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An immune‑related lncRNA model 
for predicting prognosis, immune 
landscape and chemotherapeutic 
response in bladder cancer
Jian Hou2,3, Songwu Liang2,3, Zhimin Xie1, Genyi Qu1*, Yong Xu1*, Guang Yang1 & 
Cheng Tang1

Long noncoding RNAs (lncRNAs) participate in cancer immunity. We characterized the clinical 
significance of an immune-related lncRNA model and evaluated its association with immune 
infiltrations and chemosensitivity in bladder cancer. Transcriptome data of bladder cancer specimens 
were employed from The Cancer Genome Atlas. Dysregulated immune-related lncRNAs were screened 
via Pearson correlation and differential expression analyses, followed by recognition of lncRNA pairs. 
Then, a LASSO regression model was constructed, and receiver operator characteristic curves of one-, 
three- and five-year survival were established. Akaike information criterion (AIC) value of one-year 
survival was determined as the cutoff of high- and low-risk subgroups. The differences in survival, 
clinical features, immune cell infiltrations and chemosensitivity were compared between subgroups. 
Totally, 90 immune-related lncRNA pairs were identified, 15 of which were screened for constructing 
the prognostic model. The area under the curves of one-, three- and five-year survival were 0.806, 
0.825 and 0.828, confirming the favorable predictive performance of this model. According to the AIC 
value, we clustered patients into high- and low-risk subgroups. High-risk score indicated unfavorable 
outcomes. The risk model was related to survival status, age, stage and TNM. Compared with 
conventional clinicopathological characteristics, the risk model displayed higher predictive efficacy 
and served as an independent predictor. Also, it could well characterize immune cell infiltration 
landscape and predict immune checkpoint expression and sensitivity to cisplatin and methotrexate. 
Collectively, the model conducted by paring immune-related lncRNAs regardless of expressions 
exhibits a favorable efficacy in predicting prognosis, immune landscape and chemotherapeutic 
response in bladder cancer.

Abbreviations
RNA-seq	� RNA sequencing
TCGA​	� The Cancer Genome Atlas
lncRNAs	� Long noncoding RNAs
FDR	� False discovery rate
LASSO	� Least Absolute Shrinkage and Selector Operation
RS	� Risk score
ROC	� Receiver operator characteristic
OS	� Overall survival
AUC​	� Area under the curve
AIC	� Akaike information criterion
MCPcounter	� Microenvironment Cell Populations-counter
IC50	� Half inhibitory concentration

Bladder cancer is responsible for almost 170,000 deaths globally each year, mainly including two subtypes: 
non-muscle invasive (75%) and muscle invasive (25%)1. At present, cystoscopy represents the gold standard 
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of clinical tools for diagnosing bladder cancer. Nevertheless, this procedure exhibits high invasiveness, and 
there is the consequence of false-negatives sporadically occurring due to the difficulty in detecting carcinoma 
in situ2. Despite much progress in therapeutic strategies such as tumor resection, chemotherapy, and radiotherapy, 
survival duration and therapeutic responses vary among subjects. Due to high mutational burden, immune 
checkpoint inhibitors (ICIs) have been approved in advanced bladder cancer3. However, the overall response 
rate is merely 15–25%4, which highlights the importance of discovering biomarkers that may be predictive of 
treatment responses. As a highly heterogeneous malignancy, the etiology and clinicopathological manifestations 
vary among individuals. Growing evidence suggests that immunity is related to survival and therapeutic effects 
of bladder cancer5. For instance, targeting myeloid-derived suppressor cells (MDSCs) may heighten the thera-
peutic effects of ICIs for cisplatin-resistant bladder cancer6. Tumor‑infiltrating M2 macrophages are related to 
undesirable overall and disease‑specific survival duration7. Hence, screening reliable immune-related prognostic 
indicators is of importance for bladder cancer8.

