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ABSTRACT

Cellular metabolism of cancer cell is generally recognized to provide energy for 
facilitating tumor growth, but little is known about the aberrant metabolism in tumor 
progression and its prognostic value. Here, we applied integrated genomic approach to 
uncover the aberrant expression of metabolic enzymes in poorly-differentiated human 
hepatocellular carcinoma (HCC) for revealing targets against HCC malignancy. A total 
of 135 upregulated (22 are rate-limiting enzymes (RLEs)) and 362 down-regulated 
(77 are RLEs) metabolic genes were identified and associated with poor patient 
survival in large-cohorts of HCC patients in TCGA-LIHC and two other independent 
transcriptomic studies. Ten out of 22 upregulated RLEs in poorly-differentiated HCC 
are critical enzymes in pyrimidine metabolism pathways in association with stemness 
features by gene enrichment analysis and upregulated in ALDH1+ stem-like HCC 
subpopulations. By focusing on three RLEs including TK1, TYMS and DTYMK of dTTP 
biosynthesis pathway, expression of 3 RLEs in well-differentiated HCC cells increased 
ALDH1+ and spheroid stemness population but reversed by knockdown in poorly-
differentiated HCC cells. Up-regulated 3 RLEs in HCC were associated with poor patient 
survival in multiple cohorts. Together, we identified aberrant pyrimidine pathway in 
poorly-differentiated HCC promotes cancer stemness served as potential theranostic 
target for battling HCC tumor progression.

INTRODUCTION

Hepatocellular carcinoma (HCC), the major 
malignancy of liver, is the sixth most common cancer in 
the world and the second leading cause of cancer deaths for 
the last decade with around 0.8 million each of new cases 
and deaths annually [1]. Most successful HCC therapeutic 
options are surgical resection, transplantation and ablation 
therapy for only about 30% eligible early-stage patients, but 

limited efficacy to most of patients due to late-stage HCC 
at the time of diagnosis. The prognosis is very poor for 
untreated HCC patients with an average survival between 
6 and 20 months [2, 3] and 40~80% of treated patients 
developed recurrence and metastasis within 5 years of 
therapy [4, 5]. Sorafenib, a multiple kinase inhibitor, is the 
only FDA-approved systemic treatment to advanced-stage 
HCC patients with a statistically significant increase of 
overall survival benefit by about 3 months [6, 7].
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Reprogramming of cancer cell metabolism to 
fuel uncontrollable privilege of cell proliferation in 
compared with surrounding normal cells is emerging 
as the new hallmark of cancer [8]. Altered energy 
metabolism in cancer cell was first observed since 
1930 by Otto Warburg that cancer cells are favored to 
increase glucose uptake and utilize less efficient ATP 
producing aerobic glycolysis in compared to the high 
ATP producing glucose oxidative phosphorylation in 
mitochondria in the normal cells [9]. Depending on 
the intrinsic genetic background of cancer cells and 
extrinsic nutrient availability and cellular interactions in 
the tumor microenvironment, altered cellular metabolism 
could support anabolic growth of cancer cells in the 
nutrient-rich environment, catabolic supports of cancer 
cell survival under limited nutrient, and fortification of 
redox imbalance to facilitate oncogene activation, tumor 
suppressor loss, and other tumorigenic stresses [10, 
11]. Recent cancer genomic data revealed that different 
somatic mutations of metabolic genes in different cancer 
types such as loss of function of mutated succinate 
dehydrogenase (SDH) or fumarate hydratase (FH) in 
certain renal cell carcinomas and mutated isocitrate 
dehydrogenase (IDH) 1 or 2 in glioma, acute myeloid 
leukemias, chondrosarcomas, and amplification of 
phosphoglycerate dehydrogenase (PHGDH) in estrogen 
receptor (ER)-negative breast cancer and melanoma 
further suggest that somatic alterations in metabolism 
could satisfy cancer-specific demands for fueling tumor 
growth [12–16]. Although it is generally recognized 
that altered cellular metabolism of cancer cells could 
facilitate cell proliferation and transformation, little is 
known about the metabolic changes that promote cancer 
cell aggressiveness [17–20].

Cancer cell aggressiveness is tightly associated 
with features of epithelial to mesenchymal transition 
(EMT), stemness, poor differentiation and high mobility 
of cancer cells leading to outcomes of drug resistance, 
recurrence and metastasis resulted in poor survival 
of cancer patients [21, 22]. To reveal how metabolic 
reprogramming contributes to aggressiveness and 
serves as theranostic target during tumor progression, 
we examined the altered expression of metabolic 
enzymes in association with histopathological feature 
of poor differentiation of HCC using the large number 
of HCC patients from TCGA cohorts. Interestingly, we 
identified a unique pyrimidine metabolic rate limiting 
enzymes (RLEs) gene signature that is altered in poorly- 
differentiated HCC and correlated to the stemness of 
embryonic signatures and poor patient survival. With 
validations of experiments and HCC patients in multiple 
cohorts, we provided lines of evidence that TK1, 
TYMS and DTYMK the catalytic RLEs in pyrimidine 
biosynthesis play critical roles in cancer stemness 
and serve as potential therapeutic targets in poorly-
differentiated HCC.

