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Abstract: Oceans have shown to be a remarkable source of natural products. The biological properties
of many of these compounds have helped to produce great advances in medicinal chemistry.
Within them, marine natural products containing an oxepanyl ring are present in a great variety
of algae, sponges, fungus and corals and show very important biological activities, many of them
possessing remarkable cytotoxic properties against a wide range of cancer cell lines. Their rich
chemical structures have attracted the attention of many researchers who have reported interesting
synthetic approaches to these targets. This review covers the most prominent examples of these types
of compounds, focusing the discussion on the isolation, structure determination, medicinal properties
and total synthesis of these products.
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1. Introduction

More than 70% of Earth surface is covered by water, 96.5% of which is found in the oceans.
This means that the planet’s largest habitat is the ocean, which is the ecosystem where the major part of
animals and plants of Earth lives. This includes microscopic algae, marine plants with roots, sponges,
corals and all types of fishes, within others. These marine organisms are a great source of natural
products with important biological activities.

The continuous search for compounds with pharmacological properties is one of the main aims
of scientists. Natural products have always provided a great contribution to medicine since the
first discovery of drugs with positive impact in human health. For thousands of years the common
sources of natural products with potential biological activities have been microorganisms and land
plants. The search for natural products in the sea is much recent, since a parallel development of the
appropriate technology was needed. However, since the 70’s the number of isolated marine natural
products with outstanding biological properties has grown enormously [1].

A group of marine natural products that attract special interest is polyfunctionalized cyclic ethers.
Within them, natural products containing an oxepanyl moiety have been frequently found in sponges,
corals, or different marine fungus, within others. Their interesting biological properties include
anticancer, antibacterial or antifungal activities. From a structural point of view, many of them are
terpenes presenting a great diversity of rings and chains bonded to the oxepanyl ring.

Their challenging structure, together with their promising medicinal properties, has prompted
many researchers to try to develop synthetic methodologies to access this class of marine drugs.

In this review, we try to cover marine drugs that contain a single oxepanyl ring in their structure.
However, the coverage will not be comprehensive, since we intend to provide a general overview of the
interesting biological, structural and synthetic possibilities of this class of metabolites. Within others,
we have omitted the family of lauroxanes, since it has already been reviewed by Fujiwara [2]. We also
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omitted classical examples of marine polyether biotoxins, such as brevetoxins, ciguatoxins, gambierol,
etc., which have been addressed by Nicolau [3]. Some of them, along with abudinol B, brevenal,
armatol A, enshuol and others, have been recently reviewed by Jamison [4]. Toxicols, adociasulfates
and the latest example of halicloic acids A and B are also interesting substances and appear in a recent
review [5]. Of course, we could mention many other families and examples of marine natural products
that bear the oxepane moiety (spiroxins, phomactins, clavulazols, etc.) but it is out of the scope of our
work. On the other hand, some isolated examples of the compounds described here are also present in
other reviews devoted to marine triterpenes [6] or marine natural products [7].

This review is roughly organized in five sections, according to the structure and biogenetic origin
of the compounds. For some of the families, only structure determination, isolation and biological
activity have been reported. For the rest of the products some of the most relevant synthetic approaches
reported till date are described.

2. Halogenated Sesquiterpenoids: Aplysistatin and Palisadins

Aplysistatin was first isolated from the South Pacific Ocean sea hare Aplysia angasi in 1977 [8].
In his paper, Pettit pointed out that this compound could be derived from its diet, since it is known that
sea hares usually graze algae and other similar metabolites had already been isolated from algae [9–12].
This hypothesis was confirmed in 1980, when aplysistatin was collected from the alga Laurencia cf.
palisada Yamada in 1980 [13]. Since then, it has been identified in many other Laurencia species,
namely Laurencia filiformis [14], Laurencia implicata [15], Laurencia flexilis [16], Laurencia karlae [17],
Laurencia luzonensis [18], Laurencia saitoi [19], Laurencia similis [20] and Laurencia snackeyi [21].

This sesquiterpene bears a unique structure, as shown in Figure 1. Its absolute configuration was
established by X-ray diffraction [8,22], showing a trans-anti stereochemistry for the fused rings.
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Figure 1. Structure of aplysistatin.

As for its biological activity, it was reported to inhibit progression of murine lymphocytic leukemia
P-388 (T/C 175 at 400 mg/kg) [8] and a broad range of other cultured tumor cells. It also showed
antimalarial activity [23], anti-inflammatory activity and ability to suppress the expressions of iNOS
and COX-2 enzymes [24].

In 1980, Fenical reported the isolation of palisadin A, palisadin B and other three related
compounds from Laurencia cf. palisada [13]. Later, palisadin C [16], along with other substituted
palisadins, has been isolated (structures of this family are shown in Figure 2). They have a similar
structure to aplysistatin, although lacking the lactone ring, and are also present in many algae of the
Laurencia species.
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5β-hydroxipalisadin B (Figure 3) showed effective anti-inflammatory properties, reducing
stress-induced reactive oxygen species formation, and inhibiting the lipopolysaccharide-induced
NO production in zebrafish embryos [25].
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Figure 3. Structure of 5β-hydroxypalisadin B.