Extensive RNA sequencing (RNA-seq) profiles by The Cancer Genome Atlas (TCGA) have suggested the 
implications of epigenetic, transcriptional, and post-transcriptional regulation of long noncoding RNAs (lncR-
NAs) in diagnosing and curing bladder cancer9–11. LncRNAs display higher specificity to biological states com-
pared to coding RNAs12. Molecular characterizations have motivated to optimize actionable therapeutic strate-
gies against bladder cancer13. As confirmed, lncRNAs mediate innate and adaptive immunity of bladder cancer 
through the functional states of immune cells and relevant pathways and genes14. For instance, lncRNA MIR4435-
2HG contributes to unfavorable prognoses as well as high immune infiltrations in bladder cancer15. Recently, 
immune-related lncRNA signatures have been conducted for evaluating prognoses and immune infiltrations of 
bladder cancer16–18. Hence, this study attempted to develop a risk model constructed by immune-related lncRNA 
pairs for predicting the survival outcomes by modeling algorithms, paring, and iterations, immunotherapy, and 
chemotherapy of bladder cancer patients.

Results
Identifying dysregulated immune‑related lncRNAs in bladder cancer.  Figure  1 depicted the 
workflow of this study. Here, transcriptome profiles of bladder cancer and normal specimens were obtained 
from TCGA and the lncRNAs were extracted. Immune-related lncRNAs that were distinctly correlated to 
immune-related genes were selected according to correlation coefficient > 0.4 and p < 0.001. As a result, 724 
immune-related lncRNAs were identified (Supplementary table 1). Their expressions were compared between 
bladder cancer and normal specimens. Our data showed that 14 immune-related lncRNAs displayed down-

Figure 1.   The workflow of this study.
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regulation while 53 exhibited up-regulation in bladder cancer compared to normal specimens (Fig. 2A, B and 
Supplementary table 2).

Figure 2.   Developing a prognostic immune-related lncRNA signature for bladder cancer. (A) Volcano 
diagram of immune-related lncRNAs that displayed abnormal expression in bladder cancer and normal tissue 
specimens. Red dots: up-regulation and green dots: down-regulation. (B) Hierarchical clustering analyses of the 
dysregulated expression patterns of these immune-related lncRNAs between bladder cancer and normal tissue 
specimens. Red: up-regulation and blue: down-regulation. (C) Elucidating LASSO coefficient profiling of these 
prognostic lncRNAs. (D) Validating tuning parameter selection for LASSO regression model. (E) Univariate cox 
regression analyses of the dysregulated immune-related lncRNAs that may significantly impact bladder cancer’s 
survival. Red: risk factor and green: protective factor. (F) Multivariate Cox regression analyses of the candidate 
prognostic lncRNAs.
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Developing dysregulated immune‑related lncRNA pairs and a risk model in bladder can‑
cer.  Utilizing an iteration loop and 0-or-1 matrices, 1871 dysregulated immune-related lncRNA pairs were 
recognized (Supplementary table 3). As depicted in univariate cox regression analyses, 90 lncRNA pairs could 
significantly impact bladder cancer subjects’ survival (Supplementary table  4). Above pairs were screened 
through a LASSO model. As a result, 15 dysregulated immune-related lncRNA pairs including MAFG-
DT|SCAT2, ACTA2-AS1|LINC01705, LINC00460|PICSAR, AL359881.1|AC129926.1, LINC01767|AL161431.1, 
AC112721.1|LINC02154, AC010331.1|TDRKH-AS1, AL591848.2|AC100801.1, AL591848.2|AC005180.1, 
AL158166.1|AL355916.1, AC129926.1|SCAT2, AF127577.3|SCAT2, LINC02820|AC073365.1, 
AL161772.1|AP005432.2, and NR4A1AS|LINC02195 were put into this risk model (Fig. 2C, D). Through uni- 
and multivariate cox regression analyses, these pairs displayed distinct associations with survival outcomes 
(Fig. 2E, F). According to the coefficients and expressions of lncRNA pairs (Table 1), RS was calculated for blad-
der cancer subjects.