RESULTS

A unique metabolic gene expression signature in 
poorly-differentiated hepatocellular carcinoma 
patients

To determine the involvement of metabolic genes 
during tumor progression of HCC especially focusing on 
tumor differentiation, we downloaded RNA transcriptomic 
datasets performed by next generation sequencing (RNA-
seq) in The Cancer Genome Atlas (TCGA) project 
(TCGA-LIHC) containing 50 normal liver tissues and 
357 HCC samples including 227 well-differentiated HCC 
(Grade I and II of histological grading) and 130 poorly-
differentiated HCC (Grade III and IV) and examined the 
expression status of 1,706 reported metabolic genes [23]. 
Aided by hierarchical clustering, we found the aberrant 
expression of 362 downregulated and 135 upregulated 
enzymes are enriched in poorly-differentiated HCC in 
compare to that of well-differentiated HCC and normal 
liver samples (Figure 1A, 1B and 1E). We further 
validated these aberrant metabolic enzymes expression in 
two independent HCC datasets conducted in microarray 
platforms including GSE50579 (61 HCC and 7 normal 
samples) [24] and GSE36411 (40 HCC and 40 normal 
samples) [25] (Figure 1C, 1D, 1F and 1G).

Functional prediction and prognostic value of 
aberrant expressed metabolic enzymes in poorly-
differentiated HCC

To determine the main functions of these aberrantly 
expressed metabolic genes, we performed pathway 
analysis matched to the metabolic pathways in KEGG 
(Kyoto Encyclopedia of Genes and Genomes) database. 
We found that the upregulated 135 metabolic genes 
particularly enriched in pyrimidine metabolism and purine 
metabolism whereas 362 downregulated metabolic genes 
were enriched in valine, leucine and isoleucine degradation 
and fatty acid metabolism (Figure 2A and Supplementary 
Figure 1A). To determine the critical enzymes participated 
in these metabolic pathways, we further examined the 
driving rate-limiting enzymes (RLEs) [26] including 
22 upregulated RLEs and 77 downregulated RLEs 
participated in these altered metabolic pathways (Table 1). 
Consistently, we found that 22 upregulated RLEs (45.4%) 
were mainly enriched in pyrimidine metabolism and 77 
downregulated RLEs (22%) were enriched in fatty acid 
metabolism (Figure 2B and Supplementary Figure 1B).

To determine the biological functions of these aberrant 
metabolic enzymes in poorly-differentiated HCC, we re-
classified HCC patients based on the features of histological 
differentiation and the expression status of 22 upregulated 
RLEs and 77 downregulated RLEs for gene set enrichment 
analysis (GSEA) and matched with the annotated functional 
gene sets collected in the molecular signatures database. 
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Figure 1: Transcriptomic correlations of 1706 metabolic genes with histological grading of human hepatocellular 
carcinoma in TCGA and microarray datasets. (A) A total of 497 including 362 downregulated and 135 upregulated genes were 
revealed after clustered with histological differentiation of HCC tumors as shown in the heatmap. (B-G) The 362 downregulated genes 
clustered with differentiation status of HCC tissues was shown in Sum RSEM of TCGA-LIHC (B) and validated by microarray datasets of 
GSE50579 (C) and GSE36411 (D). The135 upregulated genes were shown and validated in the same datasets (E-G), respectively. Statistical 
analysis was performed in one-way ANOVA.



Oncotarget77737www.impactjournals.com/oncotarget

Figure 2: Functional prediction and prognostic value of upregulated metabolic enzymes in poorly-differentiated HCC. 
(A) 135 upregulated metabolic genes and (B) 22 rate limiting enzymes (RLEs) in the 135 metabolic genes were mainly enriched in 
pyrimidine metabolism performed in KEGG pathway analysis. (C) Upregulated expression of 22 RLEs were associated with stemness 
gene signatures by GSEA. (D) Sum expression intensity of 22 upregulated RLEs is higher in poorly-differentiated HCC than that of well-
differentiated HCC in TCGA-LIHC. (E) Higher expression of 22 upregulated RLEs is associated with poor survival of HCC patients in 
TCGA-LIHC. p value was calculated based on Mantel-Cox test and Gehan-Breslow-Wilcoxon test. ***p<0.0001 performed by two-tailed 
Student’s t-test.