The unusual, but not exceptionally complex, structure of these compounds has attracted the
attention of synthetic chemists. In 1979, just two years after its isolation, Hoye and coworkers
reported the first total synthesis of aplysistatin [26]. Diene 7 was obtained in two steps from the
p-toluenesulfonate ester of homogeraniol 6, by alkylation with the enolate anion of 2-phenyltioacetate
and subsequent aldol condensation. An additional key Hg(TFA)2/bromine-mediated cyclization
provided a mixture of diastereomeric oxepins 8, which in two steps (oxidative elimination and final
debenzylation-lactonization) provided aplysistatin (1a) and 12-epi-aplysistatin (1b) (see Scheme 1).
In the next few years some other total syntheses of 1 were reported which did not imply any
improvements in either yields or stereoselectivities [27–32].
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Scheme 1. Overview of Hoye’s synthesis of (±)-aplysistatin.

Regarding palisadins, Yamashita’s group performed the first total synthesis of (+)-palisadin A and
(+)-hydroxypalisadin B [33], also relying on a Hg(TFA)2/bromine-mediated cyclization as the key
step. In 2004 Couladouros’ group published a general approach to trans-fused oxepene-cyclogeranyl
systems, and applied it to the synthesis of aplysistatin, palisadins A and B and 12-hydroxypalisadin
B [34]. Their strategy followed an alternative route based on the formation of the oxepanyl
derivative by addition of a tertiary alcohol to a 1,2-disubstituted epoxide and subsequent ring closing
metathesis Scheme 2.
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This oxepene intermediate provided easy access to the desired natural products in three or four
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3. Marine Diterpenes: Oxepin Lobatrienol

Lobanes are a family of diterpenes from genus Lobophytum, also known as “devil’s hand corals”.
Their habitat covers the shallow waters of Indo-Pacific coasts [35,36], although these compounds
have been also isolated from Eunicea fusca [37,38], Sinularia [39–41] and Sarcophyton [42] species.
Their structure is based on the main scaffold of β-elemene and one of the members of this family, the one
called oxepin lobatrienol, possess an oxepane-like moiety (see Figure 4). In such molecule, an oxepanol
moiety has substituted a prop-1-en-2-yl unit in C4 [43]. Despite their remarkable bioactivity, few efforts
have been devoted to the synthesis of this kind of compounds [44–47].

All members of lobane family are lethal against Cladosporium cucumerinum, a pathogen fungus
responsible for scab disease that affects cucumbers, and against genus Artemia species (commonly
known as brine shrimps). Apparently, the nature of the isoprenyl fragment attached to the basic
structure of β-elemene determines which of the two properties predominates. It seems that when the
activity against the fungus is increased, the activity against brine shrimps is decreased, and vice versa.
These findings suggest a non-generic toxicity and a specific mode of action is yet to be discovered.
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Interestingly, oxepin lobatrienol possess intermediate activity and it performs well in both tasks,
demonstrating, once more, the importance of oxepane-like structures.
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4. Marine Triterpenes

This huge group consists of a set of triterpenes bearing oxepane moieties [48,49]. It is believed
that their biosynthesis comes from the metabolism of very simple squalene building blocks. They have
been named according to their origin, either from the species or the place where they were obtained.
Bearing in mind the complexity of the classification, we decided to divide it into 5 categories.

4.1. Sipholenols Family

The first compound of this group (sipholenol A) was isolated by Shmueli, Kashman and
coworkers [50] from the colonial tube-sponge Siphonochalina siphonella, a species whose habitat is
the Red Sea. Just two years later, up to nine molecules were already known [51,52]. Less attention
was paid in the 90s (mainly due to the discovery of similar families such as sodwanones) until the
beginning of the 21st century, when interest for these species was renewed. Nowadays, the number of
compounds belonging to sipholenols has increased up to thirty [53–55].

From the structural point of view, the molecules contain a hydroazulene fragment (with variable
insaturations) linked through an ethylene bridge to a trans-decahydrobenzoxepin, as seen in Figure 5.
It must be noted that this is the most common scaffold, but not present in all of them. There are some
differences in the last set of discovered molecules, e.g., the rearrangement of azulene fragment or the
substitution of an oxepane by a tetrahydropyran.
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These molecules have shown good anti-cancer properties [56]. In more detail, they are able to
reverse P-glycoprotein-mediated multi drug resistance in cancer cells by inhibiting the drug efflux
from this protein, along with other effects [57–60]. Currently, their antiproliferative effects towards
human hepatic and colorectal cancer cells are being studied [61].

Moreover, this family can be used as antifouling agent owing to its ability to disrupt settlement of
barnacle larvae.
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4.2. Neviotanes and Dahabanes

Along with sipholenols, Kashman and collaborators also reported the isolation of Neviotines
A and B with Dahabinone A from the same sponge Siphonochalina siphonella. Such names have their
origin in the place from which these species were extracted: Nevi’ot (Israel) and Dahlak islands
(Erithrea), respectively [53,62]. The structure of the latter compound is very similar to that from
sipholenols family, bearing a second oxepane unit fused to a cyclohexane instead of the azulene moiety.
Unlike sipholenols and dahabanes, neviotanes possess a pentacyclic core in which there are two groups
connecting though a single bond (Figure 6).

In addition, new compounds of this family have been reported recently [63].
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4.3. Sodwanones

This class of compounds was first isolated from the Indo-Pacific fan sponge Axinella weltneri,
collected during the summer of 1992 in Sodwana Bay, South Africa [64,65]. Since then, they have
been found in other species, namely Ptilocaulis spiculifer [66], and Axinella cf. bidderi [67], and so far
they form a family of more than 20 compounds [68–72]. They are examples of the rare marine
triterpenes, which have a common structure showing an oxepane-cycloalkane moiety. As far as we
know, no attempts of synthesis of any of the sodwanones have been done.

