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Depression is a leading cause of disability and affects more than 4% of the
population worldwide. Even though its pathophysiology remains elusive, it is now
well accepted that peripheral inflammation might increase the risk of depressive
episodes in a subgroup of patients. However, there is still insufficient knowledge
about the mechanisms by which inflammation induces alterations in brain function. In
neurodegenerative and neuroinflammatory diseases, extensive studies have reported
that inflammation negatively impacts mitochondrial health, contributing to excitotoxicity,
oxidative stress, energy deficits, and eventually neuronal death. In addition, damaged
mitochondria can release a wide range of damage-associated molecular patterns
that are potent activators of the inflammatory response, creating a feed-forward
cycle between oxidative stress, mitochondrial impairment, inflammation, and neuronal
dysfunction. Surprisingly, the possible involvement of this vicious cycle in the
pathophysiology of inflammation-associated depression remains understudied. In
this mini-review we summarize the research supporting the association between
neuroinflammation, mitochondrial dysfunction, and bioenergetic failure in inflammation-
associated depression to highlight the relevance of further studies addressing
this crosstalk.
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INFLAMMATION-ASSOCIATED DEPRESSION

Research on the communication between the brain and the periphery has shed some light on how
the peripheral immune system governs our behaviors and emotions. The existence of intricate
neuroimmune interactions is now well recognized by researchers and clinicians and has been
widely explored in the context of inflammation-induced sickness behavior and inflammation-
induced depression (Yirmiya, 1996; Capuron et al., 2004; Dantzer et al., 2008; Bullmore, 2018).
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Over the last decades, there has been much evidence indicating
that systemic inflammation leads to depression-like behavior
in rodents (Yirmiya, 1996; Frenois et al., 2007; Moreau et al.,
2008; O’Connor et al., 2009) and to symptoms of depression
in otherwise healthy volunteers (Capuron et al., 2004; Brydon
et al., 2008; Majer et al., 2008; Eisenberger et al., 2010). This
does not mean that all cases of depression are associated
with inflammation but it indicates that inflammation-associated
depression that is often seen in treatment-resistant depression
should be treated as a subgroup of major depression in order
to improve the search for more effective therapies (Miller and
Raison, 2016; Arteaga-Henriquez et al., 2019).

There have been many studies aiming to test the ability
of anti-inflammatory drugs ranging from non-steroidal anti-
inflammatory drugs to cytokine antagonists to treat depression as
an adjunct to classical antidepressants. However, the results are
not always easy to interpret due to insufficient consideration of
the efficacy of these drugs on their primary target (inflammation)
and the lack of selection of the type of depression to be
treated (ideally the subtype of depression associated with
inflammation) (Miller and Raison, 2016). In addition, therapeutic
progress is still hampered by insufficient knowledge about the
mechanisms by which inflammation alters brain function. Most
of the work in this field has focused on the monoaminergic
theory of depression by showing that inflammation negatively
impacts the synthesis, packaging, storage, and release of
monoaminergic neurotransmitters (De La Garza and Asnis,
2003; Müller and Schwarz, 2007; Raison et al., 2010; Zhu
et al., 2010; Felger et al., 2013; Felger, 2018). Research in
the related fields of neurodegenerative and neuroinflammatory
diseases has revealed a negative impact of inflammation on
mitochondrial function and neuronal health. This negative
impact is mainly a consequence of increased reactive oxygen
species (ROS) production, oxidative damage to biomolecules,
glutamate toxicity, and inflammasome activation (Witte et al.,
2010; Park et al., 2015; Bader and Winklhofer, 2019; Joshi et al.,
2019). Therefore, inflammation-induced neuronal mitochondrial
dysfunction could provide another framework for understanding
the pathophysiology of inflammation-associated depression.

