °C in 30% sucrose solution prepared in 1X phosphate buffered saline (PBS) of pH 7.4 
(Ambion, California, United States). The tissue was embedded in optimal cutting temperature (OCT) compound 
(Leica, Wetzlar, Germany), and cryosections (10 μm) of limbal epithelium and corneal epithelium were taken 
on SuperFrost Plus slides (Thermofisher Scientific, Massachusetts, United States). The cryosections were fixed 
with ice cold acetone for 10 minutes at room temperature and then hybridized with biotinylated LNA miRNA 
probes (Eurogentec, Liège, Belgium; Supplementary Table S3 for list of LNA miRNA probes used) at 50 °C 
overnight by placing coverslip over the sections to prevent drying. U6 small nucleolar RNA probe and LNA 
scrambled microRNA probe were used as positive and negative control respectively. After hybridization, the 
slides were soaked in prewarmed 5X SSC Buffer (Ambion, California, United States) to remove the coverslips. 
The sections were incubated at 60 °C for 1 hour in 0.2X SSC buffer followed by blocking with 10% fetal bovine 
serum (Invitrogen, California, USA) in 0.1 M Tris (pH 7.5) and 0.15 M sodium chloride solution at room tem-
perature for 1 hour. To detect the hybridized probes, the sections were incubated with Streptavidin-Fluorescein 
Isothiocyanate (FITC) Conjugate (BD Biosciences, New Jersey, United States) in 1:1000 in 5% bovine serum 
albumin (Sigma-Aldrich, Missouri, United States) at 25 °C in dark for 2 hours. The sections were then washed 
twice with 1X PBS for 5 minutes and mounted using fluorescent mounting media with propidium iodide (Vector 
Laboratories, California, United States). The images were acquired using confocal laser scanning microscope 
(Leica SP8, Germany).

miRNA Target prediction, Gene Ontology and Pathway Analysis. miRWalk (Version 3.0) and 
mirDIP (Version 4.1.1.6) were used to predict the target genes of miRNAs. Experimentally validated targets from 
miRWalk and which were targets with> 10 sources in mirDIP databases were filtered for the analysis. For path-
way prediction, ClueGO package in Cytoscape 3.2.0 was used. KEGG pathway list was chosen with p-value ≤ 
0.01. Further, the network of miRNAs, target genes and the associated pathways was constructed by Cytoscape 
3.2.027.

Statistical analysis. Mann-Whitney U test was performed to determine the statistical significance between 
the two experimental groups and p < 0.05 was considered statistically significant. STATA 14.0 (Texas, USA) sta-
tistical software was used for analysis. Non-parametric test, Mann-Whitney U was chosen since the qPCR data 
followed non-gaussian distribution based on the Shapiro-Wilk normality test.

Results
Characteristics of small RNA sequencing and differentially expressed miRNAs between CESCs 
and CCECs. The entire quantity of total RNA isolated from enriched CESCs (pooled cells from two pairs of 
donor tissues) was used for library preparation as the concentration was lesser than the detection limit in the 
Qubit analysis. For CCECs, 10 ng of total RNA (RIN 2.8) was used. The sequencing generated more than 11 mil-
lion reads in CESCs and CCECs. After quality assessment and refinement, the high quality reads were mapped 
to human hg 19 genome. A total of 38 miRNAs in CESCs and 301 miRNAs in CCECs were detected. Further, 
differential expression (DE) analysis using NOISeq after normalization were performed on all detected miR-
NAs. A total of 127 DE miRNAs were identified in CESCs compared to CCECs with fold change >±2. Among 
them 29 miRNAs were upregulated and 64 miRNAs were downregulated. The fold change values of the miRNAs 
were summarized as volcano plot in Fig. 1. The top ten miRNAs that were highly expressed in CESCs (Fig. 2a) 
and CCECs (Fig. 2b) based on raw reads counts were represented graphically. Based on fold difference between 
CESCs and CCECs and raw reads counts, fourteen differentially expressed miRNAs and two miRNAs without 
significant difference in expression were selected for validation by qPCR expression analysis (Table 1).