Many of the sodwanones have shown interesting properties. Sodwanone A (Figure 7) was active
against several cell lines, such as a lung carcinoma cell line [67], three esophageal cancer cell lines [73],
an ovarian cancer one [71] and some others. Sodwanones G, H and I were found to be toxic against
several cancer cell lines [69]. Sodwanone M was reported to be cytotoxic to P-388 murine leukemia
cells [68]. Sodwanone S was moderately active against several lines [71] and some other members of the
sodwanone family inhibited hypoxia-induced HIF-1 activation in breast and prostate tumor cells [72].
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4.4. Shaagrockols

In parallel to the discoveries of sodwanones, two new compounds were reported by Kashman’s
group in 1992 called Shaagrockols B and C from the Red Sea sponge Toxiclona toxius [74,75]. Their name
comes from the place where the sponge was collected: Shaag rock, in the entrance to the Gulf
of Suez. Structurally, they are very closely related to sodwanones and the main difference arises
from the additional tetrahydroquinone fragment that bears sulfonate groups [76,77], as depicted in
Figure 8. They have shown antifungal activity against Candida albicans and inhibition of Human
Immunodeficiency Virus Type 1 Reverse Transcriptase (HIV-1 RT).
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In recent years, new members of this family have appeared [78] and some synthetic approaches
have been carried out [79].

4.5. Raspacionins

This family was firstly discovered by Puliti, Madaio and collaborators between 1991 and
1992. Compounds were isolated from red encrusting sponge Raspaciona aculeata [80–83]. From the
structural point of view, these quasi-symmetrical molecules resemble dahabinone as they contain two
oxepane subunits (Figure 9). After such initial discoveries, other minor secondary metabolites were
found [84,85].
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5. Meroterpenoids: Austalides

This family consists of a 28-membered group of molecules whose origin comes from Penicillium
and Aspergillus marine-derived genera. First discovered in 1981 by Vleggaar and coworkers and new
compounds are nowadays being reported [86–92]. They are meroterpenoids possessing 4 to 6 carbo
and heterocycles, from which 12 of them bear an oxepane-like structure. Their basic structure is based
on a pentacyclic 5/6/6/6/7 system, as shown in Figure 10. It is known that their biosynthesis has
its origin in a farnesyl phthalide derivative, which, upon cyclization and oxidative modifications,
furnishes this family [93–95]. Many beneficial effects have been found, such as anticancer, antibacterial,
antiviral and antifouling properties; most of them due to specific inhibition of crucial target proteins
(α-glucosidase, AP-1 transcription factor, endo-1,3-β-D-glucanase, etc.).
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Figure 10. The whole family of oxepane-containing austalides.

The only attempt regarding the total synthesis of a member of this family was reported by
Paquette and coworkers in 1994 [96,97]. The selected molecule was (−)-Austalide B. They envisaged
a retrosynthetic analysis by splitting the preparation into two sections. The so-called western sector was
considered the most challenging difficulty. To access compound 38, lactone 39 seemed to be the best
precursor, which could derive from a ring expansion of a tetrahydrofuran (40) through a Baeyer-Villiger
oxidation. Such molecule could be obtained from very simple diketone 41 after a Robinson annulation
and subsequent ring expansion. On the other hand, the phthalide moiety (eastern sector) could be
easily connected through a sequence of conventional proceedings to dihydropyran (38) (Scheme 4).
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Scheme 4. Retrosynthetic analysis towards (−)-Austalide B.

Starting by readily available 41, the saturated ketone was regioselectively protected and subjected
to metal reduction in the presence of methyl iodide to give 42. Robinson annulation did not yield
the expected cyclization, so the reaction with 4-chloro-2-butanone under acidic conditions was used
instead to obtain 43. This compound was dimethylated to furnish 44 and complete the first stage of
the western section synthesis (Scheme 5).

Then, compound 44 was oxidized with osmium tetroxide to give a diol whose secondary alcohol
was selectively protected as SEM ether 45. Under Baeyer-Villiger conditions only the cyclohexanone
moiety underwent the homologation process resulting in 46. The second Bayer-Villiger oxidation could
be accomplished upon formation of the corresponding ortho lactone 47, thus obtaining the expected
complete western section 48. The process is summarized in Scheme 6.
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Scheme 6. Second stage towards the synthesis of the western section of (−)-Austalide B.

The synthesis of the eastern section (Scheme 7) turned out to be much harder than initially
expected. Finally, after two unsuccessfully attempts, Paquette and coworkers were able to achieve
desired Austalide B and the procedure is described as follows. Lactone 48 was subjected to C-alkylation
(with cyanoformate) and subsequent O-triflation to give 49. This triflate was coupled with previously
prepared stannane 50 under standard Stille conditions to obtain compound 51. Then, intramolecular
cyclization and further benzannulation followed by methylation gave rise to 52, whose main scaffold
was very close to the natural desired product. Finally, deprotection of SEM group in the western
section and inversion at C6 in a 3-step sequence ultimately yielded (−)-Austalide B (28).
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6. Alkaloids