Mitochondria arose around two billion years ago from
the engulfment of an α-proteobacterium by a precursor of
the modern eukaryotic cell and arguably are the reason
for the origins of eukaryotes (Lane, 2006). Mitochondria
are responsible for adenosine triphosphate (ATP) synthesis
by oxidative phosphorylation, intracellular Ca2+ homeostasis,
generation of free radicals, steroid synthesis, and apoptotic
cell death (Picard and McEwen, 2014). The brain, skeletal
muscles, and cardiac muscles have high aerobic activity and
mitochondrial content and, therefore, are particularly affected
by mitochondrial defects (Berg et al., 2002). In the brain,
mitochondria are essential for cell growth (Iwata et al.,
2020), neurotransmission (Li et al., 2004), maintenance of cell
membrane ionic gradients (Devine and Kittler, 2018), synaptic
pruning (Ertük et al., 2014), and regulation of inflammation and
cytotoxicity (Culmsee et al., 2019).

Considering the extensive role of mitochondria in neuronal
tissue, impaired mitochondrial function can have important

repercussions on cellular metabolic processes. Therefore, the
present mini-review aims to summarize the research around
the hypothesis that the symptoms of inflammation-associated
depression might stem from functional or quantitative alterations
in mitochondria.

THE CROSSTALK BETWEEN
NEUROINFLAMMATION AND
MITOCHONDRIAL DYSFUNCTION

Systemic inflammation caused by activation of monocytes
by psychological stressors, altered gut permeability, microbial
infection, and autoimmune diseases does not remain localized
at the periphery but can propagate to the brain by multiple
immune-to-brain communication pathways leading to activation
of microglia (Dantzer, 2018). As the primary immune effector
cells in the central nervous system (CNS), microglia orchestrate
neuroinflammation by producing and releasing important
immune mediators, including chemokines, proinflammatory
cytokines, glutamate, prostaglandins, and ROS (Garden and
Möller, 2006; Takeuchi et al., 2006; Hanisch and Kettenmann,
2007). These molecules signal to astrocytes, endothelial cells,
and perivascular macrophages to amplify and propagate
the inflammatory response resulting in the accumulation of
potentially neurotoxic substances in the CNS. In this way and
most importantly, microglia-derived signaling molecules can
negatively impact mitochondrial function in adjacent cells.

For instance, nitric oxide (NO) produced by inflamed
microglia or astrocytes inhibits mitochondrial respiration of
surrounding neurons by the reversible inhibition of cytochrome
c oxidase, which leads to mitochondrial depolarization, ATP
depletion, and glutamate release from neurons (Brown and
Cooper, 1994; Brorson et al., 1999; Bal-Price and Brown, 2001).
NO also affects mitochondrial motility (Zanelli et al., 2006)
and dynamics (Eisner et al., 2018), which poses significant
detrimental effects for neuronal survival (Schwarz, 2013).
Particularly, NO induces mitochondrial fission mediated by
dynamin-related protein 1, which is associated with bioenergetic
failure and free radical generation that precedes neuronal death
(Barsoum et al., 2006).

Upon reacting with superoxide radical anions, NO generates
peroxynitrite, which irreversibly inhibits electron transport
chain (ETC) complexes I and II and impairs activity of
the mitochondrial ATP synthase (Radi et al., 1994; Cassina
and Radi, 1996). In particular, it has been shown that the
conditioned medium of activated microglia inhibits the ETC
complex IV, decreases the mitochondrial membrane potential,
and induces a rapid drop in intracellular ATP levels in
neurons, an effect dependent on glutamate and N-methyl-
D-aspartate receptor (NMDAR) activation (Takeuchi et al.,
2005). While low concentrations of NO inhibit oxidative energy
production, high concentrations of NO inhibit aerobic glycolysis
as well (Erecinńska et al., 1995). Taken together, these studies
suggest that neurons might suffer from energy depletion during
inflamed depression.
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Activated glial cells also release proinflammatory cytokines
that increase the activity of indoleamine 2,3-dioxygenase, an
enzyme involved in the synthesis of kynurenine (Dantzer
et al., 2008). One of the kynurenine metabolites is quinolinic
acid, which increases glutamate release, blocks its reuptake
by astrocytes (Guillemin, 2012), and acts as an NMDAR
agonist. Moreover, tumor necrosis factor alpha (TNF-α)
stimulates extensive microglial glutamate release in an
autocrine manner by upregulating the enzyme glutaminase
(Takeuchi et al., 2006). Stimulation of NMDARs triggers Ca2+

influx into neurons, which depolarizes the mitochondrial
membrane and increases the generation of ROS that can
lead to cell death depending on mitochondrial pathways
(Hardingham et al., 2002; Qiu et al., 2013; Depp et al., 2018;
Mira and Cerpa, 2021).