Oncotarget77738www.impactjournals.com/oncotarget

Table 1: List of 99 rate limiting enzymes in metabolic pathways
Metabolic pathways Metabolic rate limiting enzymes

Nucleotides PYRIMIDINE_
METABOLISM

UCKL1a, TK1a, TK2b, UCK2a, RRM2a, RRM1a,
NT5C3a, CADa, TYMSa, CTPSb, DHODHb, DTYMKa, CTPS2a

PURINE_METABOLISM XDHb, IMPDH1a, IMPDH2a, ADKb

Lipid FATTY_ACID_
METABOLISM

ADH1Ab, ADH1Bb, ADH1Cb, ADH4b, ADH6b, ALDH2b, 
ALDH1B1b, ALDH9A1b, ALDH7A1b, EHHADHb, HADHb, 

ACADSb, ACOX1b, ACOX3b, ACSL1b, CPT2b, ACADLb

LINOLEIC_ACID_
METABOLISM PLA2G5b, PLA2G12Ab, CYP2J2b

ARACHIDONIC_ACID_
METABOLISM GGT5b, PTGS2b

GLYCEROLIPID_
METABOLISM PPAP2Bb, LIPCb, LIPGb

PRIMARY_BILE_ACID_
BIOSYNTHESIS HSD17B4b, CYP39A1b

STEROID_BIOSYNTHESIS LIPAb, SQLEa, SOAT2a

GLYCEROPHOSPHOLIPID_
METABOLISM GPD2a, BCHEb

STEROID_HORMONE_
BIOSYNTHESIS HSD17B6b

Cofactors and 
vitamins FOLATE_BIOSYNTHESIS PTSb

VITAMINE_B6_
METABOLISM PNPOb

PORPHYRIN_AND_
CHLOROPHYLL_

METABOLISM
ALADb

RETINOL_METABOLISM CYP3A4b, CYP3A43b, CYP1A2b, CYP2C8b, CYP2C9b, 
CYP2C18b, CYP2B6b, CYP2A6b, RDH5b

PANTOTHENATE_AND_
COA_BIOSYNTHESIS PANK1b, PANK4b

Xenobiotics CAFFEINE_METABOLISM NAT2b, NAT1b

Carbohydrate PROPANOATE_
METABOLISM ACACBb, ACACAa, SUCLA2b

PENTOSE_PHOSPHATE_
PATHWAY TKTa, G6PDa

GLYCOLYSIS_
GLUCONEOGENESIS DLDb, PCK2b, PKM2a, FBP1b

STARCH_AND_SUCROSE_
METABOLSIM GYS2b, PYGLb

AMINO_SUGARS_AND_
NUCLEOTIDE_SUGARS_

METABOLISM
GNEb

INOSITOL_PHOSPHATE_
METABOLISM PIP5K1Aa, PIP4K2Ba

(Continued)
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No matter the GSEA comparisons were performed in 
between genes in groups of poorly-differentiated versus 
well-differentiated HCC ( Supplementary Figure 2A), 
highly expressed and lowly expressed 22 upregulated 
RLEs (Figure 2C and Supplementary Figure 2B), and 
highly expressed and lowly expressed 77 downregulated 
RLEs (Supplementary Figure 1C and 2C), we found that 
aberrant gene expression including the metabolic RLEs in 
poorly-differentiated HCC are strongly correlated with gene 
signatures of embryonic stem (ES) module [27], human ES 
cell overexpressed genes and TFs (transcription factors) 
[28] and proliferation-enhanced G2M checkpoints [29] 
(Supplementary Figure 2A-2C). These embryonic stemness 
gene sets were commonly enriched and shared in cancer 
cells with stemness features and tumor aggressiveness. 
In contrast, these aberrant metabolic enzymes in poorly-
differentiated HCC do not correlate with gene signatures 
of apoptosis, EMT, hypoxia and inflammatory response 
(Supplementary Figure 2A and 2C).

We also found that sum of the expression intensity 
of 22 upregulated RLEs were significantly upregulated in 
poorly-differentiated HCC than that in well-differentiated 
HCC in TCGA-LIHC (Figure 2D). On the other 
hand, the 77 downregulated RLEs were significantly 
downregulated in poorly-differentiated HCC than that 
in well-differentiated HCC in TCGA-LIHC datasets 
(Supplementary Figure 1D). Moreover, when re-classified 
HCC patients with high RLE score (the sum of all RLE 
expression value), 77 downregulated RLEs and 22 
upregulated RLEs, we found HCC patients grouping with 
these aberrant RLE expression were associated with poor 

survival in TCGA-LIHC (Supplementary Figures 1E and 
3A, Figure  2E).

