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Abstract: We present an X-band bi-directional transmit/receive module (TRM) for a phased array
system utilized in radar-based sensor systems. The proposed module, comprising a 6-bit phase
shifter, a 6-bit digital step attenuator, and bi-directional gain amplifiers, is fabricated using 65-nm
CMOS technology. By constructing passive networks in the phase-shifter and the variable attenuator,
the implemented TRM provides amplitude and phase control with 360◦ phase coverage and 5.625◦ as
the minimum step size while the attenuation range varies from 0 to 31.5 dB with a step size of 0.5 dB.
The fabricated T/R module in all of the phase shift states had RMS phase errors of less than 4◦ and
an RMS amplitude error of less than 0.93 dB at 9–11 GHz. The output 1dB gain compression point
(OP1dB) of the chip was 5.13 dBm at 10 GHz. The circuit occupies 3.92 × 2.44 mm2 of the chip area
and consumes 170 mW of DC power.

Keywords: radar-based sensors; phased array antenna; phase shifter; attenuator; bi-directional gain
amplifier; T/R module

1. Introduction

Active Electronically Scanned Arrays (AESAs) are gradually replacing mechanical scanning radar
in radar systems today and will continue to do so in the future [1]. Transmit/receive modules (TRMs)
play the most critical role in active phase array systems employed in many radar and electronic warfare
applications [2,3]. Currently, most commercialized TRMs are GaAs pseudomorphic High Electron
Mobility Transistor (pHEMT) devices [4,5]. Recently, TR chipsets have also been reportedly used
in the SiGe BiCMOS process [6–10]. Even though high RF performances are achievable, relatively
high power consumption and relatively higher product cost make them less attractive. Along with
the advance in chip packaging, 3D-RF system-in-package (SiP) technology brings the advantages
of compact size, electromagnetic isolation, and effective interconnection as presented in [11–14].
Thousands of TRMs may be needed to realize an AESA system, thus reducing the cost per each TRM
has a significant meaning in the cost reduction of an array system for various low-cost commercial
applications. Advanced innovations in the standard CMOS process can bring benefits of lower
cost, higher integration, and the low power consumption as well [15–18]. Typically, CMOS T/R
modules must perform the agile control of gain, amplitude, and phase to steer the antenna beam
accurately [19,20]. Therefore, they consist of a phase shifter and attenuator blocks, and a bi-directional
gain amplifier (BDGA) to compensate for the insertion loss due to the CMOS switches in the passive
control blocks [21,22]. Realizing TRMs in standard CMOS technology offers many advantages, but is
still a challenging task, especially in achieving low-loss switches with MOS. Much effort has been
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made to improve the performance of CMOS switches by minimizing or maximizing the substrate
resistance [23–25] and by using the body-floating approach [26,27].

In the proposed TRM, the double-well body-floating technique is used in the design of
single-pole-double-through (SPDT), and double-pole-double-through (DPDT) switches employed in
the phase shifter and attenuator to improve the power handling capability [28,29]. The proposed
CMOS TRM is designed for the next-generation weather radar system where low-cost and low-power
consumption are essential requirements in implementing the AESA system [30]. The designed TRM
has been fabricated in 65-nm CMOS technology with a 1.2 V supply. The detailed design procedure
of the X-band CMOS TRM with corresponding simulation results is discussed in detail in Section 2,
and the measurement setup and experimental results of the implemented TRM in a 65-nm CMOS are
presented in Section 3, which is followed by the conclusions on the study.

2. The Design of the X-band TRM

Figure 1 illustrates the configuration of the proposed TRM. The structure consists of a 6-bit phase
shifter block, a 6-bit digital attenuator, and BDGAs for loss compensation. The phase shifter block
is placed between two BDGAs to achieve better input and output return losses, thus resulting in a
reduction in phase and amplitude variations in all of the phase shift states. The attenuator block is
made up of attenuation units interspersed with BDGA blocks to diminish the loading effect which
may cause unusual attenuation steps. There are four BDGAs employed in the proposed structure
to compensate for the insertion loss of the attenuator and phase shifter blocks and also to provide a
specific gain for the entire system.
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Figure 1. A block diagram of the proposed X-band TRM. 
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Figure 1. A block diagram of the proposed X-band TRM.

