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Abstract
Background and Objectives
Longitudinal measurements of brain atrophy using structural MRI (sMRI) can provide pow-
erful markers for tracking disease progression in neurodegenerative diseases. In this study, we
use a disease progression model to learn individual-level disease times and hence reveal a new
timeline of sMRI changes in Huntington disease (HD).

Methods
We use data from the 2 largest cohort imaging studies in HD—284 participants from TRACK-
HD (100 control, 104 premanifest, and 80 manifest) and 159 participants from PREDICT-HD
(36 control and 128 premanifest)—to train and test the model. We longitudinally register T1-
weighted sMRI scans from 3 consecutive time points to reduce intraindividual variability and
calculate regional brain volumes using an automated segmentation tool with rigorous manual
quality control.

Results
Our model reveals, for the first time, the relative magnitude and timescale of subcortical and
cortical atrophy changes in HD. We find that the largest (;20% average change in magnitude)
and earliest (;2 years before average abnormality) changes occur in the subcortex (pallidum,
putamen, and caudate), followed by a cascade of changes across other subcortical and cortical
regions over a period of;11 years. We also show that sMRI, when combined with our disease
progression model, provides improved prediction of onset over the current best method (root
mean square error = 4.5 years and maximum error = 7.9 years vs root mean square error = 6.6
years and maximum error = 18.2 years).

Discussion
Our findings support the use of disease progression modeling to reveal new information from
sMRI, which can potentially inform imaging marker selection for clinical trials.
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Identification of new biomarkers of disease progression is
crucial for the efficient design and execution of clinical trials in
Huntington disease (HD),1 and more broadly any neurode-
generative disease. Structural MRI (sMRI) measured at more
than 1 time point can provide continuous measures that track
disease progression (i.e., biomarkers), and methods such as
voxel-based morphometry can be used to directly estimate
longitudinal changes in sMRI data.2 Direct regression models
(i.e., those that do not account for hidden variables) have also
been used to model dynamic change in sMRI measures in
Alzheimer disease (AD),3 Parkinson disease,4 and HD.5

However, longitudinal analysis in medical data is confounded
by intersubject variability, measurement noise, and the lack of
a common reference timeline, as study participants are typi-
cally drawn from a mixture of unknown or broadly defined
disease times. This makes it difficult to establish a common
disease timeline and hence identify suitable markers of disease
progression for clinical trials. Moreover, both clinical trial
design and clinical practice would benefit from methods that
can position individuals along a common disease timeline to
inform cohort selection criteria and potentially assist in
prognosis, respectively.

Disease progression modeling addresses this problem using
computational methods to reconstruct long-term trajectories
from short-term data. There are numerous methods that
handle longitudinal data (i.e., more than 1 measurement per
individual), which have been applied to a wide range of
neurologic diseases to reveal new clinically useful information
(see reference 6 for a comprehensive review). The methods
most directly relevant to our work are continuous models of
biomarker dynamics, which have seen broad application in
AD.7-10 These models are regression based and typically in-
volve fitting parameters to data from multiple individuals to
reconstruct trajectories of clinical9 and mixed biofluid and
clinical and imaging markers.7,8,10 Notably, the authors in
reference 9 introduced an individual-level time-shift into their
regression model, allowing variability in the hidden individual-
level disease time to be estimated directly from the data. More
recently, Bayesian mixed-effects models with individual-level
time-shifts have been developed.11,12 These models can make
estimates of the shape and time scale of biomarker trajectories
in progressive diseases, at the expense of requiring sigmoidal
forms for the trajectories to be assumed a priori.