Evaluating the predictive performance of this risk model for prognoses.  The cutoff value that 
differentiated bladder cancer subjects into high- and low-risk subgroups was 1.074 according to the AIC of 
one-year survival (Fig. 3A). The AUC of one-year survival was 0.806. This indicated the favorable predictive 
efficacy of this risk model. Furthermore, we conducted the ROCs of three- and five-year survival. The AUCs 
of three- and five-year survival were 0.825 and 0.828, demonstrating that this risk model was also utilized for 
predicting three- and five-year clinical outcomes of bladder cancer (Fig. 3B). According to the cutoff value, we 
clustered patients into high- and low-risk subgroups (Fig. 3C). The distributions of survival status between sub-
groups were depicted in Fig. 3D. High-risk subgroup possessed more dead patients in comparison to low-risk 
subgroup. The differences in survival duration were compared between subgroups. In Fig. 3E, low-risk patients 
were predictive of favorable clinical outcomes compared to high-risk patients (p < 0.001).

Associations between clinical features and this risk model.  Figure  4A depicted the associations 
between clinical features and this risk model in bladder cancer. We found that the risk model was in relation to 
survival status (p < 0.001), age (p < 0.05), stage (p < 0.05), T (p < 0.05), N (p < 0.05) and M (p < 0.05) of bladder 
cancer patients. The differences in RS were compared among different subgroups of clinical features. As shown 
in our data, patients with dead status exhibited higher RS than those with alive status (p < 2.22e−16; Fig. 4B). In 
Fig. 4C, patients in stage III-IV had elevated RS compared to those with stage I-II. Furthermore, > 65 patients 
displayed increased RS than ≤ 65 subjects (p = 0.006; Fig. 4D). As depicted in Fig. 4E, subjects with T3–4 pos-
sessed higher RS than those with T1–2. Compared to patients with N0, increased RS was detected in those with 
N1–2 (Fig. 4F). Also, higher RS was found in patients with M1 or Mx than M0 (Fig. 4G). There was elevated RS 
in high grade than low grade specimens (p = 0.0045; Fig. 4H). Nevertheless, no significant difference in RS was 
found between female and male specimens (Fig. 4I). Hence, this risk model might be relation to bladder cancer 
progression and metastases.

This risk model as an independent prognostic predictor.  As depicted in univariate cox regression 
analyses, stage, T, N, and risk model were in relation to bladder cancer prognoses (Fig. 5A). This was indicative 
that above factors might impact patients’ clinical outcomes. To evaluate the predictive independency, multivari-
ate cox regression analyses were conducted. In Fig. 5B, this risk model might be independently predictive of 
patients’ prognoses. ROCs were conducted for comparing their differences in predictive performance of one-

Table 1.   Regression coefficients of each factor in this prognostic immune-related lncRNA signature. HR 
hazard ratio, HR.95L 95% CI lower limit, HR.95H 95% CI upper limit.

LncRNAs Coefficient HR HR.95L HR.95H P-value

MAFG-DT|SCAT2 0.9052 2.4725 1.4417 4.2397 0.0010

ACTA2-AS1|LINC01705 − 0.3363 0.7144 0.4986 1.0235 0.0668

LINC00460|PICSAR 0.3370 1.4007 0.9846 1.9928 0.0610

AL359881.1|AC129926.1 − 0.6039 0.5467 0.3653 0.8179 0.0033

LINC01767|AL161431.1 − 0.4304 0.6503 0.4532 0.9331 0.0195

AC112721.1|LINC02154 0.3135 1.3682 0.9684 1.9331 0.0754

AC010331.1|TDRKH-AS1 − 0.5091 0.6010 0.4273 0.8454 0.0034

AL591848.2|AC100801.1 − 0.3116 0.7323 0.4885 1.0977 0.1314

AL591848.2|AC005180.1 − 0.7269 0.4834 0.3339 0.6999 0.0001

AL158166.1|AL355916.1 − 0.5227 0.5929 0.4152 0.8468 0.0040

AC129926.1|SCAT2 0.5215 1.6846 1.1189 2.5364 0.0125

AF127577.3|SCAT2 0.8895 2.4339 1.6760 3.5346 2.97E−06

LINC02820|AC073365.1 − 0.6777 0.5078 0.3566 0.7231 0.0002

AL161772.1|AP005432.2 0.4795 1.6153 1.1057 2.3599 0.0132

NR4A1AS|LINC02195 0.5227 1.6866 1.1873 2.3960 0.0035
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year survival. We found that this risk model possessed the highest AUC value (Fig.  5C), demonstrating the 
favorable efficacy in predicting prognoses.

