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In brief

Combining classifier systems potentially

improves predictive accuracy, but

outcomes have not been predictable.

Classification most commonly improves

when the classifiers are sufficiently

‘‘good’’ (‘‘ACCURACY’’) and ‘‘different’’

(‘‘DIVERSITY’’), but the specific influence of

these factors on outcome remains

unknown. We develop the DIRAC

framework (DIVERSITY of Ranks and

ACCURACY), which accurately predicts

outcome of both score-based fusions

(from exponentially modified Gaussians)

and distribution-independent, rank-

based fusions. DIRAC was validated

using biological imaging data. DIRAC

itself is domain independent and has

broad expected utility.
ll

mailto:bkristal@bwh.harvard.�edu
https://doi.org/10.1016/j.patter.2021.100415
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2021.100415&domain=pdf


OPEN ACCESS

ll
Article

Ranks underlie outcome of combining classifiers:
Quantitative roles for DIVERSITY and ACCURACY

Matthew J. Sniatynski,1,2 John A. Shepherd,3,7 Thomas Ernst,4,8 Lynne R. Wilkens,5 D. Frank Hsu,6

and Bruce S. Kristal1,2,9,*
1Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, 221 Longwood Avenue, LM322B,

Boston, MA 02115, USA
2Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
3School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
4John A. Burns School of Medicine, University of Hawaii at M�anoa, Honolulu, HI 96813, USA
5University of Hawaii Cancer Center, University of Hawaii at M�anoa, Honolulu, HI 96813, USA
6Department of Computer and Information Science, Fordham University, LL813, 113 West 60th Street, New York, NY 10023, USA
7Present address: Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI

96813, USA
8Present address: Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
21201, USA
9Lead contact

*Correspondence: bkristal@bwh.harvard.edu

https://doi.org/10.1016/j.patter.2021.100415
THE BIGGER PICTURE It can be advantageous to combine multiple predictive models for power or robust-
ness, but it is recognized that realizing these potential gains cannot be guaranteed, especially when the
input models cannot be appropriately weighted a priori or the resulting fusion models cannot be cross-vali-
dated. This, and a series of mathematically related problems in different guises, fundamentally limits the
ability to optimally use all available models to improve classification across essentially all domains in which
more than one potentially useful model exists. We show that any fusion’s outcome is fully predictable/expli-
cable given characterization of the models to be fused. The ‘‘mechanism’’ described acts at the level of
ranks, not scores, which extends our findings to all distributions and, functionally, to any domain of interest.
We are elucidating the underlying math, following the framework’s implications for data science, and using
this approach on real-world problems.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY
Combining classifier systemspotentially improvespredictive accuracy, but outcomeshaveproven impossible
to predict. Classificationmost commonly improveswhen the classifiers are ‘‘sufficiently good’’ (generalized as
‘‘ACCURACY’’) and ‘‘sufficiently different’’ (generalized as ‘‘DIVERSITY’’), but the individual and joint quantitative in-
fluence of these factors on the final outcome remains unknown.We resolve these issues. Beginningwith simu-
lated data, we develop the DIRAC framework (DIVERSITY of Ranks and ACCURACY), which accurately predicts
outcome of both score-based fusions originating from exponentially modified Gaussian distributions and
rank-based fusions, which are inherently distribution independent. DIRAC was validated using biological
dual-energy X-ray absorption and magnetic resonance imaging data. The DIRAC framework is domain inde-
pendent and has expected utility in far-ranging areas such as clinical biomarker development/personalized
medicine, clinical trial enrollment, insurance pricing, portfolio management, and sensor optimization.
INTRODUCTION
 on separate/additional validation datasets, represents a funda-
Limitations in our ability to optimally combine the results of

prediction and/or classification approaches, without relying
This is an open access article under the CC BY-N
mental and largely accepted limitation affecting the data-

driven analyses and sophisticated modeling approaches that

have revolutionized modern science, medicine, and business.
Patterns 3, 100415, February 11, 2022 ª 2021 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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A     Standard Modeling

Raw data and/or features

Mathematical Modeling

Class Prediction

ID Prediction Group
OBS 01 A A
OBS 02 A A
OBS 03 B A
OBS 04 B A
OBS 05 A A
OBS 06 A A
OBS 07 B B
OBS 08 B B
OBS 09 A B
OBS 10 A B
OBS 11 B B
OBS 12 B B