Validation of differentially expressed miRNAs by qPCR. Validation of the sequencing data was 
carried out using RNA extracted from enriched CESCs and CCECs (after pooling cells from different donors) 
as specified under materials and methods. All six miRNAs hsa-miR-3168, hsa-miR-21-5p, hsa-miR-143-3p, 
hsa-miR-150-5p, hsa-miR-1910-5p and hsa-miR-10a-5p showed higher expression in CESCs with significant 
fold change (>2) compared to CCECs confirming the sequence data. Among them the magnitude of fold differ-
ence was much higher for hsa-miR-143-3p with 76.44 ± 3.07, while a ten-fold change was observed for hsa-miR-
10a-5p and hsa-miR-150-5p and a five-fold change was observed for hsa-miR-21-5p and hsa-miR-1910-5p 
(Fig. 3a). The nine miRNAs that are identified to be down regulated in CESCs by sequencing, hsa-miR-184, 
hsa-miR-181a-5p, hsa-miR-92a-3p, hsa-miR-4485-3p, hsa-miR-205-5p, hsa-miR-99b-5p, hsa-miR-204-5p, 
hsa-let7a-5p and hsa-let7b-5p had reduced expression in CESCs compared to CCECs, thus validating the 
sequencing data. The top two miRNAs expressed in CCECs had fold change of 2409 ± 214.9 (hsa-miR-184) and 
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894 ± 83.22 (hsa-miR-181a-5p) compared to that of CESCs. Hsa-miR-26a-5p and hsa-miR-191-5p did not show 
significant difference in the expression pattern between the two populations (Fig. 3b).

Localization of differentially expressed miRNAs by LNA in-situ hybridization. Expression of 
miRNAs hsa-miR-21-5p, hsa-miR-3168, hsa-miR-10a-5p, hsa-miR-1910-5p, hsa-miR-150-5p, hsa-miR-143-3p 
and hsa-miR-26a-5p was analyzed in cryosections of limbal epithelium (LE) and corneal epithelium (CE).

The differentially expressed miRNAs, hsa-miR-21-5p, hsa-miR-3168, hsa-miR-150-5p, hsa-miR-143-3p, 
hsa-miR-1910-5p and hsa-miR-10a-5p had higher expression in limbal basal epithelial cells compared to that 

Figure 1. Volcano plot showing differentially expressed miRNAs in CESCs and CCECs. M-D values in noise 
are represented by black dots, and miRNAs with p-value ≤ 0.9 by red dots. M –value (Mean fold change): 
log2(x1/x2). D –value (Difference in expression levels): |x1-x2 | . where x1 represents the expression level in 
CESCs and x2 in CCECs.

Figure 2. MicroRNAs with high read counts in corneal epithelial stem cells and central corneal epithelial cells 
by small RNA sequencing. (a) Bar diagram showing the top ten miRNAs expressed in enriched CESCs based on 
raw read counts. (b) Bar diagram showing the top ten miRNAs expressed in CCECs based on raw read counts.
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of corneal basal epithelial cells. Interestingly the expression of hsa-miR-143-3p was exclusive to the clusters of 
cells in limbal basal epithelium. Among the limbal basal epithelial cells, higher expression of hsa-miR-21-5p, 
hsa-miR-3168, hsa-miR-150-5p and hsa-miR-10a-5p was observed in a few clusters, while a discontinuous posi-
tivity was observed for hsa-miR-1910-5p. The miRNA hsa-miR-26a-5p had equal expression in both limbal and 
corneal epithelial basal cells (Fig. 4).

Pathway and Gene Ontology analysis. For the functional analysis, the targets of six DE miRNAs 
hsa-miR-3168, hsa-miR-10a-5p, hsa-miR-143-3p, hsa-miR-150-5p, hsa-miR-1910-5p, and hsa-miR-21-5p were 
predicted and their associated pathways and gene ontology were analyzed (Fig. S3). A total of 1055 targets were 
predicted for six miRNAs and they were enriched into 55 pathways with FDR < 0.01, are shown in Table S4. 
Further, stemness related pathways were visualized (Fig. 5). The target genes GSK3B (regulated by hsa-miR-
1910-5p), KRAS (hsa-miR-143-3p), and PIK3R1 (hsa-miR-143-3p) were associated with PI3K-Akt signaling 
pathway and signaling pathways regulating pluripotency of stem cells. In addition, GSK3B was associated with 
Wnt signaling pathway, and KRAS with MAPK signaling pathway. Particularly in signaling pathway regulating 
the pluripotency of stem cells, hsa-miR-143-3p dysregulate the pathway through the target genes IGF1R, PIK3R1, 
KRAS; hsa-miR-1910-5p by GSK3B, and ACVR2A by hsa-miR-10a-5p.