This risk model might predict immune cell landscape of bladder cancer.  This study estimated 
immune cell infiltrations of bladder cancer specimens through XCELL, TIMER, QUANTISEQ, MCPCOUN-
TER, EPIC, CIBERSORT-ABS and CIBERSORT algorithms. Correlations between risk model and immune cell 
infiltrations were estimated via Spearson correlation test, as depicted in Fig. 6. Our data demonstrated that high-
risk specimens possessed increased infiltrations of myeloid dendritic cell, B cell native, macrophage M0 and M2, 
neutrophil and T cell CD8 (Supplementary Fig. 1).

Assessment of immune checkpoints with this risk model.  Currently, ICIs have been approved for 
bladder cancer treatment. Hence, this study observed the correlations between this risk model and immune 
checkpoints in bladder cancer specimens. No significant differences in CTLA4 (Fig. 7A), LAG3 (Fig. 7B), PLD1 
(Fig.  7C), PD1 (Fig.  7D) and TIGIT (Fig.  7E) expressions were detected between high- and low-risk speci-
mens. Nevertheless, GAL9 displayed elevated expression in low- than high-risk specimens (Fig. 7F; p < 0.001). 
Inversely, higher TIM-3 (Fig. 7G; p < 0.05) and PD1LG2 (Fig. 7H; p < 0.001) expressions were found in high-risk 
specimens in comparison to low-risk specimens.

Figure 3.   Evaluating the predictive performance of this immune-related lncRNA signature on bladder 
cancer prognoses. (A) ROC curves of the immune-related lncRNA signature for bladder cancer subjects. The 
maximum inflection point was the cut-off point that was calculated with the AIC method. The AUC value 
was calculated for evaluating the predictive efficacy of this signature in bladder cancer prognoses. (B) The 
one-, three- and five-year ROC curves of this signature. (C) Calculating the risk score of each bladder cancer 
subject and distinguishing patients into high and low risk subgroups based on the cutoff value (vertical dotted 
line). Red: high risk and green: low risk. (D) Visualizing the distribution of survival status in high and low risk 
bladder cancer subjects. Red dots: alive and green dots: alive. Vertical dotted line represented the cutoff value of 
two subgroups. (E) Kaplan–Meier curves of overall survival between high and low risk patients.
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Analysis of the associations between this risk model and chemosensitivity.  The associations 
between this risk model and chemosensitivity were evaluated in bladder cancer specimens. Our data showed 
that high-risk patients exhibited decreased IC50 values of cisplatin in comparison to low-risk subjects (Fig. 8A; 
p = 0.043). This indicated that high-risk scores were predictive of higher sensitivity to cisplatin. In Fig.  8B, 
reduced IC50 values of methotrexate were found in low-risk specimens than high-risk specimens (p = 1.5e−08), 
demonstrating that low-risk scores were in relation to higher sensitivity to methotrexate. Furthermore, this 
study evaluated the differences in IC50 values of vinblastine (Fig. 8C), gemcitabine (Fig. 8D) and doxorubicin 
(Fig. 8E) between high- and low-risk specimens. Nevertheless, no significant differences were found.

Discussion
LncRNAs have been confirmed to be in relation to cancer immunity and tumor microenvironment in bladder 
cancer19. Several immune-related lncRNA models have been constructed according to published literature16,20,21. 
Nevertheless, these signature models are developed on the basis of expression quantifications of immune-related 
lncRNAs. Herein, this study recognized the immune-related lncRNA pairs and constructed a reliable and inde-
pendent risk model through combining two lncRNAs, not adopting their expression levels22.