With respect to disease progression modeling in HD specifi-
cally, we previously trained an event-based model (EBM) to
estimate the hidden sequence of sMRI changes using cross-

sectional data from the TRACK-HD study.13 However, the
EBM does not model longitudinal information, which is
necessary to estimate the time between events and hence
identify potential biomarkers and make individual-level
prognoses. A continuous-time hidden Markov model was
applied to longitudinal clinical test score data from the Enroll-
HD study in HD.14 However, they did not perform any
out-of-sample cross-validation and provided only limited ex-
amples of the model’s predictive utility. Recently, the authors
of reference 15 developed a generative model of individual-
and group-level sMRI changes using a dynamic causal model
(DCM). They found heterogeneous trajectories in regional
volumes in a small (N = 49) gene-positive HD cohort from
the TRACK-HD and TRACKOn-HD studies.16,17 However,
the proposed DCM did not infer individual-level disease time,
which necessitated large numbers of time points per in-
dividual to capture disease progression (an average of 5.94
time points per individual were used). This limits the possible
cohorts that can be used to train the model, which by ex-
tension limits its broader applicability to unseen data, a key
requirement for model validation and clinical utility. Fur-
thermore, DCMs are based on parametric models and
therefore require hypothesis testing to identify the functional
form of each trajectory from the data. This typically limits
trajectories to a symmetric form (e.g., sigmoidal), which is a
reasonable assumption for brain volumes18 but precludes the
possibility of a trajectory havingmore than one time-dependent
rate of change (i.e., acceleration). Although not well reported,
multiple accelerations could be biologically feasible; for exam-
ple, if the rate of atrophy in a given brain region is changed by
external factors (such as accumulation of proteinopathies1).

A nonparametric approach to modeling longitudinal changes
is provided by Gaussian process (GP) regression, which al-
lows one to capture temporal covariance without making
limiting—and often unsuitable—a priori assumptions on the
form of the distributions generating observed data.19 A GP
model of normative individual-level changes in global gray
matter abnormalities was proposed by the authors of reference
20.However, thismodel did not account for individual-level time-
shifts and hence is not suitable for modeling disease pro-
cesses. The GP progression model (GPPM) formulates GP
regression within a disease progression modeling frame-
work, allowing for simultaneous inference of group-level
dynamics and individual-level time-shifts21; here, the au-
thors also demonstrate the GPPM’s capabilities in Alzheimer
disease. The GPPM has 3 key strengths: (1) unlike the EBM
in reference 13, it models temporal covariance, giving us

Glossary
AD = Alzheimer disease; CAG = cytosine-adenine-guanine; DCM = dynamic causal model; EBM = event-based model; GP =
Gaussian process; GPPM = GP progression model; HC = healthy control; HD = Huntington disease; PreHD = premanifest
HD; SDMT = Symbol Digit Modalities Test; SM = survival model; sMRI = structural MRI; SWRT = Stroop Word Reading
Test; TMS = Total Motor Score.
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information on the timescale of changes in HD; (2) unlike
the DCM in reference 15, it infers individual-level disease
time, allowing us to stitch together short-term measure-
ments into long-term trajectories; and (3) unlike either EBM
or DCM, it is nonparametric, allowing us to infer data-driven
trajectories without making a priori assumptions. Further-
more, GPPM is generative, meaning that it provides prob-
abilistic predictions and hence allows for direct
quantification of prediction uncertainty.

Here, we apply the GPPM to learn a common disease timeline
and hence model longitudinal trajectories of regional sMRI
markers in HD. Next, we use the disease timeline of sMRI
trajectories inferred by the GPPM to estimate, for the first time,
the relative timescale andmagnitude of regional volume changes
across the HD brain. Finally, we also demonstrate that the
GPPM can provide improved predictive utility of clinical onset
over the current state of the art. We use the 2 largest imaging
data sets in HD, TRACK-HD16 and PREDICT-HD,22 to train
and test theGPPM, respectively. These data sets also allow us to
test our model with unseen data from a completely separate
study, providing a realistic measure of its clinical predictive
utility, where individuals may be observed under completely
different conditions (e.g., place, time) than those used to train
the model. As such, we demonstrate the clinical validity and
utility of our findings, which have broad implications for the use
of sMRI markers in clinical trials and clinical practice.