6.1. Bromotyrosine Alkaloids: Psammaplysins and Ceratinamides

In 1983, Kashman and coworkers reported the isolation of two new compounds from sponge
Psammaplysilla purpurea [98]. They showed antibiotic properties, being active against gram-positive
bacteria and E. coli. Initially, their structures were wrongly assigned as spirocyclohexadienyloxazoline
derivatives. Two years later, Scheuer and Clardy elucidated the correct structure (Figure 11), based on
a deeper study of the NMR spectra and single-crystal X-ray diffraction [99]. The absolute configuration
for psammaplysin A was assigned as (6S*,7S*), but recently it has been corrected to (6R,7R) by Garson
and Kurtán [100].
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In the nineties, some other members of the family were reported. Psammaplysin C was isolated
from Psammaplysilla purpurea by Ireland and coworkers in 1992 [101]. It has identical structure to
psammaplysin B, except for the amine substitution. Later on, Scheuer and coworkers reported the new
psammaplysins D and E from an unknown species of Aplysinella sponge, collected at Pingelap Atoll,
Micronesia [102]. The former has an amide group instead of the terminal amine and the latter has an
unprecedented cyclopentenedione ring. In 1996, Fusetani’s group isolated ceratinamides A and B,
named after the sponge they were isolated from, Pseudoceratina purpurea [103]. These new compounds,
along with Psammaplysins A and E showed antifouling activity against Balanus amphitrite. Finally,
psammaplysin F was reported by Schmitz and coworkers, from a sponge believed to be from the
Aplisynella genus [104]. The structures of these compounds are shown in Figure 12.
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In the same year, Garson found 21 new derivatives from the sponge Aplysinella strongylata [110]. Five 
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In the 2000s no new members of this family were reported. Bewley and coworkers reported that
psammaplysins A and B inhibit mycothiol-S-conjugate amidase from Mycobacterium tuberculosis and
Mycobacterium smegmatis, also inhibiting growth of the latter [105,106].

In 2010, Quinn and coworkers isolated psammaplysin G from an Australian sponge of Hyatella
species [107]. It is the first example of this family that bears a terminal N-methylurea moiety.
Both psammaplysin F and G showed antimalarial activity. Psammaplysin G was very active against
a chloroquine-resistant (Dd2) strain of Plasmodium falciparum at 40 µM but was not cytotoxic at all
to HEK293 (a human embryonic kidney cell line). Psammaplysin F obtained better values (1.4 and
0.87 µM) against Dd2 and 3D7 (chloroquine-sensitive) strains, respectively. In 2011, the same group
reported the isolation of psammaplysin H, being also active against P. falciparum, and quite selective
(>97-fold) [108]. Ramsey and McAlpine reported antibiotic activity for psammaplysins F and H against
Gram-positive bacteria. Psammaplysin F produced an unequal chromosome partitioning between
daughter cells, placing it as a possible new lead antibiotic.

In the past few years, many other compounds have appeared. In 2012, Wright reported
psammaplysins I and J from a Suberea species sponge [109], but did not assess their biological activity.
In the same year, Garson found 21 new derivatives from the sponge Aplysinella strongylata [110].
Five of them had different chains attached to C-16, and the rest had terminal fatty acid chains.
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19-Hydroxypsammaplysin E inhibited growth of P. falciparum (IC50 = 6.4 µM). Another four compounds
of this kind were isolated by Lee and coworkers from a sponge of the genus Suberea in 2013 [111].
Most of them had a significant activity against several cancer cell lines. Lee also assessed some
moloka’iamines and ceratinamides from the same sponge, and they exhibited no activity up to
70 µM, thus concluding that the spirooxepinisoxazoline moiety is crucial for their anticancer activity.
Comparison of the structures can be seen in Figure 13.
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Figure 13. Basic structures present in moloka’iamines, ceratinamines and psammaplysins.
The spirooxepinisoxazoline moiety present in the latter (red square) could be the key for their
anticancer properties.

To the best of our knowledge, no total synthesis of any of the compounds of this family has
been reported.

6.2. Guanidinium Alkaloids

The family of guanidinium alkaloids containing oxepane rings is diverse since it contains over
15 members. Fortunately, they share some structural similarities [112]. A triazaperhydroacenaphthalene
skeleton directly connected to an oxepane and a tetrahydropyran, giving rise to the so-called pentacyclic
“vessel unit”, is common in all molecules. Then, a very long chain is linked to this scaffold containing
a hydrocarbon fatty acid functionalized as amide with a spermidine moiety furnishing the “anchor
unit”. The reason why these two parts are called like this are due to the likeness of the molecule to
a macroscopic ship trailing an anchor [113]. These structures are summarized in Figure 14.

All of them have been primarily isolated from marine sponges. The first member was
discovered by Kashman’s group in 1989 from Hemimycale sp. of the Red Sea and the Caribbean
Ptilocaulis spiculifer [114]. Since then, a plethora of new molecules have been reported, and new names
were coined, such as monanchomycalins, crambescidin, neofolitispates, etc. All of them based on the
marine species from which the compound is obtained [113–120].
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other spermidine moieties or even being other functional groups (a simple alkyl chain, for instance).
For a complete list of known compounds so far, see Ref. [121].

Given that the guanidine motif is present in arginine aminoacid and guanine nucleobase, it is
not surprising that this functional group appears in countless natural products, and it is even less
surprising that it possesses outstanding beneficial properties. It has been demonstrated that this family
show antiviral [122], fungicidal [123] and anticancer effects [124–128]. The mechanisms of action for
this latter activity has been studied and now it is known that they are excellent Ca2+-channel blockers
and good inhibitors of enzymes Na+, K+ or Ca2+-ATP-ase [129,130]. There are other applications;
for instance, Crambescidin 800 has revealed exceptional protection of cell lines under oxidative stress,
typically present in neuronal degenerative diseases [131].