Here, we firstly screened immune-related lncRNAs by Pearson correlation analyses. Different from previ-
ous research, dysregulated immune-related lncRNAs were further identified by comparing their expressions 
between bladder cancer and normal specimens16,23. With cyclically single pairing methods with 0-or-1 matrices, 

Figure 4.   Associations between this prognostic immune-related lncRNA signature and clinicopathological 
characteristics of bladder cancer. (A) Heatmaps of the visualization of clinicopathological characteristics: 
survival status, age, gender, grade, stage, T, N and M in high and low bladder cancer subjects. *p < 0.05; 
***p < 0.001. Comparing the risk score in different clinicopathological characteristics: (B) survival status (0: 
dead; 1: alive), (C) stage I–IV, (D) age ≤ 65 and > 65, (E) T1–4, (F) N0-X, (G) M0-X, (H) grade and (I) gender.
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we identified immune-related lncRNA pairs. Combining univariate regression analyses and LASSO analyses, we 
developed a risk model for bladder cancer. Not using the median RS as the cutoff value that differentiated bladder 
cancer subjects into high- and low-risk subgroups, the AIC value of one-year survival was determined as the 
optimal cut-off value16,24,25. Furthermore, this risk model possessed distinct associations with survival status, age, 
stage and TNM of bladder cancer. According to multivariate regression analyses, the risk model might indepen-
dently predict bladder cancer patients’ OS. In comparison to other clinical features, the risk model displayed the 
highest AUC of one-year OS, indicating that the model possessed the potential as a favorable predictor of bladder 
cancer. Moreover, this risk model was in relation to immune cell infiltrations and immune checkpoints. Intertu-
moral tumor-infiltrating immune cells may impact the responses to ICIs26,27. Here, by comprehensively utilizing 
XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS and CIBERSORT algorithms, we 
characterized the correlations between risk model and immune cell infiltrations. High-risk specimens possessed 
elevated infiltration levels of myeloid dendritic cells, B cells native, macrophages M0 and M2, neutrophils and T 
cells CD8 in bladder cancer. Also, GAL9 displayed elevated expression in low- than high-risk specimens while 
higher TIM-3 and PD1LG2 expressions were found in high-risk specimens than low-risk specimens. These 
data indicated that this risk model might be utilized for predicting immunotherapy response of bladder cancer.

Bladder cancer represents a complex malignancy correlated to high morbidity and mortality risks if not 
treated optimally. Neoadjuvant chemotherapy has been recommended prior to radical cystectomy for bladder 
cancer. Although the survival benefit is nearly 5–10%, some subjects cannot respond to chemotherapy28. Thus, 
identifying predictors may distinctly reduce side effects and miss the optimal time for surgery. Here, our data 
suggested that high-risk patients exhibited higher sensitivity to cisplatin in comparison to low-risk individuals. 
Inversely, subjects with low-risk were more sensitive to methotrexate than those with high-risk. Above data 
indicated that this risk model might possess the potential to predict the sensitivity to cisplatin and methotrexate 
for bladder cancer.

Due to high abundance, lncRNAs have distinct biological functions29,30. Our methods identified dysregulated 
immune-related lncRNAs and established the optimal immune-related lncRNA pairs. Hence, pairs with high or 

Figure 5.   Assessing the predictive independency of this prognostic immune-related lncRNA signature for 
bladder cancer prognoses. (A) Univariate cox regression analyses of the correlations of age, gender, stage, T, N, 
M and risk score with bladder cancer prognoses. (B) Multivariate cox regression for evaluating the independent 
predictive factors. (C) Comparing the AUC values of age, gender, stage, T, N, M and risk score.
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low expressions only were tested not detecting expression levels of each lncRNA. Our risk signature possessed 
the superiority in clinical practice for distinguishing high- and low-risk patients. Due to the closely correlations 
to immune-related genes, the selected lncRNAs potentially participated in modulating the immune microen-
vironment of bladder cancer. However, there are several limitations in our study. Firstly, because the lncRNA 
expression profiles of bladder cancer patients with complete survival time are not available in public databases, 
this study did not have an external validation to evaluate the performance of the prognostic immune-related 
lncRNA model. Therefore, more independent bladder cancer cohorts should be utilized for validating the risk 
model in our future studies. Furthermore, the functions of these lncRNAs and their interactions with immune-
related genes will be confirmed based on in vitro and in vivo experiments.