Methods
Participants
We used T1-weighted 3T sMRI scans and genetic data (number
of cytosine-adenine-guanine [CAG] repeats) from 284 partici-
pants (100 healthy control [HC]; 104 premanifest HD
[PreHD]; and 80 manifest HD: HD) from the TRACK-HD
study16 and 1.5 T and 3 T sMRI scans from 164 participants (36
HC [23 at 1.5 T; 13 at 3 T]; 128 [111 at 1.5 T; 17 at 3 T]
PreHD) from the PREDICT-HD study,22 which corresponded
to all available participants with measurements at 3 consecutive
time points (baseline plus 2 follow-ups at 12-month intervals).
Summary demographic data are shown in Table 1. We have
previously studied these data sets in detail; see reference 23 for
more detailed inclusion criteria, demographics, image acquisition
protocols, and interstudy comparisons.

Standard Protocol Approvals, Registrations,
and Patient Consents
The TRACK-HD and PREDICT-HD study protocols were
approved by the local Research Ethics Committees, and
participants signed consents for both participation and to al-
low deidentified research data to be sent to collaborative in-
stitutions for analysis.

Image Analysis
We longitudinally registered scans to reduce intraindividual var-
iability using the SPM12 tool,24 including differential bias

correction for between timepoint scan inhomogeneities.25 Scans
were then postprocessed using the Geodesic Information Flows
segmentation tool26 to provide bilateral regional volume mea-
surements. Rigorous manual quality control was performed on
both the raw and processed images from every individual to
remove noisy images and failed segmentations. All volumes were
adjusted for covariates (age, sex, site, and total intracranial vol-
ume) by regressing against the HC group in each study sepa-
rately. Field strength was also included as a covariate in the
PREDICT-HD data set. We previously found consistent changes
in regional volumes in the PreHD groups between studies.23

Ten adjusted regions of interest were then selected based on
either clinical knowledge of HD pathology (caudate, putamen,
pallidum, ventricles, thalamus proper, and sensory motor; see
e.g., references 2, 27, 28) or to provide coverage of the 4 main
regions of the cerebral cortex (frontal, temporal, occipital, and
parietal). We trained GPPM using these volumes from gene-
positive (PreHD and HD) individuals from TRACK-HD and
tested GPPM using the PreHD group from PREDICT-HD.
The CAG data are reserved for model comparison to a
benchmark survival model (SM) that predicts time to onset
using individual-level age and CAG repeat count.29

Disease Progression Modeling
Longitudinal change in key regional volumes was modeled at
both the individual and group levels using the GPPM in-
troduced by the authors in reference 21. GPPM estimates a
common timeline across the population, as well as a time-shift
(position) for each individual along the timeline. Together,
this information provides a staging system, with individual
times given by the time-shift and prognosis given by the
timeline.

More formally, GPPM implements time-reparameterized GP
regression defined by the generative model:

yjðfjðtÞÞ = f ðfjðtÞÞ + νjðfjðtÞÞ + ε: (1)

Here, yj is the vector of regional volume measurements for
subject j, fjðtÞis the time reparameterization function for
subject j, f ðfjðtÞÞis the fixed-effect GP used to model group-
level trajectories, νjðfjðtÞÞis the individual Gaussian random
effect, and ε is time-independent measurement noise. The
time reparameterization function fjðtÞ = t + dj defines the
individual-level time-shift, dj, which is learned from the data.
The model therefore allows for estimation of both longitu-
dinal volumetric change at the group and individual levels and
individual-level time-shift along the predicted trajectory.
Furthermore, GPPM is formulated in a Bayesian framework,
allowing estimation of the uncertainty over predicted trajec-
tories. Monotonicity in the group-level volumetric evolution
was enforced by requiring the first derivative of the fixed-
effects function to be positive. Model parameters were esti-
mated using the Deep GP variational framework presented by
the authors in reference 30 and implemented in PyTorch
(pytorch.org).
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To define a common threshold for biomarker abnormality, we
shifted trajectories such that the magnitude of each trajectory
at t = 0 was equal to the mean volume of the biomarker for the
manifest HD group at baseline. After the GPPM was trained,
individual-level time-shifts in the test data were then esti-
mated as the time at which the difference between the average
fixed-effect trajectory and the individual regional volume
measurements was minimized. As such, GPPM could be used
in clinical practice to stage individuals using postprocessed
sMRI data from a single observation. This staging could then
be used to inform prognosis, based on their position along the
regional brain volume trajectories.