Concerning the synthesis of the members in this family, fantastic efforts towards the development
of chemical tools to prepare these intriguing structures have been addressed [121,132–140]. Since there
are several in-depth works regarding the total synthesis of many compounds (or their fragments)
in the family [141–145], addressing all of them would be out of the scope of this review. Therefore,
we will cover herein, as an example, the preparation of the simple Crambescidin 359 which structure
coincides with the main core “vessel unit”.

In 2002, Nagasawa and coworkers published the first total synthesis of this natural product [146].
They conceived a double 1,3-dipolar cycloaddition between a commercially available nitrone and two
distinct terminal olefins which would have been previously prepared. Resulting pyrrolidine 66 would
easily yield guanidine 65 and, finally, a double intramolecular condensation would furnish the desired
compound (64), as shown in Scheme 8.
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by oxidation with TPAP/NMO system, deprotection with mild camphorsulfonic acid (CSA) and final 
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One year later Murphy and coworkers reported an alternative synthetic approach to 64 [147]. 
The strategy relied on the preparation of a suitable bis-enone 78 ready to couple with a guanidine 
moiety to provide the pentacyclic unit of 64 in a one-step process (Scheme 10). Hence, a convergent 
synthesis of two different blocks (75 and 77) gave access to desired bis-enone 78 in good overall yield 
(14 steps). Condensation with guanidine followed by deprotection of two silyl groups (TBS and TPS) 
furnished Crambescidin 359 (64) bearing BF4 anion upon treatment with NaBF4. 

Scheme 8. Retrosynthetic analysis towards Crambescidin 359 through a double 1,3-dipolar
cycloaddition between a nitrone and two terminal olefins.

1,3-Dipolar cycloaddition of nitrone 67 with alkene 68 yielded isoxazolidine 69. Then, removal
of the hydroxyl group, followed by treatment with mCPBA provided free nitrone 70. A second
cycloaddition with olefin 71 furnished compound 72, which was readily transformed in pyrrolidine 73
by oxidation with mCPBA and subsequent reduction. Reaction with bis-N-Boc thiourea, followed by
oxidation with TPAP/NMO system, deprotection with mild camphorsulfonic acid (CSA) and final
N,O-acetalization gave 64 (Scheme 9).

Mar. Drugs 2017, 15, 361 14 of 34 

 

 
Scheme 8. Retrosynthetic analysis towards Crambescidin 359 through a double 1,3-dipolar 
cycloaddition between a nitrone and two terminal olefins. 

1,3-Dipolar cycloaddition of nitrone 67 with alkene 68 yielded isoxazolidine 69. Then, removal 
of the hydroxyl group, followed by treatment with mCPBA provided free nitrone 70. A second 
cycloaddition with olefin 71 furnished compound 72, which was readily transformed in pyrrolidine 
73 by oxidation with mCPBA and subsequent reduction. Reaction with bis-N-Boc thiourea, followed 
by oxidation with TPAP/NMO system, deprotection with mild camphorsulfonic acid (CSA) and final 
N,O-acetalization gave 64 (Scheme 9). 

 
Scheme 9. Summarized synthesis of Crambescidin 359 by Nagasawa’s group. (a) Compound 70 was 
directly used for the next reaction and yield is not reported. 

One year later Murphy and coworkers reported an alternative synthetic approach to 64 [147]. 
The strategy relied on the preparation of a suitable bis-enone 78 ready to couple with a guanidine 
moiety to provide the pentacyclic unit of 64 in a one-step process (Scheme 10). Hence, a convergent 
synthesis of two different blocks (75 and 77) gave access to desired bis-enone 78 in good overall yield 
(14 steps). Condensation with guanidine followed by deprotection of two silyl groups (TBS and TPS) 
furnished Crambescidin 359 (64) bearing BF4 anion upon treatment with NaBF4. 

Scheme 9. Summarized synthesis of Crambescidin 359 by Nagasawa’s group. a) Compound 70 was
directly used for the next reaction and yield is not reported.

One year later Murphy and coworkers reported an alternative synthetic approach to 64 [147].
The strategy relied on the preparation of a suitable bis-enone 78 ready to couple with a guanidine
moiety to provide the pentacyclic unit of 64 in a one-step process (Scheme 10). Hence, a convergent
synthesis of two different blocks (75 and 77) gave access to desired bis-enone 78 in good overall yield
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(14 steps). Condensation with guanidine followed by deprotection of two silyl groups (TBS and TPS)
furnished Crambescidin 359 (64) bearing BF4 anion upon treatment with NaBF4.Mar. Drugs 2017, 15, 361 15 of 34 
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The first example of this family, called Cinereanin, was isolated by Springer, Arison, Roberts 
and collaborators from Botrytis cinereal sunflower seeds in 1988 and showed to have plant growth 
regulating properties [150]. Its structure remained unknown for years until Christophersen’s group 
reported the isolation of three benzodiazepine alkaloids (called Circumdatins A, B and C) from a 
culture of the fungus Aspergillus ochraceus [151]. Although it is known that this is a common soil 
fungus, it has been demonstrated its adaptation to other niches, such as marine ecosystem. 
Interestingly, the initial zwitterionic proposed structures of two of them (A and B) were wrongly 
assigned according to recorded NMR data. In fact, no oxepane-like group was present. This misled 
the scientific community for nine years until Kusumi and coworkers could isolate a set of alkaloids 
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were also detected and confirmed by Alfonso, Botana and collaborators from original fungus 
Aspergillus ochraceus [153]. 