miRNA NGS fold change qPCR fold change

hsa-miR-21-5p 11 7.34 ± 0.38

hsa-miR-3168 10 3.71 ± 0.72

hsa-miR-143-3p 10 76.44 ± 3.07

hsa-miR-150-5p 7 13.86 ± 1.49

hsa-miR-1910-5p 8 7.76 ± 0.17

hsa-miR-10a-5p 8 11.76 ± 0.75

hsa-miR-181a-5p −12 −894 ± 83.22

hsa-miR-184 −15 −2409 ± 214.9

hsa-let-7a-5p −5 −1.66 ± 0.062

hsa-let-7b-5p −10 −1.98 ± 0.11

hsa-miR-205-5p −11 −14.64 ± 0.39

hsa-miR-204-5p −11 −2.18 ± 0.08

hsa-miR-4485-3p −9 −10.63 ± 1.21

hsa-miR-92a-3p −2 −5.47 ± 0.16

hsa-miR-191-5p NS 1.10 ± 0.02

hsa-miR-26a-5p NS 1.99 ± 0.11

Table 1. Differentially expressed miRNAs CESCs vs. CCECs validated by qPCR. NS-not significant.

Figure 3. Quantitative Real time PCR validation of differentially expressed miRNAs. Relative miRNA 
expression (RQ) in (a) miRNAs highly expressed in CESCs in comparison to CCECs and (b) miRNAs highly 
expressed in CCECs in comparison to CESCs by qPCR using SYBR Green chemistry. Each sample (n = 3) 
was run in triplicate. The data were expressed as mean ± SEM and relative fold change of expression (RQ) 
was calculated by 2-∆∆CT method after normalization with RNU6B (Reference microRNA). (**P < 0.01; 
***P < 0.001; NS P > 0.05; Mann–Whitney U test).
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Discussion
MicroRNA profiling of total human limbal epithelium28, human limbal basal epithelium29 and mouse limbal basal 
epithelium30,31 in comparison to central corneal epithelium revealed many differentially expressed miRNAs. In 
addition, reports are available on the role of miRNAs in differentiation28,32, transdifferentiation33, angiogene-
sis34–36, wound healing37,38, corneal transplant rejection39, corneal neovascularization40 and ocular infections41. 
But only a few reports are available on association of miRNAs in the regulation of stemness. The major challenge 
of profiling the miRNAs in CESCs was the low stem cell content (3-5%) in the total limbal epithelium. Hence an 
attempt was made to profile the miRNAs specific to adult stem cells of the limbus using a small number of highly 
enriched CESCs as close as eighty percent18 by small RNA sequencing platform. Since the yield of CESCs was 
minimum after enrichment, Arcturus picopure RNA isolation kit was used in this study for RNA isolation, to 
reduce the loss of short structured RNA with low GC during extraction from small number cells42.

Small RNA sequence data of CCECs was used as a quality control for the sequencing. Comparison of the 
data with published literature29,43 using total cornea or corneal epithelium (by NGS or microarray) identified a 
similar profile of miRNAs, thereby confirming the validity of the data. However, only 38 miRNAs were identified 
in CESC population and this could possibly due to the following concerns (i) low input RNA, that could not be 
quantified before library preparation ii) usage of LCM for enrichment process and iii) difference in method of 
isolation of CESCs and CCECs. In spite of this drawback, miRNAs identified to be highly expressed in the CESCs 
were confirmed to be specific by in-situ hybridization and qPCR.