Data Availability
Anonymized data and documentation from this study can be
made available to qualified investigators on reasonable re-
quest. Such arrangements are subject to standard data sharing
agreements.

Results
Figure 1 shows regional brain volume trajectories in 10 key
anatomic regions inferred by GPPM in the TRACK-HD co-
hort. Uncertainty in the fitted models is obtained from 200
samples from the posterior. We assessed the quality of our
trained model using 10-fold cross-validation, which returned a
residual ratio σCV=σfull = 0:94, where σCV is the mean cross-
validated residual, and σfullis the residual when fitting to the
full data set, indicating high consistency of model hyper-
parameters. All regions show a monotonic change in volume
over a period of;11 years (difference between the maximum
and minimum individual-level times). Trajectories generally
follow an approximately sigmoidal form, except the lateral
ventricles that are initially flat before increasing rapidly ;2
years before onset. We quantitatively assess the degree of
nonlinearity for each trajectory by separately fitting a linear
model to the transformed data and calculating the difference
between this model and the GPPM trajectory (Table 2). We
find that the pallidum has the highest degree of nonlinearity,

followed by the lateral ventricles and sensory motor, with the
frontal region demonstrating the most linear change.

GPPM can also be used to estimate the most likely or-
dering of brain volume changes, by ordering volumes
according to the time at which each trajectory reaches its
maximum gradient (i.e., its change point). Figure 2A shows
boxplots of the maximum change time for 10 regional
volumes, inferred by drawing 1,000 samples from the
posterior for each region, and Figure 2B shows the average
magnitude of change for each region from the same set of
samples.

To qualitatively investigate the relationship between re-
gional volume changes and CAG repeat count, we trained
GPPM on subsamples of individuals grouped by CAG repeat
count in TRACK-HD. Figure 3 shows selected examples in
the pallidum, which generally shows faster and more severe
changes with increasing CAG repeat count, and the lateral
ventricles, which does not exhibit any qualitative de-
pendency. For the full set of regions, see eFigure 1 (links.
lww.com/NXG/A472).

To qualitatively evaluate the GPPM’s within- and out-of-
sample predictive utility, Figure 4A and B show the predicted
disease time probability density distributions for gene-positive
participants in the TRACK-HD and PREDICT-HD cohorts.
Individuals were first assigned the most likely time averaged
over all trajectories given their regional volume measure-
ments, and the time distribution probability density was then
calculated across the PreHD and HD groups using a non-
parametric density function (kernel density estimate). For the
TRACK-HD cohort, GPPM successfully clusters the PreHD
and HD subgroups, placing the PreHD group midway along
the trajectory and the manifest HD group at the end; in the
PREDICT-HD cohort, GPPM times the PreHD group on
average earlier than the TRACK-HD equivalent (TRACK-
HD PreHD mean time = −2.5 years; PREDICT-HD PreHD
mean time = −4 years).

Table 1 Demographic Characteristics for the TRACK-HD and PREDICT-HD Cohorts

Demographic characteristic HC (TRACK-HD) PreHD (TRACK-HD) HD (TRACK-HD) HC (PREDICT-HD) PreHD (PREDICT-HD)