Concordant expression of 99 RLEs and of 
stemness markers in TCGA-LIHC and six HCC 
cell lines are correlated with HCC differentiation

To obtain HCC cell lines with histological 
differentiation status for functional validation, we 
downloaded RNA transcriptomic data of six HCC 
cell lines with known differentiation status, well-
differentiated HCC (PLC5, HepG2 and Hep3B) and 
poorly-differentiated HCC (SNU387, SNU449 and Sk-
Hep1) cell lines, from the cancer cell line encyclopedia 
(CCLE) project. We found high similarity in clusters of 
the average expression intensity of 99 RLEs expression 
in compared between TCGA and 6 HCC cell lines 
by grouping with their differentiation status (Figure 
3A). Moreover, we characterized cell morphology and 
known stem cell markers CD44 [30] and CD90 [31] for 
confirming their differentiation status. Our results showed 
that PLC5, HepG2 and Hep3B with epithelial morphology 
and low CD44/CD90 expression were validated as well-
differentiated HCC cells (Figure 3B), whereas SNU387, 
SNU449 and SK-Hep1 with spindle shape phenotype and 
high CD44/CD90 expression were confirmed as poorly-
differentiated HCC cells (Figure 3C). The associations 
of 22 upregulated RLEs and 77 downregulated RLEs 
with high expression of HCC stemness marker CD44 
expression were validated in HCC samples of TCGA-
LIHC cohort (Supplementary Figure 3B).

Metabolic pathways Metabolic rate limiting enzymes

Glycans OTHER_GLYCAN_
DEGRADATION MAN2B2b

Amino acids
VALINE_LEUCINE_
AND_ISOLEUCINE_

DEGRADATION
HMGCS2b, HSD17B10b, BCKDHAb, BCKDHBb

TRYPTOPHAN_
METABOLISM OGDHLb, IDO2b, TDO2b, KMOb

TYROSINE_METABOLISM TATb

ARGININE_AND_PROLINE_
METABOLISM GATMb, SAT1b

GLYCINE_SERINE_AND_
THREONINE_METABOLISM CBSb, ALAS1b

PHENYLALANINE_
METABOLISM PAHb

GLUTATHIONE_
METABOLISM GSTZ1b, MGST1b, MGST2b, SRMa

a: up-regulated RLEs; b: down-regulated RLEs.
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Expression of 10 upregulated RLEs in 
pyrimidine metabolism pathway are increased in 
cancer stem cell populations

Since pyrimidine metabolism was the most enriched 
pathway in 22 upregulated RLEs in poorly-differentiated 
HCC with potential prognostic value, we further investigate 
the expression of 10 RLEs in pyrimidine pathway in 
stemness population of HCC cells. Firstly, we reclassified 
HCC patients in TCGA-LIHC with 10 upregulated RLEs 
in pyrimidine pathway and validated their associations with 
known stemness signatures by GSEA (Figure 4A). Owing to 
very low percentage of CD44+ and CD90+ cell populations 
in well-differentiated HCC cells (Figure 3B), we isolated 
cancer stemness sub-populations with the most conservative 
cancer stemness marker ALDH1 from HepG2 and SNU449 
for analysis the expression of 10 RLEs. Our results showed 
that expression of 10 RLEs of pyrimidine pathway and the 
relative dTTP concentration were significantly upregulated 
in ALDH1 positive populations in compared with ALDH1 
negative populations of HepG2 (Figure 4B) and SNU449 
(Figure 4C) with possibility to participate in cancer 
stemness properties.

Three upregulated RLEs in the dTTP 
biosynthesis of pyrimidine metabolism pathway 
are essential for stemness and increased cellular 
dTTP

Among 10 pyrimidine metabolism enzymes, three 
RLEs including thymidine kinase (TK1), thymidylate 
synthetase (TYMS) and deoxythymidylate kinase 
(DTYMK) were critical for dTTP biosynthesis (Figure 
5A). Expression of 3 RLEs in dTTP biosynthesis and 
the cellular dTTP concentration were higher in poorly-
differentiated HCC, Sk-Hep1 and SNU449, than that in 
well-differentiated HCC, PLC5 and Hep3B by Western 
blotting and dTTP concentration analysis respectively 
(Figure 5B and 5C). As shown in our knockdown 
efficiencies of TK1, TYMS and DTYMK at protein level 
with shRNAs, we demonstrated that knockdown either one 
of the 3 RLEs in dTTP biosynthesis pathway decreased the 
protein expression and the cellular concentration of dTTP 
in poorly-differentiated HCC cells Sk-Hep1 and SNU449 
(Figure 5D and 5E).

Knockdown 3 RLEs decreased tumor sphere 
formation, ALDH1+ sub-populations and drug 
resistance to cisplatin treatments

To examine the participation of 3 RLEs in HCC 
stemness features, we found that the expression of 
TK1, TYMS and DTYMK is higher in ALDH1 positive 
population than that of ALDH1 negative population 
in HCC cells by Western blotting analysis (Figure 6A). 
Knockdown of TK1, TYMS and DTYMK reduced 

capability of forming tumor spheroids as shown in results 
of microscopy (Figure 6B) and in assays of 2 serial 
passages (Figure 6C). Moreover, knocking down TK1, 
TYMS and DTYMK reduce population size of ALDH1 
positive cells by ALDHflour analysis (Figure 6D) and 
resistance to cisplatin treatments in in poorly-differentiated 
HCC cells (Figure 6E).