2.1. The 6-Bit Phase Shifter

The phase shifter is a crucial element in phased array antenna systems. Its phase shifting capability
should be agile enough to steer the main lobe of the arrayed antenna precisely. In CMOS design, the use
of high-pass/low-pass (HP/LP) phase shifter topology is advantageous because of its advantages of
power, a digital control mechanism, broadband operation, and less reliance on the RF performance of
the active device. The basic concept of the HP/LP phase shifter is to use its phase leading and lagging
characteristics from the pole and zero. An HP filter comprising series capacitors and shunt inductors
provides phase leading while an LP filter composed of series inductors and shunt capacitors generates
phase lagging. By applying a switching mechanism between the LP and HP sections, the network can
function as a phase shifter with wideband performance.

Figure 2 shows the block diagram of the designed phase shifter used in this work. The phase
shifter consists of two SPDT switches, four DPDT switches, phase shifting elements, and a digital
controller. Six bits of the digital control signals are input to the digital decoder through the SPI scan
chain, which controls the corresponding switches of the phase shifter. The proposed phase shifter
covers a range of 360◦ with a least significant bit (LSB) of 5.625◦. Design optimization was performed
on the HP/LP filter networks, and the SPDT and DPDT switch separately.
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2.1.1. The phase Shifting Elements

First, the design and optimization of each phase shift element are performed. Since an HP filter
provides phase leading while an LP filter generates phase lagging, each path is set to a half of the
desired amount of phase shift such that the phase difference between the two branches becomes the
expected phase shift. The design equations of L and C elements are summarized in Table 1.

Table 1. Design equations for calculating the L and C elements of the LP/HP filter networks.

Filter L Element C Element

HP
T-type L = Z0

ω sin(∆φ/2) C = 1
ωZ0 tan(∆φ/4)

π-type L = Z0
ω tan(∆φ/4) C = 1

Z0ω sin(∆φ/2)

LP
T-type L = − Z0

ω tan(∆φ/4) C = − sin(∆φ/2)
ωZ0

π-type L = − Z0 sin(∆φ/2)
ω

C = − tan(∆φ/4)
ωZ0

It should be noted that we should avoid implementing phase leading blocks at 11.25◦, 22.5◦,
and 45◦ in the HP filter topology since it requires excessively large inductances in the realization on
the chip. To avoid a large inductance, we use a bandpass (BP) filter structure for the leading phase
branches of the above-mentioned phase-shift elements:

L =
1− tan φ21·2Z0ωC

2Cω2 . (1)

Equation (1) shows the relationship between the values of the L and C elements with the phase
characteristic of the network transfer function. A summary of the realized values of the passive
components used in the phase shifter design is contained in Table 2.

Table 2. The real values of the L and C elements used in the design of phase shifter.

Unit Cell
HP Filter LP Filter

L (pH) C (fF) L (pH) C (fF)

11.25 80 1000 55 53
22.5 101 624 110 86
45 231 336 224 168
90 1125 790 330 228

180 796 272 796 336

The inductors and capacitors in the phase shifting cells are fine-tuned to achieve precise phase
shift levels. To reduce the chip area occupation, spiral inductors with a top metal layer of aluminum
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are implemented while metal insulator metal (MIM) capacitors available in the process design kit
(PDK) are utilized. All of the passive structures of the phase shift units are simulated with a full-wave
electromagnetic (EM) simulator, HFSS, as shown in Figure 3 for 11.25 and 22.5 phase shift units.
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2.1.2. The SPDT and DPDT Switches

To perform phase shifting functionality covering 360◦ of the phase control with a step of 5.625◦,
we need to implement a low-loss switching mechanism in the phase-shifter block at the X-band.
Switches enable us to configure the signal path through phase shifting elements to produce the desired
phase shift levels. The proposed phase shifter employs two SPDT and four DPDT switches whose
circuit schematics are depicted in Figure 4a,b, respectively. For the SPDT switches, series transistors
M1 and M2 perform the main switching function, while shunt transistors M3 and M4 are added to
improve the isolation between the different paths. The operations of the series and shunt transistors in
the same branch are complementary, and only one path is activated at a time.
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In the design of the SPDT and DPDT switches, the gate control terminals are biased through a
large resistor RG to reduce fluctuations in the VGD and VGS of the transistors due to voltage swings
at the drain and source terminals. This configuration maintains the ON resistance of the transistor
unchanged and avoids an excessive voltage across the gate dielectric which might otherwise lead to a
breakdown issue. Due to the conductive silicon substrate, MOSFETs used as switches in SPDT and
DPDT induce a relatively high insertion loss. To alleviate the adverse effect of the lossy substrate, we
applied a double-well body-floating technique which also enhances the power handling capability
of the circuit. In the triple-well CMOS process, the local P-well and global P-substrate are separated