Overall, chronic ROS exposure can lead to oxidative damage
to cellular and mitochondrial proteins, lipids, and DNA.
Mitochondrial DNA (mtDNA) is susceptible to the effects of
ROS generated by the ETC (Kauppila et al., 2017). Because
mtDNA encodes for 13 polypeptides that are subunits of
the ETC, accumulation of damage at the level of mtDNA
leads to further impairment of oxidative phosphorylation
(Nissanka and Moraes, 2018). ROS can inactivate iron-
sulfur centers of complexes I, II, and III of the ETC and
oxidize thiol groups on the adenine nucleotide translocator,
resulting in decreased mitochondrial energy production and
formation of the mitochondrial permeability transition pore
(Rottenberg and Hoek, 2017).

It is important to note that mitochondrial damage can
by itself fuel inflammation, with the potential of forming
a highly vicious cycle (West and Shadel, 2017). Damaged
mitochondria can release damage associated molecular patterns
(DAMPs) into the cytoplasm or the extracellular space, such as
mtDNA, ATP, mitochondrial transcription factor A, cytochrome
c, and cardiolipin, which activate a wide range of cell surface
and intracellular receptors to initiate an immune response
(Grazioli and Pugin, 2018). DAMPs can induce a potent
inflammatory response mediated by interleukins and type I
interferons by activating Toll-like receptors (Lehnardt et al.,
2008), receptor for advanced glycation end products (RAGE)
(Franklin et al., 2018), inflammasomes (Fleshner et al., 2017),
and the cyclic GMP-AMP synthase (cGAS)-stimulator of
interferon genes (STING) pathway (Sliter et al., 2018). Further,
there is evidence that activated microglia release fragmented
mitochondria that propagate inflammation to astrocytes and
neurons and can lead to impaired ATP production and reduced
mitochondrial inner membrane potential in neuronal cells
(Joshi et al., 2019).

Taken together, these observations indicate that inflammation
can impair mitochondrial function while dysfunctional
mitochondria might drive and/or propagate inflammatory
responses, creating a vicious cycle that can compromise neuronal
function at the bioenergetic level. Clinical and preclinical
studies in biological psychiatry have gathered evidence in favor
of mitochondrial dysfunction in major depression, but these
results have to be interpreted with caution due to the lack of
consideration of the type of depression under study.

CLINICAL EVIDENCE FOR
MITOCHONDRIAL DYSFUNCTION IN
DEPRESSION

Multiple lines of evidence indicate that mitochondrial processes
are altered in patients with major depression. Depressed patients
show mtDNA mutations (Gardner et al., 2003; Munakata
et al., 2007), higher cell-free mtDNA levels (Lindqvist et al.,
2018; Trumpff et al., 2019), altered mtDNA copy number
(Chang et al., 2015; Chung et al., 2019), and decreased
mitochondrial function (Hroudová et al., 2013; Karabatsiakis
et al., 2014) in the periphery. Platelets (Hroudová et al., 2013)
and peripheral blood mononuclear cells (Karabatsiakis et al.,
2014) of depressed patients showed significantly lower basal and
maximal mitochondrial respiration when compared to healthy
controls. Reduced ATP production was also detected in muscle
biopsies of depressed patients compared to control subjects
(Gardner et al., 2003). Besides, a study of 36 patients with
mitochondrial disorders reported a lifetime diagnosis of 54%
for major depressive disorder, with symptoms of depression
preceding diagnosis of the mitochondrial disorder by an average
of 7.5 years (Fattal et al., 2007).

Clinically depressed patients also showed reduced glucose
utilization in the prefrontal cortex, anterior cingulate gyrus,
and caudate nucleus (Videbech, 2000). In most brain regions
of these patients, decreased metabolic activity (Mayberg et al.,
1994; Newton et al., 2002) and mitochondrial ATP production
(Baxter et al., 1989) were observed and might be interpreted
as energy deficits. Alterations in ETC complex I and increased
oxidative damage were reported in the prefrontal cortex of
depressed patients (Ben-Shachar and Karry, 2008). Moreover,
16 mitochondrial genes known to control the production of
neuronal ATP, Ca2+ handling, and oxidative stress were found to
be differentially expressed in the prefrontal cortex of patients with
depressive disorders when compared to healthy subjects (Wang
and Dwivedi, 2016). Further, mood disorders are often prevalent
years before the onset of motor and cognitive symptoms in
patients with neurodegenerative diseases, such as Huntington’s,
Parkinson’s, and Alzheimer’s disease, in which a major hallmark
of the pathophysiology is neuronal mitochondrial dysfunction
(Woolley et al., 2011).