Scheme 10. Alternative synthesis developed by Murphy towards Crambescidin 359.

On the course of synthetic studies towards guanidinium alkaloids, Overman’s group published
a different stepwise method [148] that started with commercially available 3-butynol (79) whose chain
was elongated with the incorporation of a guanidine group to get 80. Then, a set of 10 steps allowed
the synthesis of guanidinium carboxylate 81. This compound was an extraordinary precursor for
the preparation of other crambescidinds (and more members in guanidinium alkaloids family) and,
due to that reason, it was extensively studied. Interestingly, it was found that, upon standing 81 in
several buffers, decarboxylation mildly occurred yielding Crambescidin 359 (64). This approach is
summarized in Scheme 11.
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6.3. Oxepinamides Family

This large group has been isolated from a set of marine fungus species associated to very distinct
organisms. They possess interesting beneficial properties; however, they are especially important
due to their anti-cancer activity [149]. They all bear an oxepin fused to a pyrimidinone moiety, as the
main structure, and a six- or seven-membered lactam. In the first case, the compounds are also known
as diketopiperazines, which correspond to another vast family of species (marine or not), for which
oxepane-derived molecules will be addressed later on.

The first example of this family, called Cinereanin, was isolated by Springer, Arison, Roberts and
collaborators from Botrytis cinereal sunflower seeds in 1988 and showed to have plant growth regulating
properties [150]. Its structure remained unknown for years until Christophersen’s group reported the
isolation of three benzodiazepine alkaloids (called Circumdatins A, B and C) from a culture of the
fungus Aspergillus ochraceus [151]. Although it is known that this is a common soil fungus, it has been
demonstrated its adaptation to other niches, such as marine ecosystem. Interestingly, the initial
zwitterionic proposed structures of two of them (A and B) were wrongly assigned according to recorded
NMR data. In fact, no oxepane-like group was present. This misled the scientific community for nine
years until Kusumi and coworkers could isolate a set of alkaloids from fungus Aspergillus ostianus and
grow single-crystals of Circumdatins A and B suitable for X-ray analysis [152], which yielded the final
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corrected structure as shown in Figure 15. These compounds were also detected and confirmed by
Alfonso, Botana and collaborators from original fungus Aspergillus ochraceus [153].Mar. Drugs 2017, 15, 361 16 of 34 
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Later on, Sprogøe’s group reported two new compounds extracted from fungus Aspergillus janus 
[155]. One of them was called Janoxepin and had a very close structure to Cinereanin (Figure 17). It 
turned out to be active against the malaria parasite Plasmodium falciparum 3D7. 
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Figure 15. Circumdatins A and B. Original zwitterionic structure proposals by Christophersen (Left),
and revised definitive structures by Kusumi (Right).

In parallel to Circumdatins discoveries, Belofsky, Köck’s group was able to isolate several bioactive
metabolites from a fungus of the genus Acremonium, which were collected from the surface of Caribbean
tunicate Ecteinascidia turbinata [154]. Three of them, generally called Oxepinamides A–C, contained
oxepin derivatives with a structure very similar to the first one described by Springer, Arison, Roberts
and collaborators, as depicted in Figure 16. It is worth noting that Oxepinamide A was capable of
inhibiting ear edema induced in mice by using resiniferatoxin.
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Figure 16. Chemical structures of Oxepinamides A–C isolated by Belofsky and Köck.

Later on, Sprogøe’s group reported two new compounds extracted from fungus
Aspergillus janus [155]. One of them was called Janoxepin and had a very close structure to Cinereanin
(Figure 17). It turned out to be active against the malaria parasite Plasmodium falciparum 3D7.
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Janoxepin is the only compound of this family of oxepinamides from fungus species that has
been synthesized. In 2012 Taylor’s group reported its total synthesis [156], according to the following
retrosynthetic analysis: the key step is a ring closing metathesis (RCM) of a diallylated pyrimidinone
90, which should be easily prepared from guanidine 91 and dimethyl allylmalonate (Scheme 12).
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Scheme 12. Retrosynthetic analysis of Janoxepin.

Thus, amidine 91 was obtained in good yield in four consecutive steps (coupling with
aminoacetonitrile, Boc deprotection, oxime formation-hydrogenation and final cyclization) starting
from commercially available N-Boc-D-leucine. Further condensation with malonate 92 gave
pyrimidone 94 along with unwanted total racemization (only 5% ee was detected). This molecule was
turned into compound 90 by Mitsunobu reaction with allylic alcohol (Scheme 13).
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Olefin metathesis was readily performed using second-generation Grubb’s catalyst, prior
protection of 90 as imidate 95. Resulting compound 95 underwent the incorporation of the side chain
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through an aldol reaction with iso-butyraldehyde, followed by a chlorination and dehydrochlorination
sequence furnishing dihydro-oxepin 96 (Scheme 14).Mar. Drugs 2017, 15, 361 18 of 34 
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Ahn, Oh and collaborators described, in 2011, four compounds from an ethyl acetate fraction of 
the marine-derived fungus Aspergillus sp. SF-5044 collected from Dadaepo Beach, Busan, Korea [157]. 
Two of them were oxepinamides, called Protuboxepins A and B, whose structure is shown in Figure 
18. The reader should rapidly realize that these piperazines are structurally similar to Cinereanin and 
Janoxepin. Interestingly, both compounds contain the rare D-phenylalanine amino acid fragment. 
However, their anti-cancer activities towards several carcinoma cell lines were moderate. Nonetheless, 
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Scheme 14. Synthesis sequence towards dihydro-oxepin and side chain incorporation.