Figure 4. Locked nucleic acid in-situ hybridization of miRNAs highly expressed in CESCs. Expression of hsa-
miR-21-5p, hsa-miR-3168 and hsa-miR-10a-5p (green) was higher in clusters of limbal basal epithelial cells 
compared to corneal epithelial cells, while the expression of hsa-miR-143–3p was restricted to clusters of cells 
in the limbal basal epithelium. Expression of hsa-miR-150-5p was evident in all layers of limbal epithelium 
however highly prominent in a few clusters in basal layer. Hsa-miR-1910-5p had discontinuous positivity in 
limbal basal epithelial layer, while hsa-miR-26a-5p had equal expression in the basal layer both limbal and 
corneal epithelium. Nuclei were stained with propidium iodide (PI, red). Positive control RNU6B was detected 
in all layers of epithelium both in limbus and cornea, whereas no signal was detected when hybridized with 
scrambled sequence. Asterisks represent the positivity in clusters. The dotted line demarcates the termination of 
the epithelium and beginning of the underlying stroma. Scale bar: 50 µm.
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Though the number of miRNAs detected in CESCs was only one tenth compared to CCECs, hsa-miR-3168, 
hsa-miR-21-5p, hsa-miR-143-3p, hsa-miR-150-5p, hsa-miR-1910-5p and hsa-miR-10a-5p had greater than seven 
folds increase in expression in the enriched CESCs indicating their specificity to stem cells. Among these six 
miRNAs, hsa-miR-316844 and hsa-miR-1910-5p45 were reported as novel miRNAs in human embryonic stem 
cells. Understanding their functional role in regulating adult tissue resident stem cells will be of significance. The 
remaining four miRNAs were reported to have a role in regulating other stem cells. Hsa-miR-21-5p suppresses 
marrow derived endothelial progenitor cells proliferation by activating TGFβ signaling through down regula-
tion of WW domain-containing protein 1 (WWP1)46. Similarly, miR-10a down regulates proliferation of human 
cardiomyocyte progenitor cells by targeting GATA647. Hsa-miR-143-3p and hsa-miR-150-5p are known to be 
associated with self-renewal of mouse embryonic stem cells and human liver cancer stem cells respectively. MiR-
143 promotes self-renewal by suppressing de novo methyltransferase gene DNMT3A48 and miR-150 inhibits cell 
proliferation by targeting C-MYB49.

Validation of the sequencing data by qPCR analysis revealed that fourteen differentially expressed miRNAs to 
have similar expression pattern (Fig. 3). In addition, all the differentially expressed miRNAs had several magni-
tudes of fold difference in CESCs than LBECs when compared to CCECs independently (Fig. S2). In addition, the 
up regulation of hsa-miR-3168 as well as the down regulation of hsa-let7a-5p and hsa-miR-204-5p was identified 
only with the enriched CESCs but not with LBECs. Thus, these observations highlight the importance of enrich-
ment of CESCs and confirming the specificity of the identified miRNAs.

LNA in-situ hybridization revealed the location of the miRNAs in corneal and limbal tissue. Among the 
miRNAs that were highly expressed in CESCs, hsa-miR-3168, hsa-miR-21-5p, hsa-miR-150-5p and hsa-miR-
1910-5p had higher expression in limbal basal epithelial layer compared to that of the corneal basal epithelial 
layer. Further, a few clusters of small cells had strong positivity (probably stem cells) compared to that of the other 
limbal basal epithelial cells. Likewise, the expression of hsa-miR-143-3p was confined only to clusters in limbal 
basal epithelial layer, indicating its very high specificity to stem cells.

The predicted targets of these miRNAs that were highly expressed in CESCs were identified to be associated 
with pathways regulating pluripotency of stem cells and other pathways including MAPK signaling, Ras signal-
ing, Hippo signaling, ErbB signaling, Wnt signaling and PI3K-Akt signaling. Reports are available on the signif-
icance of Wnt50, PI3K/Akt51, MAPK52 signaling pathways in the regulation of stem cells. The direct targets of the 

Figure 5. Network of differentially expressed miRNAs between CESCs and CCECs, their target genes and the 
stemness related pathways associated with them. Nodes red in colour are the miRNAs, blue are genes and green 
are their associated pathways.
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miRNAs (highly expressed in CESCs) predicted to be involved in these signaling pathways are listed in Table 2. 
These targets are known to be associated with cell proliferation, differentiation, migration and apoptosis. Further 
studies are therefore essential to confirm the functional role of the identified miRNAs and their targets in the 
regulation of stemness in CESCs.

One of the limitations of this study is the use of donor tissues. The RNA expression could have been altered 
due to the associated ischemia53 and the additional processing of the cells for enrichment of stem cells54. In spite 
of the low input of RNA for sequencing and low number of miRNAs identified in this study, confirmation of the 
high expression of miRNAs hsa-miR-3168, hsa-miR-21-5p, hsa-miR-143-3p, hsa-miR-150-5p, hsa-miR-1910-5p 
and hsa-miR-10a-5p in CESCs indicates their significant role in the regulation of stem cells. Transfection studies 
using hsa-miR-143-3p and hsa-miR-150-5p mimics in the primary limbal epithelial cells (n = 3) identified their 
increased colony forming potential, specifically their ability to form holoclones (based on colony morphology 
as defined by Barrandon and Green55), thereby indicating a strong regulatory influence of these miRNAs on 
maintenance of stemness56,57. Thus, the data generated serves as a platform to study the miRNAs associated with 
the maintenance of stemness. Further studies are essential to elucidate the functional role of these miRNAs in 
regulating the stemness in CESCs and the associated signaling pathways.
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