Overexpression of TK1, TYMS and DTYMK 
increased tumor stemness features and 
associated with poor HCC patient survival

To further explore the roles of the 3 upregulated-
RLEs of dTTP biosynthesis in enhancing stemness 
features and accompanied with prognostic value, we 
overexpressed TK1, TYMS and DTYMK in well-
differentiated HCC cells PLC5 and Hep3B (Figure 7A). 
we found that expression of TK1, TYMS and DTYMK 
enhanced tumor sphere formation capability (Figure 7B 
and 7C) and increased ALDH1 positive populations in 
well-differentiated HCC cells (Figure 7D).

Moreover, HCC patients with higher expression 
of TK1, TYMS and DTYMK at RNA level have poor 
survival rates in compared to patients with lower 
expression of 3 RLEs in 362 patients from TCGA-
LIHC (Figure 8A). The prognostic value of these 3 
upregulated RLEs of dTTP biosynthesis at RNA level 
expression was further confirmed with 110 HCC patients 
in Taiwan collected by the Taiwan liver cancer network 
(TLCN) project [32] (Figure 8B). The prognostic value 
of 3 upregulated RLEs TK1, TYMS and DTYMK in 
HCC patients were further confirmed at protein level by 
performing immunohistochemistry (IHC) on commercial 
HCC tissue arrays (Figure 8C). Our results of upregulated 
TK1, TYMS and DTYMK in HCC tumors at RNA and 
protein levels in multiple independent HCC cohorts 
further suggested that pyrimidine metabolism especially 
dTTP biosynthesis pathway is upregulated in poorly-
differentiated HCC cells to sustain cancer stemness 
resulted in poor survival of HCC patients.

DISCUSSION

To uncover new theranostic targets of HCC, we 
investigate the roles of tumor metabolism in the lethal 
aggressive stage, the poorly-differentiated feature in the 
case of HCC, for exploring the molecular mechanism 
of tumor malignancy. Through transcriptomic analysis 
of metabolic enzymes in large HCC cohorts including 
the RNA-seq data from public TCGA-LIHC and two 
independent gene expression data based on microarray 
platforms in GEO, we identified a unique metabolic mRNA 
signature and candidate cancer genes consisting of 22 
upregulated RLEs and 77 downregulated RLEs in poorly-
differentiated HCC associated with stemness and poor 
patient survival. With correlation of expression profiling of 
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Figure 3: Concordant expression of 99 RLEs and of stemness markers in TCGA-LIHC and six HCC cell lines are 
correlated with HCC differentiation. (A) Heatmap clusters of average expression intensity of 99 RLEs in TCGA-LIHC and six HCC 
cell lines in CCLE. (B and C) Cell morphology and expression status of stemness markers CD44 and CD90 in compared with IgG antibody 
by FACS analysis (B) in well-differentiated HCC cell lines and (C) in poorly-differentiated HCC cell lines. Red lines stand for the gating 
ranges of CD44+ or CD90+ cells. The numbers under CD44 or CD90 indicates the percentage of cells show positive of CD44 or CD90 in 
particular HCC cell.
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Figure 4: Expression of 10 upregulated RLEs in pyrimidine metabolism in ALDH1 positive stemness sub-populations 
of HCC cell lines. (A) Up-regulated expression of 10 RLEs were associated with stemness gene signatures by GSEA. (B-C) Higher 
expression of 10 up-regulated RLEs and relative high dTTP concentration were shown in ALDH1 positive sub-populations than that of 
ALDH1 negative sub-populations in HepG2 (B) and SNU449 (C) HCC cells. Red boxes indicated the measured areas of ALDH1- or 
ALDH1+ cell populations. The numbers indicated the percentage of ALDH1- and ALDH1+ population occupied in a given HCC cell in the 
experiment. *P≤0.05 and **P≤0.001 performed by two-tailed Student’s t-test.
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Figure 5: Up-regulated 3 RLEs TK1, TYMS and DTYMK are critical for sustaining cellular dTTP concentration. (A) 
TK1, TYMS and DTYMK are rate-limiting enzymes for de novo dTTP synthesis. (B) TK1, TYMS and DTYMK are expressed higher in 
poorly-differentiated than that of well-differentiated HCC cells by Western blotting analysis. The intensity value under a band is normalized 
to the intensity of actin of the same cell and then divided by Hep3B intensity of the same RLE for comparison. (C) Higher concentration 
of dTTP in poorly-differentiated than that of well-differentiated HCC cells. (D) Knockdown efficiency of shRNAs to TK1, TYMS and 
DTYMK in HCC cells by Western blotting analysis. (E) Knockdown TK1, TYMS and DTYMK reduced relative dTTP concentration in 
poorly-differentiated HCC cells.
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Figure 6: Knockdown TK1, TYMS and DTYMK decreased tumor sphere formation, ALDH1 positive sub-populations 
and drug resistance. (A) Higher expression of TK1, TYMS and DTYMK in ALDH1 positive than that of ALDH1 negative HCC cells 
by Western blotting analysis. (B) Knockdown TK1, TYMS and DTYMK reduced spheroids formation ability. (C) Knockdown TK1, TYMS 
and DTYMK reduced tumor spheroid formation in 2 serial passages. (D) Knockdown TK1, TYMS and DTYMK reduced expression 
of ALDH1 stemness subpopulations by ALDHflour analysis. (E) Knockdown TK1, TYMS and DTYMK decreased drug resistance to 
cisplatin treatments.
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Figure 7: Overexpression of TK1, TYMS and DTYMK increased tumor sphere formation and ALDH1 positive 
sub-populations. (A) Overexpression efficiency of TK1, TYMS and DTYMK in HCC cells by Western blotting analysis. (B and C) 
Overexpression of TK1, TYMS and DTYMK increased spheroids formation ability. (D) Overexpression of TK1, TYMS and DTYMK 
increased expression of ALDH1 positive stemness subpopulations.
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metabolic RLEs and differentiation status of TCGA-LIHC 
and HCC cell lines, we revealed that upregulated RLEs 
in pyrimidine metabolism especially the 3 RLEs (TK1, 
TYMS and DTYMK) of dTTP biosynthesis pathway play 
critical roles in increasing cellular dTTP concentration and 
sustaining the stemness properties. Upregulated 3 RLEs 
associated with cancer stemness features might participate 
in the poor differentiation feature in tumor progression and 
associate with poor survival of HCC patients.