Formation of desired oxepin turned out to be extremely troublesome and, after many attempts,
the only feasible procedure consisted of an allylic oxidation with SeO2 to give an alcohol 97 that
was readily substituted by a chloride 98. Dehydrohalogenation was achieved but yields could never
be optimized and only 10% of 98 was obtained. Nevertheless, (±)-Janoxepin (88) could be finally
prepared after a simple deprotection step (Scheme 15).
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Ahn, Oh and collaborators described, in 2011, four compounds from an ethyl acetate fraction of
the marine-derived fungus Aspergillus sp. SF-5044 collected from Dadaepo Beach, Busan, Korea [157].
Two of them were oxepinamides, called Protuboxepins A and B, whose structure is shown in
Figure 18. The reader should rapidly realize that these piperazines are structurally similar to
Cinereanin and Janoxepin. Interestingly, both compounds contain the rare D-phenylalanine amino acid
fragment. However, their anti-cancer activities towards several carcinoma cell lines were moderate.
Nonetheless, Kihm and Ahn’s group reported the mechanism of tumor cell growth inhibition by
Protuboxepin A [158]. They demonstrated that, due to an α,β-tubulin binding, microtubule dynamics
were modified in such an extent that chromosomes were misaligned in metaphase, finally producing
cell apoptosis.
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In the last few years, up to six new rare oxepinamides have emerged from different fungus
species [159–162]. They resemble structures already described here and are depicted in Figure 19.
Apart from their structural interest, they have showed new bioactive abilities, such as antibacterial
and antifungal properties.
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Aecilomyces variotii EN-291. (104) and (105) oxepinamides from Aspergillus versicolor SCSIO 05879.
(106) oxepinamides from vent-crab associated Aspergillus versicolor XZ-4.

6.4. Diketopiperazine Sulfides

As commented above, diketopiperazine structures bearing oxepane-like moieties are present in
other families. One interesting family corresponds to disulfide (trisulfide or tetrasulfide) derivatives.
Due to the presence of such functional group, all these compounds exhibit outstanding biomedical
applications (anticancer, antifungal, antiviral, etc.) [163–171].

The first members in this family were obtained from fungus Arachniotus aureus in 1968,
and were named Aranotin and Apoaranotin. Along with their acetylated derivatives, they were
considered metabolites from such species and very related to formerly known sulfur-containing
diketopiperazines, e.g., Gliotoxin and Sporidesmin (Figure 20) [172–176]. Structural characteristics
are a central diketopiperazine scaffold, a disulfur bridge and a functionalized oxepin-fused
pyrrolidine. Their biosynthesis pathway has been recently unraveled by Wang and collaborators
using genome-based deletion analysis [177]. These compounds are present in other classes of fungus,
such as Aspergillus sp. KMD 901, and showed excellent apoptosis-inducing effects towards colon
cancer cell lines [178].
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Another molecule of this family was obtained by Kawai’s group from Emericella striata,
a thermotolerant fungus collected in Nepal [179–181]. It was called Emestrin and was reported
as its acetylated form (Figure 21). Although not strictly marine, this compound belongs to the family
due to its similarity to the previous structures and it is worth addressing. The previously described
main scaffold is maintained but, in this case, diketopiperazine and oxepin moieties are additionally
connected through a diphenyl ether chain giving rise to a macrocyclic lactone. Years later, the same
group found structurally related molecules from Emericella foveolata [182].
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The same researchers reported the isolation of a small group of diketopiperazines arising from
Emericella heterothallica extracts which were called Emethallicins [183,184]. Their structures resemble
those from Aranotin, having a different acetylating group and a variable number of sulfur atoms
(Figure 22). This feature was also observed for already described Emestrin derivatives. They have
shown antiallergic properties owing to the observation of histamine release inhibition from mast cells
and towards 5-lipoxygenase.
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Interestingly, the synthesis of the intriguing structures of this family has attracted the attention
of several authors. Thus, many synthetic approaches towards the partial synthesis of these
compounds or analogues have been carried out and published [185–192]. In 2012, Reisman and
coworkers reported the first total synthesis of an oxepin-containing diketopiperazine disulfide,
(−)-Acetylaranotin, over 40 years after its discovery [193]. Due to the C2-symmetric nature of this
compound, the strategy to synthesize this compound was based on the obtention of an oxepin fused
to proline 118 which, after dimerization product 117 and a final step of sulfenylation, could provide
(−)-Acetylaranotin. Proline oxepin 118 was foreseen to be prepared by a metal vinylidene-mediated
7-endo cycloisomerization from an alkynal precursor (119) that could be obtained from proline 120.
This molecule can be synthesized through an asymmetric 1,3-dipolar cycloaddition of an acrylate and
the azomethine ylide resulting from the coupling of a glycinate and cinnamaldehyde (Scheme 16).
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The enantioselective synthesis of pyrrolidine 121 was achieved by an asymmetric 1,3-dipolar
cycloaddition mediated by catalytic copper iodide and Brucin-OL as the chiral ligand, followed
by hydrosilane-reduction and deprotection of tBu group. Then, four consecutive steps, such as
Teoc-protection, ozonolysis, addition of ethynyl Grignard reagent and final Mitsunobu reaction,
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gave rise to chiral alkynyl lactone 122. Finally, reduction with sodium borohydride, protection of the
resulting alcohol and a sequence of Dess-Martin oxidation, chlorination of the α carbon and aldehyde
reduction furnished the desired alkynol 123. The whole first stage is summarized in Scheme 17.
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The second stage consisted of the construction of oxepin structure, dimerization and final
sulfenylation. The use of catalytic [RhCl(COD)]2 in the presence of tris(p-fluorophenyl)phosphine
yielded the expected oxepin 124, which was subjected to two different procedures. In both, a step
of dehydrohalogenation and deprotection of orthogonal functional groups (carbamate into amine
and ester into acid) resulted in two complementary peptides that reacted in the presence of BOP-Cl,
a common reagent to activate carboxyl groups for peptide coupling, to get 125. Treatment with TBAF
allowed the second amide formation (126). Surprisingly, epimerization of both stereogenic carbons
in diketopiperazine skeleton occurred, but the mechanism was unclear. Nevertheless, episulfide
formation was the last difficulty to be overcome. Treatment with NaHDMS and S8 furnished
a tetrasulfide (127) with the appropriate stereochemistry which, after diacetylation of two hydroxyl
groups, reduction with propanedithiol and further mild oxidation of the resulting dithiol gave expected
(−)-Acetylaranotin (Scheme 18). The whole process required 18 steps and the key step relied on
a Rh-catalyzed 7-endo cyclization to obtain the monomeric oxepin 124.
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In recent years, other diketopiperazin sulfides total syntheses have been disclosed based on the
contribution made by Reisman [193]. Compound (+)-MPC1001B (128), a molecule closely related
to Emestrin, was prepared in 2004 [194,195]. The key step of the process involved the elusive
15-membered macrolactone formation and two plausible retrosynthetic analyses were devised. In both,
sulfenylation would take place in the final step and oxepin proline moiety (129) was considered as the
key intermediate from which macrocycle would be built. The main difference relied on the way the
macroring would be closed. In the first one, a Mitsunobu reaction through an alcohol directly linked to
oxepin fragment is proposed, whereas in the second one an aldol reaction in diketopiperazin moiety
would be carried out (Scheme 19).Mar. Drugs 2017, 15, 361 23 of 34 
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From easily accessible proline 129, a key precursor of the second strategy, was readily obtained 
diketopiperazine 133. Inversion of the configuration at C-6 (via a mild oxidation and Luche 
reduction), followed by condensation with anisic acid derivative 131 using WSCD provided ester 137. 
To the delight of the authors, now the crucial formation of the macrolactone (138) formation could be 
easily achieved in the presence of TBAF. From that point, sulfenylation was carried out using a 
modification of Reisman’s protocol (with a novel trityl trisulfide reagent) although the secondary 
alcohol present in the structure had to be protected in the process, increasing the expected number of 
steps. Nevertheless, elusive diketopiperazin disulfide (+)-MPC1001B could be obtained for the first 
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considered a key intermediate present in both schemes. Anisic acid derivatives 130 and 131 were
easily prepared.