ID Group Var 11 Var 12 Var 13 Var 14 Var 15 Var 16 Var 17 Var 18 Var 19 Var 20 SS1
OBS 01 A  414.0 444.0  266.0 316.0 426.0 583.0 156.0 508.0 696.0 926.0 0.592
OBS 02 A  006.0 243.0  416.0 785.0 095.0 295.0 976.0 596.0 695.0 856.0 0.595
OBS 03 A  866.0 116.0  154.0 005.0 985.0 065.0 775.0 346.0 066.0 124.0 0.568
OBS 04 A  107.0 425.0  905.0 516.0 217.0 593.0 395.0 934.0 856.0 765.0 0.571
OBS 05 A  265.0 955.0  814.0 166.0 356.0 206.0 925.0 055.0 917.0 177.0 0.602
OBS 06 A  945.0 116.0  755.0 646.0 818.0 374.0 854.0 295.0 266.0 286.0 0.605
OBS 07 B  265.0 536.0 156.0 574.0 426.0 235.0 194.0 094.0 184.0 396.0 0.563
OBS 08 B  964.0 763.0  106.0 237.0 356.0 816.0 236.0 664.0 906.0 235.0 0.568
OBS 09 B  608.0 233.0  936.0 585.0 763.0 028.0 165.0 515.0 146.0 466.0 0.593
OBS 10 B  775.0 095.0  205.0 025.0 575.0 935.0 166.0 325.0 037.0 827.0 0.594
OBS 11 B  185.0 695.0  716.0 217.0 725.0 773.0 975.0 675.0 285.0 724.0 0.557
OBS 12 B  314.0 905.0  226.0 825.0 135.0 065.0 575.0 737.0 275.0 685.0 0.563

ID SS1
 295.010 SBO
 595.020 SBO
 865.030 SBO

OBS 04 0.571
 206.050 SBO
 506.060 SBO
 365.070 SBO
 865.080 SBO
 395.090 SBO
 495.001 SBO
 755.011 SBO

OBS 12 0.563

Accuracy:  67%
8/12 correct
4/12 wrong

B     Data/Feature Fusion
Raw data and/or

feature sets

Mathematical Modeling
with larger datasets

Class Prediction

ID Group Var 11 Var 12 Var 13 Var 14 Var 15 Var 16 Var 17 Var 18 Var 19 Var 20 SS1
OBS 01 A  414.0 444.0  266.0 316.0 426.0 583.0 156.0 508.0 696.0 926.0 0.592
OBS 02 A  006.0 243.0  416.0 785.0 095.0 295.0 976.0 596.0 695.0 856.0 0.595
OBS 03 A  866.0 116.0  154.0 005.0 985.0 065.0 775.0 346.0 066.0 124.0 0.568
OBS 04 A  107.0 425.0  905.0 516.0 217.0 593.0 395.0 934.0 856.0 765.0 0.571
OBS 05 A  265.0 955.0  814.0 166.0 356.0 206.0 925.0 055.0 917.0 177.0 0.602
OBS 06 A  945.0 116.0  755.0 646.0 818.0 374.0 854.0 295.0 266.0 286.0 0.605
OBS 07 B  265.0 536.0 156.0 574.0 426.0 235.0 194.0 094.0 184.0 396.0 0.563
OBS 08 B  964.0 763.0  106.0 237.0 356.0 816.0 236.0 664.0 906.0 235.0 0.568
OBS 09 B  608.0 233.0  936.0 585.0 763.0 028.0 165.0 515.0 146.0 466.0 0.593
OBS 10 B  775.0 095.0  205.0 025.0 575.0 935.0 166.0 325.0 037.0 827.0 0.594
OBS 11 B  185.0 695.0  716.0 217.0 725.0 773.0 975.0 675.0 285.0 724.0 0.557
OBS 12 B  314.0 905.0  226.0 825.0 135.0 065.0 575.0 737.0 275.0 685.0 0.563

Accuracy:  50%
6/12 correct, 6/12 wrong

ID SS1
 535.110 SBO
 105.120 SBO
 705.130 SBO
 764.140 SBO
 116.150 SBO
 736.160 SBO
 584.170 SBO
 945.180 SBO
 464.190 SBO
 025.101 SBO
 235.111 SBO
 414.121 SBO