The major advantage of our integrated genomic 
approach is to focusing on the aberrant roles of metabolic 
enzymes in poorly-differentiated HCC and their tumor 
progression. Consistent with previous tissue metabolomics 
of high-grade (poorly-differentiated) versus low-grade 
(well-differentiated) HCC by using NMR spectroscopy, the 
high-grade HCC showed the increase of lactate, glutamate 
and alanine and lower levels of lipid, glucose and glycogen 
in compared with the low-grade HCC [33]. The outcomes 
of these altered metabolites in high-grade HCC might 

have resulted from the decrease of RLEs in the amino 
acid degradation and lipid metabolism and the increase of 
RLEs in the pyruvate and nucleotide metabolism (Table 
1). Our study confirmed the roles of alteration of energy 
metabolism in HCC histological grading and revealed 
a novel role of pyrimidine metabolism in supporting 
stemness and malignant progression of HCC.

The focus of altered metabolism in tumor progression 
is an emerging field for uncovering new driver genes to 
target cancer metastasis in recent years. Although previous 
studies of increased de novo lipogenesis pathway could 
promote HCC tumorigenesis [34–36], interestingly, 
recent study to inhibit hepatic lipogenesis by liver-specific 
knockout of acetyl-CoA carboxylase (ACC) could enhance 
liver tumorigenesis by increasing antioxidant defense and 
promoting cell survival [37]. Moreover, high unsaturated 
lipids were enriched in cancer stem-like cells (CSCs) 
than that of non-CSC and required for supporting ovarian 
CSC [38]. Our result of decreased lipid metabolism in 

Figure 8: Higher expression of TK1, TYMS and DTYMK is associated with poor patient survival of HCC patients. 
Upregulated TK1, TYMS and DTYMK at RNA level of (A) TCGA-LIHC and (B) HCC-TLCN (Taiwan liver cancer network), and (C) at 
protein level from HCC tissue arrays by IHC staining (HCC-IHC) are associated with poor HCC patient survival.
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association with poor HCC survival is consistent with these 
recent reports. Nevertheless, another obvious alteration of 
pyrimidine metabolism pathway in poorly-differentiated 
HCC for sustaining stemness and association with poor 
HCC patient survival was never been revealed in previous 
cancer metabolic studies. Interestingly, approximately 
half of the 22 upregulated RLEs is involved in pyrimidine 
pathway, a major contributor to DNA and RNA nucleotide 
synthesis, to participate in the poorly-differentiated feature, 
stemness and poor prognosis of HCC.