Taken together, these studies indicate that while depression
is not a classic mitochondrial disease, the link between
mitochondrial dysfunction and depression deserves further
investigation. More importantly, they highlight the need for
comprehensive research addressing mitochondrial function
specifically in patients with inflamed depression.

PRECLINICAL EVIDENCE FOR
MITOCHONDRIAL DYSFUNCTION IN
INFLAMMATION-INDUCED
DEPRESSION

While the negative impact of neuroinflammation on
mitochondrial function has been extensively explored in
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animal models of neurodegenerative and neuroinflammatory
diseases, it remains understudied in the field of inflammation-
associated depression (Table 1). Intraperitoneal injection of a
low-dose of lipopolysaccharide (LPS; 0.3–0.83 mg/kg) is widely
used to induce depression-like behavior peaking 20–24 h after
the injection, which can be assessed by increased immobility time
in tests of behavioral despair, decreased sucrose preference, and
reduced incentive motivation (Henry et al., 2008; O’Connor et al.,
2009; Vichaya et al., 2014). Using this model, a study showed that
LPS-treated mice presented increased mitochondrial production
of superoxide in the hippocampus, whereas ATP production
and mitochondrial membrane potential were decreased (Chen
et al., 2017). Stereotaxic administration of mito-TEMPO (a
mitochondria-targeted antioxidant with superoxide scavenging
properties) or intraperitoneal administration of resveratrol (a
natural polyphenol with antioxidant properties), reversed the
effects of LPS on mitochondrial function and depression-like
behavior (Chen et al., 2017).

In male rats, a 7-day treatment with LPS (0.5 mg/kg) reduced
sucrose preference and was accompanied by increased mRNA
levels of cytochrome oxidase 1 (COX-1) and 3 (COX-3) in
the prefrontal cortex (Brkic et al., 2019). In addition, a study
conducted by the same group found that the 7-day treatment with
LPS (0.5 mg/kg) decreased mRNA levels of COX-1 and COX-3 in
the hippocampus of female rats (Brkic et al., 2020).

Another study used an acute model of colitis to induce
depression- and anxiogenic-like behaviors in mice (Haj-Mirzaian
et al., 2017). Three days after the intrarectal injection of
dinitrobenzene sulfonic acid (DNBS) to induce colitis, adult
male mice showed depression-like behavior and decreased levels
of reduced glutathione and ATP, increased levels of NO, and
increased levels of ROS in the hippocampus.

BIOENERGETIC FAILURE IN
DOPAMINERGIC NEURONS IN
INFLAMMATION-ASSOCIATED
DEPRESSION

The symptomatology of patients with inflamed depression is
mostly characterized by motivational changes, anergia, and

motor slowing (Jokela et al., 2016), reflecting reduced signaling
from the dopaminergic system (Tansey and Goldberg, 2010).
Impaired dopaminergic neurotransmission is not considered
a core neurochemical alteration of depression; however, there
is now much evidence that inflammation preferentially affects
midbrain dopaminergic neurons (Hunter et al., 2007; Qin et al.,
2007; Felger and Treadway, 2017), for example by reducing
dopamine synthesis (Kitagami et al., 2003; Felger et al., 2013)
and release (Wu et al., 2007) and increasing dopamine reuptake
(Moron et al., 2003).