Unfortunately, macrocyclization of 132 under Mitsunobu conditions failed to provide the desired
lactone 133, instead regioisomer 134 was isolated in high yields (Scheme 20).
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From easily accessible proline 129, a key precursor of the second strategy, was readily obtained
diketopiperazine 133. Inversion of the configuration at C-6 (via a mild oxidation and Luche reduction),
followed by condensation with anisic acid derivative 131 using WSCD provided ester 137. To the
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delight of the authors, now the crucial formation of the macrolactone (138) formation could be easily
achieved in the presence of TBAF. From that point, sulfenylation was carried out using a modification
of Reisman’s protocol (with a novel trityl trisulfide reagent) although the secondary alcohol present in
the structure had to be protected in the process, increasing the expected number of steps. Nevertheless,
elusive diketopiperazin disulfide (+)-MPC1001B could be obtained for the first time (Scheme 21).Mar. Drugs 2017, 15, 361 24 of 34 
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Simultaneously, Reisman’s group also reported the total synthesis of (−)-Acetylapoaranotin 
using a very close methodology [196]. Owing to the nonsymmetric nature of this compound, the 
procedure had to be a step-wise preparation of two proline key intermediates which were readily 
coupled and finally sulfenylated. 

In summary, marine drugs containing 7-membered oxacycles are abundant in nature. They 
show a rich variety of structures whose intriguing features have attracted the attention of many 
synthetic chemists. Moreover, their relevant biological properties include antimalarial, antifungal, 
antibacterial activities and, most remarkably, high cytotoxicity against a wide number of cancer cells. 
In this review, we have tried to show an overview of these types of compounds, focusing on their 
isolation, structure determination, biological properties and synthetic approaches. 
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Scheme 21. Total synthesis of (+)-MPC10001B (128).

Simultaneously, Reisman’s group also reported the total synthesis of (−)-Acetylapoaranotin using
a very close methodology [196]. Owing to the nonsymmetric nature of this compound, the procedure
had to be a step-wise preparation of two proline key intermediates which were readily coupled and
finally sulfenylated.

In summary, marine drugs containing 7-membered oxacycles are abundant in nature. They show
a rich variety of structures whose intriguing features have attracted the attention of many synthetic
chemists. Moreover, their relevant biological properties include antimalarial, antifungal, antibacterial
activities and, most remarkably, high cytotoxicity against a wide number of cancer cells. In this review,
we have tried to show an overview of these types of compounds, focusing on their isolation, structure
determination, biological properties and synthetic approaches.
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