N 100 104 80 36 128

Sex (F:M) 58:42 55:49 43:37 25:11 82:46

Age (mean ± SD) 46.3 ± 10.4 41.2 ± 8.8 48.5 ± 9.3 45.1 ± 10.9 41.5 ± 10.9

CAG (mean ± SD) — 43 ± 2.3 43.8 ± 3 — 42.5 ± 2.7

TMS (mean ± SD) 1.58 ± 1.76 2.57 ± 1.65 23.2 ± 10.9 3.54 ± 4 5.26 ± 4.67

SDMT (mean ± SD) 53.11 ± 9.3 51.2 ± 10.6 35 ± 10.4 52.6 ± 9.5 51.3 ± 9.9

SWRT (mean ± SD) 106.9 ± 16.4 99.4 ± 16.5 77.2 ± 20.7 102.1 ± 13.4 100.7 ± 16.1

Abbreviations: CAG = cytosine-adenine-guanine; PreHD = premanifest HD; SDMT = Symbol Digit Modalities Test; SWRT = Stroop Word Reading Test; TMS =
Total Motor Score.
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To quantitatively evaluate the GPPM’s out-of-sample pre-
dictive utility with respect to the state of the art in prediction
of onset, we compared GPPM with a benchmark

nonparametric SM based on age and CAG repeat count.29

Figure 5 shows boxplots of the difference (residual) between
the predicted and actual time to onset for each model. Here,

Figure 1 Regional Brain Volume Trajectories in the TRACK-HD Cohort

Regional brain volume trajectories in the TRACK-HD cohort. (A-J) Individual regional volume trajectories, with PreHD individuals in solid orange lines, HD
individuals in dashed red lines, GPPM average fit as a solid black line, and GPPM uncertainty as shaded red lines. (K) All regional volume trajectories overlaid.
Standardized volumes (y-axis) are shown, and the time-scale (x-axis) is centered such that t = 0when the fitted trajectory (black line) is equal to themean value
of the HD group. Uncertainty in the fit is shown as light shading about the mean and was estimated using 200 samples from the posterior. GPPM = Gaussian
Process Progression Model; HD = manifest Huntington disease; PreHD = pre-manifest Huntington disease.
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27 participants with PreHD at baseline from the PREDICT-
HD cohort who converted to HD at any follow-up (not just
within the 2 follow-ups used previously) are used to provide
out-of-sample data. For the SM, hyperparameters obtained by
the authors of reference 29 were used to parametrize the
probability of time to onset given age and CAG repeat length,
and 104 samples were drawn from this distribution to obtain a
mean predicted time to onset for each individual. For the

GPPM, we defined the onset for each regional volume at t = 0,
which corresponds to the mean volume for the manifest HD
group.

TheGPPM improves over the SM in terms of the absolute error,
with the GPPM returning an absolute median residual of 2.9
years (±0.9, 5) and the SM 3.2 years (±1.2, 5.2) (see Figure 5A).
However, the GPPM overestimated the time to onset (positive
difference), whereas the SM underestimated (negative differ-
ence); overestimation is likely due to event censoring in the data
(e.g., if individuals convert in-between visits), whereas un-
derestimation is likely because of systematic model bias. Fur-
thermore, theGPPMprovides a smaller spread than SM;GPPM
has root mean square error = 4.5 years and a maximum error of
7.9 years, whereas the SMhas root mean square error = 6.6 years
and a maximum error of 18.2 years. We further investigated the
relationship between actual and predicted time to onset using
linear regression; Figure 5B shows linear model fits for each
model, with 95% confidence intervals. Although neither model
shows significant coefficients, the GPPM does show a positive
gradient between predicted and actual time to onset (beta = 0.3,
p = 0.25), whereas the SM shows zero gradient (beta = −0.03,
p = 0.93).

Finally, we note that we found no significant relationships
under a fixed-effect linear regression of either actual or pre-
dicted time to onset and CAG repeat count, age, and their
interaction in participants with PreHD from either cohort at
baseline. A negative correlation between time to onset and
CAG repeat count would be expected (see e.g., reference 31),
but here significance in both the actual and predicted cases is

Table 2 Degree of Fitted Trajectory Nonlinearity by
Regional Volume, Estimated by Taking the
Residual Between the GPPM Trajectory and a
Linear Model

Regional volume Degree of nonlinearity

Pallidum 1.23

Lateral ventricles 1.08

Sensory motor 1.00

Parietal 0.99

Caudate 0.97

Putamen 0.94

Temporal 0.77

Thalamus proper 0.75

Occipital 0.63

Frontal 0.35

A value of 0 would indicate a perfectly linear fit.