ID Group Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 Var 8 Var 9 Var 10
OBS 01 A  876.0 037.0  763.0 093.0 136.0 954.0 694.0 144.0 455.0 485.0
OBS 02 A  516.0 463.0  753.0 534.0 336.0 896.0 508.0 423.0 324.0 685.0
OBS 03 A  938.0 856.0  637.0 125.0 736.0 114.0 515.0493.0 885.0 855.0
OBS 04 A 0.678  485.0 374.0 236.0 657.0  005.0 485.0 225.0 296.0 0.441
OBS 05 A  837.0 938.0  025.0 177.0 246.0 244.0 244.0 025.0 225.0 195.0
OBS 06 A  818.0 186.0  995.0 737.0 355.0 046.0 074.0 715.0 485.0 095.0
OBS 07 B  363.0 297.0  956.0 932.0 895.0 725.0 233.0 473.0 534.0 525.0
OBS 08 B  718.0 654.0  066.0 373.0 995.0 823.0 414.0 214.0 725.0 674.0
OBS 09 B  446.0 455.0  985.0 546.0 495.0 325.0 022.0 453.0 434.0 125.0
OBS 10 B  065.0 097.0  885.0 856.0 723.0 495.0 763.0313.0 864.0 125.0
OBS 11 B  028.0 923.0  566.0305.0 106.0 595.0 925.0 434.0 014.0 725.0
OBS 12 B  916.0 776.0  876.0 992.0 016.0 355.0 085.0 024.0 255.0 994.0

ID Group Var 11 Var 12 Var 13 Var 14 Var 15 Var 16 Var 17 Var 18 Var 19 Var 20 Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 Var 8 Var 9 Var 10
OBS 01 A  414.0 444.0  266.0 316.0 426.0 583.0  156.0 508.0 696.0 926.0  136.0 954.0 876.0 037.0  455.0 485.0 763.0 093.0 694.0 144.0
OBS 02 A  006.0 243.0  416.0 785.0 095.0 295.0  976.0 596.0 695.0 856.0  336.0 896.0 516.0 463.0 753.0 534.0 508.0 423.0 324.0 685.0
OBS 03 A  866.0 116.0  154.0 005.0 985.0 065.0  775.0 346.0 066.0 124.0  736.0 114.0 938.0 856.0  885.0 855.0 637.0 125.0 515.0 493.0
OBS 04 A  107.0 425.0  905.0 516.0 217.0 593.0  395.0 934.0 856.0 765.0  374.0 236.0 657.0 876.0  485.0 225.0 296.0 485.0 144.0 005.0
OBS 05 A  265.0 955.0  814.0 166.0 356.0 206.0  925.0 055.0 917.0 177.0  246.0 244.0 837.0 938.0  225.0 195.0 025.0 177.0 244.0 025.0
OBS 06 A  945.0 116.0 646.0 818.0 374.0  295.0 266.0 286.0 755.0  046.0 818.0 186.0 854.0  095.0 995.0 737.0 355.0 074.0 715.0 485.0
OBS 07 B  265.0 536.0  156.0 574.0 426.0 235.0  194.0 094.0 184.0 396.0  895.0 725.0 363.0 297.0  534.0 525.0 956.0 932.0 233.0 473.0
OBS 08 B  964.0 763.0  106.0 237.0 356.0 816.0  236.0 664.0 906.0 235.0  995.0 823.0 718.0 654.0  725.0 674.0 066.0 373.0 414.0 214.0
OBS 09 B  608.0 233.0  936.0 585.0 763.0 028.0  165.0 515.0 146.0 466.0  495.0 325.0 446.0 455.0 125.0 985.0 546.0 022.0 453.0 434.0
OBS 10 B  775.0 095.0  205.0 025.0 575.0 935.0  166.0 325.0 037.0 827.0  723.0 495.0 065.0 097.0  864.0 125.0 885.0 856.0 763.0 313.0
OBS 11 B  185.0 695.0  716.0 217.0 725.0 773.0  975.0 675.0 285.0 724.0  106.0 595.0 028.0 923.0  014.0 725.0 566.0 305.0 925.0 434.0
OBS 12 B  314.0 905.0  226.0 825.0 135.0 065.0  575.0 737.0 275.0 685.0  016.0 355.0 916.0 776.0  255.0 994.0 876.0 992.0 085.0 024.0

ID Prediction Group
OBS 01 A A
OBS 02 B A
OBS 03 B A
OBS 04 B A
OBS 05 A A
OBS 06 A A
OBS 07 B B
OBS 08 A B
OBS 09 B B
OBS 10 A B
OBS 11 A B
OBS 12 B B