Sensors 2018, 18, 2569 5 of 17

by a deep N-well layer which introduces two new diodes, the diode between the P-well and the
deep N-well, and the diode between the deep N-well and the P-substrate. A strong input signal
can make source-body and drain-body diodes turn-on unintentionally, which might cause linearity
degradation, and so the body of a MOSFET device should be kept as a high impedance node to
prevent this phenomenon. Afterward, the body voltage is bootstrapped to the voltage swing of the
input signal. This body-floating technique can be readily realizable by biasing the body of the P-well
through a large resistor. However, maintaining the P-well at a high-impedance may result in another
accidental turn-on with the diode between the P-well and the deep N-well layer. Thus, the deep
N-well should also be biased through a large resistor so that it effectively floats in the RF frequency.
Figure 5 shows a simplified cross-sectional view of an NMOS in a triple-well with resistors to achieve
high-impedance nodes.
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Figure 5. A schematic illustration of the double-well body-floating technique.

Table 3 provides the circuit parameters of the devices used in the SPDT and DPDT switch designs.
At 10 GHz, the simulated insertion losses of the SPDT and DPDT switches are around 1.9 dB and
2.5 dB, respectively, and the input/output return loss is better than 12 dB over the frequency range of
8–12 GHz. Since it is implemented with passive devices only, the proposed phase shifter can serve in
both the transmit and receive operation modes.

Table 3. The parameters of the devices used in the SPDT and DPDT switches (nf: number of fingers, m:
multiplication factor).

Device SPDT Device DPDT

M1, M2 130 µm/0.06 µm (nf = 26, m = 2) M1~M4 130 µm/0.06 µm (nf = 26, m = 2)
M3, M4 20 µm/0.06 µm (nf = 20) M5~M8 20 µm/0.06 µm (nf = 20)
L1, L2 610 pH L1~L4 510 pH
C1~C3 3.2 pF C1~C4 3.2 pF

All of the passive structures in the SPDT/DPDT switches were simulated with HFSS to consider
the coupling effects of each inductor, as presented in Figure 6.
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The simulated insertion loss of the designed phase shifter with zero phase shifting is less than
16 dB at 10 GHz. Figure 7 demonstrates the phase responses of the phase shifter in the main states.
The proposed phase shifter provides a phase shift of 360◦ with an LSB of 5.625◦. The simulated RMS
phase error is less than 4◦ while the systematic RMS amplitude error is less than 1 dB at frequencies
from 9 to 11 GHz, as presented in Figure 8. Owing to the HP/LP topology with on-chip passive
elements, the proposed phase shifter does not consume DC power, except for the leakage current from
the MOS switches.
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2.2. The Attenuator

Figure 9 presents the proposed structure of the digitally controlled attenuator. A 6-bit CMOS
digital attenuator was designed with a resistive Pi-type structure instead of a T-type in consideration
of the range of resistance, and it is possible to fabricate it in practice. The proposed circuit covers the
range of 0–31.5 dB of attenuation with a step of 0.5 dB. The whole of the 16 dB cell is separated into
two 8-dB cells for optimal performance over the designated frequency range.
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In the designed attenuator, the relative attenuation level is obtained by taking the amplitude
difference between the attenuation state and the reference state, which are controlled by single NMOS
switches determining the performance of the digital step attenuator. A single NMOS switch can be
approximately modeled as a channel resistor RON in the ON state and an equivalent parasitic capacitor
COFF in the OFF state. By neglecting the parasitic body capacitance and the series parasitic inductance,
the schematic and equivalent circuits of the attenuation and reference states are as shown in Figure 10.
Table 4 provides the circuit parameters of the devices used in the attenuator design.
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Figure 10. A schematic of the Pi-type resistive attenuator cell (a) and simplified models of it in the OFF
(b) and ON (c) states.

Table 4. The device parameters used in the attenuator design.