Figure 2 Time and Magnitude of Regional Brain Volume Trajectories in the TRACK-HD Cohort

Time and magnitude of regional brain volume trajectories in the TRACK-HD cohort. (A) Predicted maximum change times for ten regional volumes from
genotype-positive trajectories in TRACK-HD. Box-plots represent themean, upper and lower bounds from 1,000 samples from the posterior. Extreme values
are represented as black circles, while the green bars indicate the medians. (B) Average magnitude of change of each volume.
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precluded by the small sample size. We also investigated the
relationship between predicted time to onset and 3 clinical
variables16: Total Motor Score (TMS), Symbol Digit Mo-
dalities Test (SDMT), and Stroop Word Reading Test
(SWRT). We found no significant associations between the
model predictions and TMS (beta = −0.16, p = 0.16), SDMT
(beta = 0.01, p = 0.8) or SWRT (beta = 0.05, p = 0.35), though
all associations were in the expected directions (eFigure 2,
links.lww.com/NXG/A472).

Discussion
We have used GPPM to gain new data-driven insights into the
spatiotemporal patterns of regional brain volume changes
underlying HD progression. Our observations point to an
informative method for selecting brain imaging markers for
tracking disease progression; for example, we propose that the
striatum (pallidum, caudate, and putamen) is most suitable
for tracking acceleration earlier in HD progression, whereas

Figure 4 Group-Level Staging Density in the TRACK-HD and PREDICT-HD Cohorts

(A) TRACK-HD and (B) PREDICT-HD. Distributions were fit using a nonparametric density function (KDE: kernel density estimate). HD = manifest Huntington
disease; PreHD = pre-manifest Huntington disease.

Figure 3 Selected Regional Brain Volume Trajectories by CAG Repeat Count in the TRACK-HD Cohort

Selected regional brain volume trajectories inferred by GPPM from gene-positive (PreHD and HD) individuals from the TRACK-HD cohort, grouped by
CAG repeat count. Standardized volumes (y-axis) are shown, and the time-scale (x-axis) is centered such that t = 0 when the fitted trajectory is equal to
the mean value of the HD group. Uncertainty in the fit is shown as light shading about the mean and was estimated using 200 samples from the
posterior. CAG = cytosine-adenine-guanine; GPPM = Gaussian Process Progression Model; HD = manifest Huntington disease; PreHD = pre-manifest
Huntington disease.
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the sensory motor and lateral ventricles can track acceleration
at later times. As such, our approach has potential application
in clinical trial design, where it could be used to identify the
most suitable marker at the most suitable time to observe the
effect of a given intervention. Moreover, we demonstrate that
GPPM can be used to predict clinical onset of HD more
accurately than the current state of the art. This supports the
use of sMRI, when combined with GPPM, for potentially
informing prognosis in clinical practice and stratification in
the clinical trial design.

GPPM allows us to obtain data-driven trajectories of sMRI
changes across the brain during the premanifest to manifest
period in HD (Figure 1). We observe nonuniform atrophy
across the brain (Figure 2B), with the largest changes
(;18%–22%) occurring in the striatum (caudate, pallidum,
and putamen), and gradual change (;7%–16%) across the 4
main regions of the brain (parietal, temporal, frontal, and
occipital), over a period of ;11 years. Our timescale agrees
with previously reported observations of the timescale of
sMRI changes in HD,32 where the authors reported that the
rate of putamen and caudate atrophy becomes significant
approximately 9 years and 11 years from estimated onset,
respectively. However, the authors in reference 32 used direct
regression methods applied to a small sample (N = 19) of
hand-picked individuals who were observed over the whole
period from premanifest to manifest HD. The GPPM side-
steps the need for tracking individuals across the premanifest
to manifest period, which is costly (both in terms of financial
and human resources) and potentially biased toward indi-
viduals who are willing and physically capable of being ob-
served over many years.