Data/Feature Fusion
Fused/Catenated Datasets

{

C     Decision Level Fusion/Voting
Raw data and/or

feature sets

Mathematical Modeling

Class Prediction

ID Group Var 11 Var 12 Var 13 Var 14 Var 15 Var 16 Var 17 Var 18 Var 19 Var 20 SS1
OBS 01 A  414.0 444.0  266.0 316.0 426.0 583.0 156.0 508.0 696.0 926.0 0.592
OBS 02 A  006.0 243.0  416.0 785.0 095.0 295.0 976.0 596.0 695.0 856.0 0.595
OBS 03 A  866.0 116.0  154.0 005.0 985.0 065.0 775.0 346.0 066.0 124.0 0.568
OBS 04 A  107.0 425.0  905.0 516.0 217.0 593.0 395.0 934.0 856.0 765.0 0.571
OBS 05 A  265.0 955.0  814.0 166.0 356.0 206.0 925.0 055.0 917.0 177.0 0.602
OBS 06 A  945.0 116.0  755.0 646.0 818.0 374.0 854.0 295.0 266.0 286.0 0.605
OBS 07 B  265.0 536.0 156.0 574.0 426.0 235.0 194.0 094.0 184.0 396.0 0.563
OBS 08 B  964.0 763.0  106.0 237.0 356.0 816.0 236.0 664.0 906.0 235.0 0.568
OBS 09 B  608.0 233.0  936.0 585.0 763.0 028.0 165.0 515.0 146.0 466.0 0.593
OBS 10 B  775.0 095.0  205.0 025.0 575.0 935.0 166.0 325.0 037.0 827.0 0.594
OBS 11 B  185.0 695.0  716.0 217.0 725.0 773.0 975.0 675.0 285.0 724.0 0.557
OBS 12 B  314.0 905.0  226.0 825.0 135.0 065.0 575.0 737.0 275.0 685.0 0.563

4/12 correct, 8/12 indeterminate (tied)

ID Group Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 Var 8 Var 9 Var 10
OBS 01 A  876.0 037.0  763.0 093.0 136.0 954.0 694.0 144.0 455.0 485.0
OBS 02 A  516.0 463.0  753.0 534.0 336.0 896.0 508.0 423.0 324.0 685.0
OBS 03 A  938.0 856.0  637.0 125.0 736.0 114.0 515.0 493.0 885.0 855.0
OBS 04 A 0.678  485.0 374.0 236.0 657.0  005.0 485.0 225.0 296.0 0.441
OBS 05 A  837.0 938.0  025.0 177.0 246.0 244.0 244.0 025.0 225.0 195.0
OBS 06 A  818.0 186.0  995.0 737.0 355.0 046.0 074.0 715.0 485.0 095.0
OBS 07 B  363.0 297.0  956.0 932.0 895.0 725.0 233.0 473.0 534.0 525.0
OBS 08 B  718.0 654.0  066.0 373.0 995.0 823.0 414.0 214.0 725.0 674.0
OBS 09 B  446.0 455.0  985.0 546.0 495.0 325.0 022.0 453.0 434.0 125.0
OBS 10 B  065.0 097.0  885.0 856.0 723.0 495.0 763.0 313.0 864.0 125.0
OBS 11 B  028.0 923.0  566.0305.0 106.0 595.0 925.0 434.0 014.0 725.0
OBS 12 B  916.0 776.0  876.0 992.0 016.0 355.0 085.0 024.0 255.0 994.0

{

Decision Level 
Fusion/Voting

ID Prediction Group
OBS 01 A A
OBS 02 A A
OBS 03 B A
OBS 04 B A
OBS 05 A A
OBS 06 A A
OBS 07 B B
OBS 08 B B
OBS 09 A B
OBS 10 A B
OBS 11 B B
OBS 12 B B

ID SS1
 295.010 SBO
 595.020 SBO
 865.030 SBO

OBS 04 0.571
 206.050 SBO
 506.060 SBO
 365.070 SBO
 865.080 SBO
 395.090 SBO
 495.001 SBO
 755.011 SBO

OBS 12 0.563

ID SS2
OBS 01 0.533
OBS 02 0.524
OBS 03 0.586
OBS 04 0.586
OBS 05 0.603
OBS 06 0.619
OBS 07 0.484
OBS 08 0.506
OBS 09 0.508
OBS 10 0.519
OBS 11 0.541
OBS 12 0.549

ID Prediction Group
OBS 01 B A
OBS 02 B A
OBS 03 A A
OBS 04 A A
OBS 05 A A
OBS 06 A A
OBS 07 B B
OBS 08 B B
OBS 09 B B
OBS 10 B B
OBS 11 A B
OBS 12 A B

ID Prediction Group
OBS 01 A,B A
OBS 02 A,B A
OBS 03 A,B A
OBS 04 A,B A
OBS 05 A A
OBS 06 A A
OBS 07 B B
OBS 08 B B
OBS 09 A,B B
OBS 10 A,B B
OBS 11 A,B B
OBS 12 A,B B