In the de novo pyrimidine pathway, 3 RLEs 
including TYMS (Thymidylate Synthetase), DTYMK 
(Deoxythymidylate kinase) and TK1 (Thymidine kinase 
1) play critical roles in the dTTP biosynthesis. TYMS, a 
key rate-limiting enzyme in the folate metabolism, plays 
essential roles in the development of several malignancies 
such as prostate cancer and lung cancer [39, 40]. Inhibition 
of TYMS by treatment with cancer chemotherapy 
drug 5-FU (5-Fluorouracil) results in accumulation of 
FdUMP, which might subsequently lead to increased 
levels of fluoro-deoxyuridine triphosphate (FdUTP) [41]. 
DNA damage due to FdUTP mis-incorporation results 
in DNA strand breaks and cancer cell death. DTYMK 
catalyzes dTTP biosynthesis as synthetically lethal with 
lkb1 deficiency in mouse and human lung cancer lines 
[42]. TK1 catalyzes the conversion of thymidine to 
deoxythymidine monophosphate (dTMP) is function 
as a proliferation marker in multiple cancer types. In 
our study, we found that TYMS, TK1 and DTYMK are 
enriched in ALDH1+ population and knockdown either 
one of these RLEs decreased ALDH1+ population in 
poor-differentiated HCC SK-Hep1 and SNU449 cells. 
Interestingly, upregulation of TYMS and DTYMK was 
observed in the 5-FU resistant colon cancer cells [43]. 
Our results of these dTTP biosynthesis RLEs involved in 
cancer stemness might provide new strategies for 5-FU 
combination therapeutic modalities for improvement of 
advanced HCC therapy.

Although cancer metabolism could be influent 
by intrinsic and extrinsic factors in the tumor 
microenvironment, understanding metabolic regulation 
of CSCs might offer new promising approaches for 
identifying and targeting recalcitrant stem cell populations. 
CSCs are small but significant populations of cancer cells 
with self-renewal and tumor-initiating properties. CSCs 
are known to increase intra-tumoral heterogeneity and 
drug resistance resulted in disease progression, recurrence, 
metastasis and adverse patient outcomes [44]. In this 
study, we revealed pyrimidine metabolic enzymes required 
for supporting CSC and associated with poor survival of 
HCC is clinically relevant because many of the enzymes 
have well-defined active sites that can potentially be 
targeted by small molecules. Future studies of underlining 
mechanisms on the metabolic reprogramming of 
pyrimidine pathway in CSCs and development of drugs 
to target pyrimidine RLEs should be critical for CSC-

targeting therapies with the ultimate goal of overcoming 
tumor relapse and metastasis.

EXPERIMENTAL PROCEDURES

RNA preparation and quantitative reversed 
transcription PCR (RT-qPCR)

Total cellular RNA was extracted using Trizol reagent 
(Invitrogen) according to the manufacturer’s procedures 
for RT-PCR. Quantitative RT-PCR was performed by 
SYBR Green Master Mix (Applied Biosystems) according 
to the manufacturer’s protocols. The specific primers 
used in RT-qPCR are shown below: hCAD Forward  
primer (F) 5’ CCCGCAGGAGGACACCTATG, Reversed  
primer (R) 5’ CGGTGCCCTTCACTTTCTGC; hCTPS2,  
F: CCGGGAAGCGTGGAGTTCA, R: TGCTGCTGGC 
AATGATCCCT; hDTYMK, F: GCTGGGAACAAGTG 
CCGTT, R: ACCAGGTCGGGTTTGGGAAG; hNT5C3,  
F: CTCTGGGATCCCGCGCTT, R: CTCATGCGCGTCC 
AAGCAG; hRRM1, F: TTGGATTGTTGCGCCTCTGC, 
R: CAAGACTGGACTGCGGCTCT; hRRM2, F: GATG 
AGCCGCTGCTGAGAGA, R: TCTCTCCTCGGGTT 
TCAGGGA; hTK1, F: TCTCGGGCCGATGTTCTCAG, 
R: GGTGTTCCGGTCATGTGTGC; hTYMS, F: ACC 
CTGTCGGTATTCGGCAT, R: AAGTCTCGGGATCC 
ATTGGCA; hUCK2, F: CGGCAAGTCTTCCGTGTGTG, 
R: AAGGCATCCGGGTGGTCAAA; hUCKL1, F: ACCA 
GTCGCGACGAGTTCAT, R: ACACCGGTGATCTG 
CTTCCC ; GAPDH, F: TGTTCGACAGTCAGCCGC, R: 
GGTGTCTGAGCGATGTGGC;

Western blotting

Total cellular proteins were extracted by RIPA lysis 
buffer and then quantified by Bradford method (Sigma). 
The protein lysates were separated on SDS-PAGE, electro-
blotted onto PVDF membranes (Millipore), probed 
with primary antibody followed by HRP-conjugated 
secondary antibody, and then detected by enhanced 
chemiluminescence (ECL).

In silico detection of expression of metabolic 
genes in cancers

The expression status of metabolic enzymes in 
liver cancer (LIHC) patients of TCGA was obtained from 
The Cancer Genome Atlas project (TCGA, https://tcga-
data.nci.nih.gov/tcga/). The transcriptome datasets of 
HCC performed in microarray were downloaded from 
GEO database. Gene expression was quantified using 
RSEM (RNA-Seq by Expectation-Maximization) [45] 
and probe intensity for RNA-seq and microarray datasets, 
respectively. Quantified RNA expression in TCGA is using 
RSEM a generative model to estimate RNA expression 
by EM algorithm and available for download. RLE score 
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was calculated based on the sum of expression value of 22 
upregulated RLEs or the sum of expression value of 77 
downregulated RLEs in TCGA. The two populations of 
HCC patients with high and low RLE scores were further 
classified and performed the gene set enrichment analysis 
(GSEA) and survival analysis by Cutoff finder [46].