Similarly, although the DCM used by the authors in reference
15 does not directly infer a timeline, the cohort they use spans
10 years from premanifest to manifest HD, over which they

report ;20% change in subcortical volumes (putamen and
caudate), which agrees with our observations. However, we
observe much larger changes in cortical regions; for example, in
our analysis, the occipital region changes by 16% ± 3%, whereas
the occipital regions reported by the authors in reference 15
change much less (occipital gyrus: 7% ± 1%, occipital pole: 5%
± 1%). This is most likely because our model includes sub-
stantially more manifest HD individuals; the authors in refer-
ence 15 include only PreHD at baseline, although all
individuals underwent conversion to manifest HD over the
period of observation. This highlights another advance of our
analysis over previous analyses, as we can use GPPM to stitch
together short-term longitudinal data from individuals with
PreHD and manifest HD, allowing us to capture a broader
picture of dynamic changes.

We note that the magnitude of change we observe in the
striatum regions is larger than (approximately twice) that
reported by the TRACK-HD investigators over the same pe-
riod,2 Figure 2; compare differences between PreHD-A and
HD2 trajectories. This is to be expected, as the results from the
authors in reference 2 are for the mean of each diagnostic
group, whereas GPPM effectively sorts individuals by disease
time, therefore allowing us to measure change between early
PreHD and late HD individuals.

As shown in Figure 2A, GPPM predicts the earliest changes in
subcortical regions of the striatum (pallidum, putamen, and
caudate), followed by cortical regions (temporal, frontal, and
occipital), followed by the remaining regions (lateral ventri-
cles, sensory motor, thalamus proper, and parietal lobe).
These predictions largely agree with reported observations of
early change in the striatum in HD32-34 and in particular using
group-level analysis of voxel-based morphometry in the
TRACK-HD cohort16 (although the authors of that study
report earlier change in the occipital, which is likely because of

Figure 5 Predicted Time to Onset in the PREDICT-HD Cohort

(A) Difference (residual) between
actual and predicted time to onset
for GPPM and SM, for PreHD indi-
viduals from PREDICT-HD. Boxplots
show the median, first and third
quartiles, and outliers. (B) Predicted
and true time to onset for each
model. Fits are from fixed effect
linear models, with shaded bands
corresponding to 95% confidence
intervals. GPPM = Gaussian Process
Progression Model; SM = survival
model.
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variability in the signal from this region). Furthermore, we
have also reported predictions of early change in the striatum
using an EBM of regional brain volume changes in HD.13

Unlike our previous model, GPPM also provides the time-
scale of changes. In the TRACK-HD cohort, GPPM predicts
the maximum rate of change in the pallidum and putamen
;2 years before reaching the threshold for abnormality
(as described in the Methods section, we define this
threshold as the mean regional volume in the manifest HD
group). These changes are followed by a rapid cascade in the
remaining regions over a period of ;1 year. We note that
model inferences are limited by the training sample and that
TRACK-HD was designed to preferentially include a cohort
of PreHD individuals with a higher likelihood of converting
during the study16; as such, the GPPM time estimates are
likely shorter than would be expected from an average
PreHD individual.

GPPM also allows us to observe varying degrees of non-
linearity in both cortical and subcortical regions (Table 2).
Most subcortical regions (pallidum, caudate, putamen, and
lateral ventricles) exhibit nonlinear behavior except the thal-
amus proper, and most cortical regions (parietal, temporal,
occipital, and frontal) exhibit linear behavior except the sen-
sory motor. Combined with the timescale of changes, this
information has interesting implications for imaging marker
selection for clinical trials. For example, caudate volume
(which we previously identified as a strong candidate marker
for phase 1 and 2 trials26) exhibits accelerated volume loss;5
years before average abnormality. This acceleration would
need to be modeled when comparing treatment effects be-
tween groups, which motivates the use of nonlinear methods
such as GPPM that can capture nonlinearity, unlike standard
linear models.