The mechanisms that are responsible for this selective
susceptibility are not fully understood but might involve
particular features of mitochondria in dopaminergic neurons.
First, dopaminergic neurons are under constant oxidative stress
due to the auto-oxidation of dopamine (DA) that gives rise to
dopamine-quinones and superoxide radicals. Second, borrowing
from the research on Parkinson’s disease, the selective loss of
dopaminergic neurons from the substantia nigra pars compacta
(SNc) can be partially explained by their high basal rate of
mitochondrial oxidative phosphorylation and high density of
axonal mitochondria, that are accompanied by elevated ROS
production (Pacelli et al., 2015). Contrasting with mitochondrial
dysfunction leading to neuronal death, such as in the context of
Parkinson’s disease, it is possible that mitochondrial dysfunction
leading to bioenergetic inefficiency might underlie the symptoms
of depression (Figure 1). Neurons mainly generate their energy
by oxidative phosphorylation (Camandola and Mattson, 2017).
Therefore, mitochondrial damage is particularly deleterious for
neuronal metabolism. Because dopaminergic neurons are under
sustained oxidative stress and high bioenergetic demand, they
are more vulnerable to cellular stress, such as the one that
happens when mitochondrial dysfunction is induced by chronic
inflammation. This would result in suboptimal mitochondrial
function and decreased ATP production, which could result in
hypoactivity of the dopaminergic system that translates into the
symptoms of motivational deficit, anergia, and motor slowing
(Dantzer et al., 2021). Indeed, impaired neuronal oxidative
phosphorylation was observed during CNS inflammation in
the experimental autoimmune encephalomyelitis model, which
directly contributed to neuronal vulnerability (Rosenkranz et al.,
2021). The same study showed that improving mitochondrial

TABLE 1 | Summary of some of the studies showing mitochondrial dysfunction in mouse models of peripheral inflammation-induced depression-like behavior.

Sex/species Model Brain region Outcome References

Male ICR mice LPS, 0.8 mg/kg, intraperitoneal
once

Hippocampus ↑ mitochondrial superoxide
production and membrane
potential
↓mitochondrial ATP

Chen et al., 2017

Male and female Wistar rats LPS, 0.5 mg/kg, intraperitoneal
for 7 days

Prefrontal cortex ↑ COX-1/3 mRNA in males Brkic et al., 2019

Male and female Wistar rats LPS, 0.5 mg/kg, intraperitoneal
for 7 days

Hippocampus ↓ COX-1/3 mRNA in females Brkic et al., 2020

Male NMRI mice DNBS, 6 mg, intra-rectally once Hippocampus ↑ ROS and nitrite levels
↓ ATP and GSH

Haj-Mirzaian et al.,
2017

Please note that this table is not a summary of all the results described in each study, it only shows those associated with mitochondrial function. ATP,
adenosine triphosphate; COX-1/3, cytochrome c oxidase 1 and 3; DNBS, dinitrobenzene sulfonic acid; GSH, reduced glutathione; LPS, lipopolysaccharide; ROS,
reactive oxygen species.
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FIGURE 1 | Hypothetical model of intercellular crosstalk during inflammation-associated depression. Activated glial cells release a wide range of molecules (Garden
and Möller, 2006; Takeuchi et al., 2006; Hanisch and Kettenmann, 2007) that can impair mitochondrial structure and function in adjacent neurons (Brown and
Cooper, 1994; Erecinńska et al., 1995; Brorson et al., 1999; Bal-Price and Brown, 2001; Takeuchi et al., 2005; Zanelli et al., 2006; Eisner et al., 2018; Joshi et al.,
2019). It is suggested that this causes bioenergetic failure in neurons, leading to impaired neurotransmission and behavioral manifestation of
inflammation-associated depression mainly in the form of motivational deficit, motor slowing, and anergia. ATP, adenosine triphosphate; ETC, electron transport
chain; ROS, reactive oxygen species.

function in neurons by upregulation of Ppargc1a, which
encodes for peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α), one of the master regulators of
mitochondrial numbers and function, counteracted the effects of
CNS inflammation.

Even though there is evidence for mitochondrial damage
in the periphery and CNS of depressed patients and animal
models of depression, the important question remains
whether mitochondrial dysfunction is a cause or simply an
accompanying feature of the behavioral phenotype. It seems
unlikely that a single signaling pathway is responsible for
the constellation of symptoms experienced by patients with
depression. Nonetheless, it appears feasible that the symptoms
of inflammation-associated depression are mediated, at least
in part, by neuron-intrinsic effects related to mitochondrial
bioenergetic dysfunction.