Spheroid formation assays

Briefly, 1,000 cells were suspended in DMEM/F12 
medium containing 20 ng/ml EGF, 20 ng/ml basic FGF 
and B27 supplements. Cells with limiting dilutions were 
cultured in 12-well plates for 2 weeks. Spheroids larger than 
100 μm were then counted for spheroid-forming index.

Chemo-resistance assays

104 cells were cultured in the absence or presence of 
50μM Cisplatin (Sigma) for two days. The cell viability 
was further analyzed by PrestoBlue® Cell Viability 
Reagent (Invitrogen).

Whole-cell dTTP extraction and quantification

106 cells were extracted with 60% ice-cold 
methanol, immersed at 100°C dry bath for 3 min and then 
dried under vacuum according to the method described 
[47]. The dry residual was further dissolved in 80 μl of 
nuclease-free water and then detected dTTP levels by 
following Ferraro et al procedure [48].

Immunohistochemistry

HCC tissue arrays were deparaffinized and 
subjected to 10 mM citrate buffer (pH6.0) by microwave 
treatment for 20 minutes for antigen retrieval. The 
samples were subsequently immersed in 3% H2O2 
for 30 min to block endogenous peroxidase, and then 
incubated with primary antibodies of TK1, TYMS and 
DTYMK diluted in blocking buffer at 4°C overnight. 
The slides were processed using EnVision+Dual 
Link System-HRP kit (DAKO) according to the 
manufacturer’s protocol, and counterstained using 
hematoxylin. Tissue arrays were purchased from 
SUPER BIO CHIPS (www.tissue-array.com, Seoul, 
Korea). All IHC results were examined and scored 
from 1 to 4 based on their expression intensity by two 
independent pathologists and defined the intensity score 
above 3 as high level protein expression.

Flow cytometry analysis for ALDH1 stem cell 
population

For Aldefluor assay, 5×105 cells were suspended in 
ALDEFLUOR assay buffer containing ALDH1 substrate 
according to manufacturer’s instructions (Stem Cell 
Technologies, Durham, NC, USA).

Gene set enrichment analysis (GSEA)

GSEA was performed on various gene signatures by 
comparing gene sets from MSigDB database or from published 
gene signatures [49]. Gene sets with a false discovery rate 
(FDR) value <0.05 by comparing the enrichment score to 
enrichment results generated from 1,000 random permutations 
were considered as statistical significance.

Statistical and survival analysis

Data was expressed as the mean ± SD. All statistical 
analyses were conducted using Student’s t-test by the 
SPSS statistical software program (v17.0; SPSS Inc.). 
Statistical significance was set at *P≤0.05, **P≤0.001 
***p<0.0001 by two-tailed Student’s t-test. The chi square 
test was applied to evaluate the correlation between RLE 
score and CD44 expression. The high and low populations 
in RLE score and CD44 expression was selected by first 
and fourth quantiles respectively. The survival analysis 
was assessed with cutoff finder at the website http://
molpath.charite.de/cutoff/index.jsp [46].

Antibodies, cell lines and plasmids

Antibodies used in our experiments are TK1, 
TYMS and DTYMK (Genetex); β-actin (Santa Cruz 
Biotechnology). Human HCC cell lines PLC5, HepG2, 
Hep3B, SNU387, SNU449 and SK-Hep1 were maintained 
in low passage culture as previous described [50]. The 
full-length TK1, TYMS and DTYMK cDNAs were cloned 
into pCDNA3.1+ plasmid and deposited into addgene as 
100544, 100545 and 100546, respectively

Small hairpin RNA and lentiviral infections to 
cells

The small hairpin RNAs (shRNAs) for TK1, 
TYMS and DTYMK were obtained from the TRC library: 
TRCN0000010135 and TRCN0000318729 as shTK1; 
TRCN0000291719 and TRCN0000291720 as shTYMS; 
TRCN0000199082 and TRCN0000199534 as shDTYMK; 
from the National RNAi Core Facility Platform of Academia 
Sinica. Lentiviral preparation and virus infection were 
performed as previous described [50]. In brief, pLKO.1 
with shRNA, pMD.G and pCMV-ΔR8.91 were introduced 
into HEK293T cells for lentiviral packaging. The viral 
supernatants were collected and used to infect HCC cancer 
cell lines. Control vector expressing shRNA against LacZ 
(pLKO.1-shLacZ) was used as a negative control.
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