Att. Unit M1 M2 R1 (Ω) R2 (Ω)

0.5 dB 40 µm/0.06 µm 4 µm/0.06 µm 6.7 9.12 k
1 dB 40 µm/0.06 µm 4 µm/0.06 µm 15.2 3.04 k
2 dB 40 µm/0.06 µm 4 µm/0.06 µm 21.7 372.4
4 dB 40 µm/0.06 µm 4 µm/0.06 µm 31.1 82.50
8 dB 40 µm/0.06 µm 4 µm/0.06 µm 78.5 33.5

8 dB (16 dB) 40 µm/0.06 µm 4 µm/0.06 µm 81.3 33.5

The simulated insertion loss of the attenuator block in the zero attenuation level is less than
10 dB at 10 GHz. As shown in Figure 11, the designed attenuator provides 31.5 dB of the maximum
attenuation level with a step size of 0.5 dB in the simulation. In the frequency range of 9–11 GHz,
the simulated RMS amplitude error is less than 0.5 dB while the simulated RMS phase error is less
than 8.2◦, as depicted in Figure 12.
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provides a wideband frequency response with better input and output return losses. 
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2.3. The Bi-Directional Gain Amplifier (BDGA)

The BDGA is used to provide the designated gain to the TRM. Each distributed stage of the BDGA
is made up of two cascode transistor pairs to provide the bi-directional operation for transmitting and
receiving RF signals. Based on the control status, each branch takes responsibility for amplifying signals
in both the forward and reverse modes. Figure 13 shows a circuit schematic of the proposed BDGA.
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Figure 13. A circuit schematic of the proposed BDGA with six stages of gain cells.

The BDGA consists of multiple stages of cascode transistor pairs (M1~M4), gate and drain
inductors (LG and LD), 50 Ω termination resistors (RT), and RF choke inductors (LC). The cascode
configuration provides several benefits including a better high-frequency response, high bandwidth,
and simpler biasing. The mechanism to control the amplification direction of the BDGA is set by
activating one of the cascode transistor pairs, which can be done by switching the bias voltages applied
to the gate terminal of the transistors. For instance, in the forward operation, transistors M1 and
M2 are ON in the saturation region and transistors M3 and M4 are OFF. The shunt capacitances at
the input comprise the gate capacitance of M1 in the saturation region and the drain capacitance of
M3 in the OFF region, which along with gate inductances LG/2, form the artificial gate transmission
line. By appropriately choosing the MOS sizes and the inductor values, its characteristic impedance
is approximated by Z0 =

√
LG/CG =

√
LD/CD, which is designed to achieve 50 Ω. As a result,

the circuit provides a wideband frequency response with better input and output return losses.
To supply the bias current to the reverse and forward amplifiers, two VDD are connected at the

ends of the amplifier through choke inductors (LC). The capacitor at the gate of the input transistor
isolates its gate bias voltage from the VDD. All bias voltages are provided through 30 kΩ resistors,
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as shown in Figure 13. All of the parasitics and coupling of the passive elements were considered by
performing a 3-D EM simulation with HFSS.

Figure 14 shows the simulated S-parameters of the BDGA block. The simulated gain of the BDGA
is higher than 8.5 at 10 GHz, and the input/output return losses are better than 10 dB at frequencies
from 9 to 11 GHz. The simulated noise figure (NF) is less than 6 dB at 50 ◦C. The total DC current
consumption is 24 mA from a 1.2 V supply voltage. The reverse operation performances are almost
the same as the forward one owing to the symmetrical layout. The simulated OP1dB is 5.95 dBm,
and the saturated output power is 9.1 dBm at 10 GHz, as given in Figure 15. As shown in Figure 16,
the simulated group delay of the BDGA is less than 110 ps from 9 to 11 GHz.
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3. Measurement Results

Figure 17 presents a microphotograph of the implemented X-band bi-directional T/R module
fabricated in 65-nm CMOS technology. The total area of the chip including pads is 3.92 × 2.44 mm2.
All of the measurements were carried out with on-chip probing.
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Figure 18 illustrates the block diagram of measuring S-parameters, phase and attenuation response
as a function of the control bits. The measurement setup for the output power and the gain compression
measurement setup as a function of the input power (AM-AM) is presented in Figure 19. A 64-bit SPI
scan-chain has been integrated into the TRM and interfaced with an external laptop computer not only
to control the phase and attenuation levels but also to correct the bias of the internal blocks for the
optimal performance of the TRM. The equipment used for measurement is as follows: Keysight DSO-X
6002A digital oscilloscope to check the SPI signal, Agilent E4407B spectrum analyzer, Agilent 83623B
signal generator, Keysight N5224A network analyzer, and Agilent B2902A power supply.
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Figure 19. The block diagram of the output power and the gain compression measurement setup as a
function of the input power (AM-AM).