SEX DIFFERENCES IN MITOCHONDRIA
FUNCTION IN
INFLAMMATION-ASSOCIATED
DEPRESSION

Women have twice the incidence of depression than men
[American Psychiatric Association (APA), 2013]. This might
also be the case for inflammation-associated depression, since
in preclinical and clinical studies, females appear to be more

vulnerable to the central effects of peripheral inflammation
(Tonelli et al., 2008; Eisenberger et al., 2009; Moieni et al., 2015).

However, research on sex differences in mitochondrial
function has yielded mixed results. In rodents, female mice
show increased ETC activity, ATP production, and fatty
acid utilization, whereas mitochondria from male mice show
increased ROS production, mitochondrial biogenesis, protein
utilization, and Ca2+ uptake (Ventura-Clapier et al., 2017). In
response to chronic peripheral administration of LPS, a recent
study found that female, but not male mice developed impaired
respiration of synaptosomal mitochondria (Shaw et al., 2020).
Also, female mice treated with LPS had fewer mitochondria per
pre-synaptic terminal as compared to controls and showed a
high incidence of mitochondria with broken membranes and
cristae, which were not observed in male mice. Knockdown
of sirtuin 1, a nicotinamide adenine dinucleotide (NAD+)-
dependent class III histone deacetylase involved in mitochondrial
biogenesis and turnover, energy metabolism, and stress response,
in cortical and hippocampal glutamatergic neurons resulted in
depression-like behaviors in male but not in female mice (Lei
et al., 2020). In humans, mitochondrial complexes I, I + II,
and IV, uncoupled respiration, ETC capacity, and ATP levels
in PBMCs were significantly higher in females compared to
males (Silaidos et al., 2018). Activity of citrate synthase (an
enzyme of the mitochondrial Krebs cycle strongly associated
with mitochondrial content) was higher in females than in
males, suggesting that men have a generally lower mitochondrial
function compared to women. The same study also found that
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the concentration of N-acetyl aspartate (a marker of neuronal
energy consumption) was significantly higher in the white matter
and gray matter of female participants compared to males.
However, two studies examining sex differences in cellular
respiration of human platelets found no significant differences
between males and females (Hroudová et al., 2013; Sjövall
et al., 2013). Appropriate inclusion of both sexes in future
studies will help fill significant knowledge gaps and perhaps
provide another framework to understand the high incidence of
depression in women.

CONCLUSION

The emerging field of immunopsychiatry has contributed to
our understanding on how alterations in the immune system
might lead to depression in a subpopulation of patients. Even
though not every depressed patient is inflamed, identifying
and understanding inflammation-associated depression as a
subtype of depression might help with the development
of more effective therapeutic interventions. However, better
treatment options can only be available after we gain a better
understanding of the mechanisms by which inflammation leads
to mood and behavioral alterations. Although the literature
reviewed here is essentially correlative, the available studies
point to an association between mitochondrial dysfunction in
inflamed depression that deserves further investigation. Data
from neurodegenerative and neuroinflammatory diseases show
clearly that neuroinflammation impacts mitochondrial function
at different levels. Conversely, DAMPs released by damaged
mitochondria are potent inducers of inflammatory responses and
might help to propagate neuroinflammation. This results in a
potentially vicious cycle that can lead to bioenergetic deficits
and impaired neuronal signaling specially in dopaminergic
neurons that are under sustained oxidative stress and have high

energy demands, ultimately leading to depressive symptoms.
It seems intuitive that impaired mitochondrial bioenergetics
underlie the symptoms of reduced incentive motivation, anergia,
and motor slowing that are present in patients with inflamed
depression. However, there are still significant knowledge gaps
to be addressed before mitochondrial health can be efficiently
targeted by new therapies to relieve symptoms of depression
in patients with elevated levels of biomarkers of inflammation.
Understanding the pathophysiology of depression is urgent,
especially at this time in which the COVID-19 pandemic has
affected more than 225 million people worldwide with many
of the survivors presenting with long COVID-19. The cases
of depression might drastically increase, not only because of
the mental constraints imposed by lockdown, social distancing,
personal and financial losses, but also because of perturbations
of the immune-to-brain communication pathways caused by the
infection and/or the neurotropic activity of the virus itself (Mazza
et al., 2020; Steardo et al., 2020).
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