Collectively, this prognostic signature constructed by 15 immune-related lncRNA pairs served as an inde-
pendent predictor and displayed the favorable performance in predicting prognoses of bladder cancer. Also, 
it had the potential to predict immune landscape and chemotherapeutic response for bladder cancer patients.

Figure 6.   Correlations between risk score and immune cell infiltrations of bladder cancer specimens 
by following software: XCELL; TIMER; QUANTISEQ; MCPCOUNTER; EPIC; CIBERSORT-ABS and 
CIBERSORT.
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Materials and methods
Data acquirement.  Transcriptome profiles of bladder cancer (n = 414) and normal bladder specimens 
(n = 19) were retrieved from TCGA project (https://​tcga-​data.​nci.​nih.​gov/​tcga/). Through Ensembl (http://​
asia.​ensem​bl.​org), the Gencode (version 26) GTF file was obtained to annotate and differentiate mRNAs and 
lncRNAs31. Following removing specimens without clinical information or those with survival time of 0-day, 
408 bladder cancer specimens and 19 normal bladder specimens were retained and complete clinical features of 
bladder cancer patients were listed in Supplementary table 5.

Identifying immune‑related lncRNAs.  Totally, immune-related genes were obtained from the ImmPort 
database (http://​www.​immpo​rt.​org). Supplementary table 6 listed the detailed information of these immune-
related genes. Through Pearson correlation analyses, this study assessed the correlations between immune-
related genes and extracted lncRNAs. The immune-related lncRNAs were screened according to correlation 
coefficient > 0.4 and p < 0.001.

Identifying dysregulated immune‑related lncRNAs.  Differential expression analyses of the immune-
related lncRNAs between tumor and normal bladder specimens were screened utilizing limma package32. The 
lncRNAs with |log fold-change|> 1.5 and false discovery rate (FDR) < 0.05 were screened. Above lncRNAs were 
visualized by heatmap package.

Pairing dysregulated immune‑related lncRNAs.  Cyclically singly paring dysregulated immune-
related lncRNAs were screened. The 0-or-1 matrices were developed if α = lncRNA-1 + lncRNA-2. α = 1 when 

Figure 7.   Correlations between risk model and immune checkpoints in bladder cancer. Comparing the 
expressions of (A) CTLA4; (B) LAG3; (C) PDL1; (D) PD1; (E) TIGIT; (F) GAL9; (G) TIM-3 and (H) PD1LG2 
in high and low bladder cancer subjects. Ns: not significant; *p < 0.05; ***p < 0.001.

https://tcga-data.nci.nih.gov/tcga/
http://asia.ensembl.org
http://asia.ensembl.org
http://www.immport.org
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lncRNA-1 expression was > lncRNA-2, while α = 0 when lncRNA-1 expression was < lncRNA-2. If the expression 
of lncRNA pair was 0 or 1, we thought there were no associations between this pair and prognoses, since the pair 
that did not a certain rank cannot be correctly predictive of patients’ prognoses. If the number of lncRNA pairs 
that expression was 0 or 1 occupied > 20% of entire pairs, this was an effective match.

Establishing a prognostic risk model.  Prognoses analyses of dysregulated immune-related lncRNAs 
were carried out through univariate cox regression models. LncRNAs with p < 0.05 could impact survival 
outcomes of bladder cancer. These lncRNAs were put into Least Absolute Shrinkage and Selector Operation 
(LASSO) model via glmnet package33. Penalty parameter tuning was carried out through ten‐fold cross‐verifica-
tion. This analysis was run lasting 1000 cycles. The frequency of every pairing in the 1000-times-repeated LASSO 
model was retained and pairing with frequency > 100 times was chosen for constructing this model. Afterwards, 
a multivariate Cox regression model was conducted for determining the risk score (RS) through the coefficients 
and expressions of candidate lncRNA pairs according to the following formula: RS = 

∑
k

i=1
βiSi , where β repre-

sented the coefficient of lncRNA pair i and S represented the expression of lncRNA pair i.