Figure 20 presents the measured S-parameters of the fabricated TRM at the reference state in
which both phase shifter and attenuator blocks were set to zero. The transmission gain of the entire
chain was around 3.8 dB at 10 GHz, which corresponds well with the simulation. The measured input
and output return losses were better than 10 dB, and the isolation between Tx and Rx was higher than
60 dB over the whole X-band. As depicted in Figure 21, the measured NF is about 10 dB at 10 GHz.
The measurement results of output power and gain of the TRM at different frequencies are shown in
Figure 22. As can be seen, OP1dB was 5.13 dBm at 10 GHz which satisfied the initial specification of
the target application. The total DC current consumption was 142 mA with a 1.2 V supply voltage,
which was mainly by the BDGAs. We also measured AM/PM conversion with the Keysight N5224A
network analyzer by sweeping the input power level as presented in Figure 23 at three different
frequencies. The phase distortion (AM/PM conversion) increases sharply when the output signal is
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Figure 23. The measured AM/PM conversion of the implemented TRM at different frequencies.

Figure 24 depicts the measured relative phase response of the fabricated TRM in a total of 64 phase
shift states. The system could generate a phase shift ranging from 0◦ to 360◦ with a step of 5.625◦ from
8 to 12 GHz. Figure 25 demonstrates the excellent correlation between the measured phase responses
and the expected values at 10 GHz. Figure 26 shows the relative attenuation levels of the fabricated
TRM in a total of 64 attenuation states after setting the phase shifter for zero phase shifting. The system
could provide an attenuation level of up to 31.5 dB with a step of 0.5 dB over a range of frequencies
from 8 to 12 GHz. Figure 27 presents a comparison between the measured amplitude responses
and the theoretical values at 10 GHz. To qualitatively examine the phase shifting performances of
the fabricated T/R chipset, the RMS phase and amplitude errors in all of the phase shift states are
presented. The measured results show that the RMS phase errors were below 4◦ from 9 to 11 GHz
while the RMS amplitude error was less than 0.9 dB from 9 to 11 GHz, as shown in Figure 28. The RMS
amplitude errors in all of the attenuation states with the phase shifter block set to zero are shown in
Figure 29. We could see the measured RMS amplitude error was around 0.5 dB at 10 GHz while the
RMS phase error was below 8◦ at 9–11 GHz. The phase and attenuation errors between the measured
and the expected (ideal) values over all the phase shifting states, and attenuation errors over all the
attenuation states at three different frequencies are also presented in Figures 30 and 31, respectively.
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Table 5 compares the measured performance of the implemented TRM with that of the recently
published works in various device technologies, which demonstrates that the proposed CMOS TRM
has the lowest power consumption with comparable performances.

Table 5. Comparison of TRM performance for X-band phased array.

[7] [11] [17] This Work

Technology SiGe BiCMOS SiGe BiCMOS CMOS 0.18 µm CMOS 65 nm
Frequency range (GHz) 8–11 8–11 8.5–10 8–10.5

Phase shifter range/step (deg) 360/11.25 360/11.25 360/5.625 360/5.625
Attenuator range/step (dB) 31/1 15.5/0.5 31.5/0.5 31.5/0.5

Insertion gain (dB) 20 17 12 3.7
RMS phase error (deg) 6 6 2 4

RMS amplitude error (dB) 1.5 1 0.25 0.5
OP1dB (dBm) 18 12 11 5.1

NF 9 9 8.5 10
Power consumption (Watt) 1.5 0.8 0.67 0.17

Chip size (mm2) 3.5 × 2.4 3.9 × 4.1 4.4 × 2.9 3.92 × 2.44

4. Conclusions

In this work, we implemented a CMOS-based T/R chipset with a phase coverage of 360◦ and
an LSB of 5.625◦, and an attenuation range of 31.5 dB with a step size of 0.5 dB. The double-well
body-floating technique was used to effectively alleviate the insertion-loss from the NMOS devices
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employed in the SPDT and DPDT switches, which also improved their power handling capability.
Bi-directional gain amplifiers were distributed along with the unit blocks of the attenuator to provide
the desired power gain and to satisfy the output power required for the entire system. Implemented in
65-nm standard CMOS technology with a 1.2 V power supply, the designed TRM is widely appropriate
for various low power and low-cost applications.
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