A key genetic driver of HD progression is CAG repeat count,
which has a well-reported correlation with the rate of clinical
progression.31 With respect to sMRI volumetric change, the
authors in reference 15 found that the CAG repeat length is
related to the rate of cortical and striatal atrophy; this is a
strength of their modeling approach, which accommodates
individual-level covariates such as genetic burden. The asso-
ciation of brain volume loss on CAG repeat length in
TRACK-HD and TRACKOn-HD was also reported by.35

Although GPPM does not (currently) explicitly account for
individual-level covariates, we qualitatively investigated the
effect of CAG repeat count by training models on subsamples
grouped by CAG (Figure 3). In certain regions (e.g., the
pallidum) our results suggest a dependency of CAG on
the rate of volumetric change, whereas in other regions (e.g.,
the lateral ventricles), we did not observe any dependency.
However, we caveat these observations with the fact that they
are qualitative (e.g., no statistical hypothesis tests were per-
formed) and that our sample sizes are limited (for example,
the CAG = 50 group comprises N = 5 individuals; see eTa-
ble 1 [links.lww.com/NXG/A472] for the number in each
group).

After confirming model quality using cross-validation, we
used GPPM to infer individual-level disease times (Figure 4).
GPPMwas able to successfully stage the TRACK-HD PreHD
group at a later stage than the PREDICT-HD PreHD group,
which reflects our prior knowledge of differences between the
2 study cohorts; we have previously shown that the TRACK-
HDPreHD group has a higher disease burden (product of age
and CAG repeat length) than the PREDICT-HD PreHD
group.26 We also evaluated GPPMwith respect to clinical test
score data, which showed nonsignificant dependencies on
predicted time to onset, but in the expected directions.

We also demonstrated that GPPM can provide improved ac-
curacy of prediction of onset than the current benchmark on
out-of-sample data (Figure 5). Of interest, a similar trend was
reported by the authors in reference 10 in Alzheimer disease,
who found that their disease progression model overestimated
and SM underestimated time to onset, respectively, and the
disease progression model provided greater accuracy than the
SM. This may be due to the exponential form of SMs, which
allow for a longer tail of predictions further from onset (and
would explain the asymmetric distributions observed in
Figure 5A and presented by the authors of reference 10 in
Figure 6B).

There are 3 main limitations of our analysis. First, we only
analyze sMRImeasurements, as the focus was on investigating
regional brain volume changes in HD. However, GPPM can
easily accommodate any dynamic marker—such as other
imaging modalities, clinical test scores, and biofluids, as
demonstrated by the authors of reference 21. Note that our
use of an automated segmentation tool to obtain regional
volumes must be considered when interpreting the biological
relevance of our results. However, as noted by the authors of
reference 26, we limited potential biases due to automated
methods by performing rigorous manual quality control at
every step of the imaging pipeline. Second, GPPM currently
models only the individual-level time-shift, but not the
individual-level rate of change. We are therefore unable to
stratify individuals according to the rate of change in a given
marker, which is of interest for the clinical trial design, where,
for example, fast progressors might be excluded for a partic-
ular trial. However, although full Bayesian inference of the rate
and time-shift is challenging because of the interaction be-
tween the 2 variables, it would be reasonably straightforward
to add an additional variable in Equation 1 to account for
individual-level random effects such as genetic factors; this is
essentially the same approach used by the authors of reference
15. We propose possible extensions of GPPM such as this for
future work. Finally, we are limited by the data sets used to train
and test the model; the TRACK-HD cohort represents indi-
viduals who were likely to convert from PreHD to HD during
the scope of the study, and the PREDICT-HD cohort used here
entirely comprises PreHD individuals. To capture the full disease
timeline, a younger cohort—such as the HD-YAS cohort36—
would need to be included to cover the complete natural history
ofHD.We plan to combineHD-YASwith theTRACK-HDdata
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set in future work, which will allow us to uncover the natural
history of spatiotemporal sMRI changes across the preclinical
HD timeline.

Study Data and Code
Access to the TRACK-HD and PREDICT-HD data sets can be
requested via the study leaders (SJT and JSP, respectively). The
GPPM user interface is available at: gpprogressionmodel.inria.fr.
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