Evaluating the predictive efficacy of the prognostic risk model.  Receiver operator characteristic 
(ROC) curves were depicted for assessing one-, three- and five-year overall survival (OS). By calculating the area 
under the curve (AUC), the predictive efficacy of the prognostic risk model was determined. The Akaike infor-
mation criterion (AIC) value of each point for the one-year ROC curves was calculated for identifying the maxi-
mum inflection point, which was selected as the cut-off value for distinguishing patients into high and low risk 
subgroups. Survival status of each subgroup was visualized. Prognoses analyses of high and low risk subgroups 
were conducted through Kaplan–Meier curves. Differences in survival were determined with log-rank tests.

Clinical feature assessment of the risk model.  Associations between RS and clinical features (survival 
status, age, gender, grade, stage, T, N and M) were evaluated via chi-square tests. Also, RS was compared among 
different subgroups according to these clinical features. Univariate cox regression analyses were conducted for 
screening which factors could impact patients’ survival. Hazard ratio and p values were separately calculated. 
Utilizing multivariate cox regression analyses, indicators that were independently predictive of survival were 
determined. One-year ROC curves were plotted for comparing the predictive performance of risk model and 
other clinical features.

Analysis of immune cell infiltrations.  The known algorithms that included TIMER (version 2.0; 
http://​timer.​cistr​ome.​org/)34, CIBERSORT (http://​ciber​sort.​stanf​ord.​edu/)35, XCELL (http://​xCell.​ucsf.​edu/)36, 

Figure 8.   Correlations between risk model and the sensitivity to chemotherapy drugs in bladder cancer. 
Comparing the IC50 values of (A) cisplatin; (B) methotrexate; (C) vinblastine; (D) gemcitabine and (E) 
doxorubicin in high and low bladder cancer subjects.

http://timer.cistrome.org/
http://cibersort.stanford.edu/
http://xCell.ucsf.edu/
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QUANTISEQ (http://​icbi.​at/​quant​iseq)37, Microenvironment Cell Populations-counter (MCPcounter)38 and 
EPIC (http://​epic.​gfell​erlab.​org)39 were employed for inferring immune cell infiltrations of bladder cancer speci-
mens on the basis of gene expression profiling. Spearman correlation analyses were carried out for estimating 
the associations between RS and immune cell infiltrations. Immune cell infiltrations between high- and low-risk 
subgroups were compared through Wilcoxon tests. Immune cells with p < 0.05 were screened and visualized into 
a lollipop diagram utilizing ggplot2 package.

Associations between immune checkpoints and risk model.  The expressions of immune check-
points (CTLA4, LAG3, PDL1, PD1, TIGIT, GAL9, TIM-3 and PD1LG2) were quantified in every bladder cancer 
specimen. Their expressions were compared between high- and low-risk subgroups.

Estimating the associations between chemosensitivity and risk model.  The half inhibitory con-
centration (IC50) of chemotherapy drugs (cisplatin, methotrexate, vinblastine, gemcitabine and doxorubicin) 
was determined in every bladder cancer specimen utilizing pRRophetic package40. The differences in IC50 were 
compared between high- and low-risk subgroups.

Statistical analyses.  This study utilized R software (version 4.0.0: http://​www.r-​proje​ct.​org) for conduct-
ing statistical analyses. The differences between two subgroups were estimated utilizing Wilcoxon rank sum 
tests. Meanwhile, three or more groups were compared through Kruskal–Wallis test. All statistical tests were 
two-sided when p < 0.05 indicated statistical significance.

Data availability
All data generated or analyzed during this study are included in this article.
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