D     System Level Fusion
Raw data and/or

feature sets

Mathematical Modeling

Class Prediction

ID Group Var 11 Var 12 Var 13 Var 14 Var 15 Var 16 Var 17 Var 18 Var 19 Var 20 SS1
OBS 01 A  414.0 444.0  266.0 316.0 426.0 583.0 156.0 508.0 696.0 926.0 0.592
OBS 02 A  006.0 243.0  416.0 785.0 095.0 295.0 976.0 596.0 695.0 856.0 0.595
OBS 03 A  866.0 116.0  154.0 005.0 985.0 065.0 775.0 346.0 066.0 124.0 0.568
OBS 04 A  107.0 425.0  905.0 516.0 217.0 593.0 395.0 934.0 856.0 765.0 0.571
OBS 05 A  265.0 955.0  814.0 166.0 356.0 206.0 925.0 055.0 917.0 177.0 0.602
OBS 06 A  945.0 116.0  755.0 646.0 818.0 374.0 854.0 295.0 266.0 286.0 0.605
OBS 07 B  265.0 536.0 156.0 574.0 426.0 235.0 194.0 094.0 184.0 396.0 0.563
OBS 08 B  964.0 763.0  106.0 237.0 356.0 816.0 236.0 664.0 906.0 235.0 0.568
OBS 09 B  608.0 233.0  936.0 585.0 763.0 028.0 165.0 515.0 146.0 466.0 0.593
OBS 10 B  775.0 095.0  205.0 025.0 575.0 935.0 166.0 325.0 037.0 827.0 0.594
OBS 11 B  185.0 695.0  716.0 217.0 725.0 773.0 975.0 675.0 285.0 724.0 0.557
OBS 12 B  314.0 905.0  226.0 825.0 135.0 065.0 575.0 737.0 275.0 685.0 0.563

12/12 correct

ID Group Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 Var 8 Var 9 Var 10
OBS 01 A  876.0 037.0  763.0 093.0 136.0 954.0 694.0 144.0 455.0 485.0
OBS 02 A  516.0 463.0  753.0 534.0 336.0 896.0 508.0 423.0 324.0 685.0
OBS 03 A  938.0 856.0  637.0 125.0 736.0 114.0 515.0 493.0 885.0 855.0
OBS 04 A 0.678  485.0 374.0 236.0 657.0  005.0 485.0 225.0 296.0 0.441
OBS 05 A  837.0 938.0  025.0 177.0 246.0 244.0 244.0 025.0 225.0 195.0
OBS 06 A 0.681 0.818 0.640 0.553 0.737 0.599 0.590 0.584 0.517 0.470
OBS 07 B  363.0 297.0  956.0 932.0 895.0 725.0 233.0 473.0 534.0 525.0
OBS 08 B  718.0 654.0  066.0 373.0 995.0 823.0 414.0 214.0 725.0 674.0
OBS 09 B  446.0 455.0  985.0 546.0 495.0 325.0 022.0 453.0 434.0 125.0
OBS 10 B  065.0 097.0  885.0 856.0 723.0 495.0 763.0 313.0 864.0 125.0
OBS 11 B  028.0 923.0  566.0305.0 106.0 595.0 925.0 434.0 014.0 725.0
OBS 12 B  916.0 776.0  876.0 992.0 016.0 355.0 085.0 024.0 255.0 994.0{

System Level Fusion

ID SS1
 295.010 SBO
 595.020 SBO
 865.030 SBO

OBS 04 0.571
 206.050 SBO
 506.060 SBO
 365.070 SBO
 865.080 SBO
 395.090 SBO
 495.001 SBO
 755.011 SBO

OBS 12 0.563

ID SS2
OBS 01 0.533
OBS 02 0.524
OBS 03 0.586
OBS 04 0.586
OBS 05 0.603
OBS 06 0.619
OBS 07 0.484
OBS 08 0.506
OBS 09 0.508
OBS 10 0.519
OBS 11 0.541
OBS 12 0.549

ID SS12
 365.010 SBO
 065.020 SBO
 775.030 SBO
 975.040 SBO
 306.050 SBO
 216.060 SBO
 425.070 SBO
 735.080 SBO
 055.090 SBO
 755.001 SBO
 945.011 SBO

OBS 12 0.556

ID Prediction Group
OBS 01 A A
OBS 02 A A
OBS 03 A A
OBS 04 A A
OBS 05 A A
OBS 06 A A
OBS 07 B B
OBS 08 B B
OBS 09 B B
OBS 10 B B
OBS 11 B B
OBS 12 B B

1     Using characertistics described in the text, randomly determine the parameters for the means, standard deviation, 
       and exponential tails for classes 1 and 2 (C1, C2) in Scoring Systems A (SSA)

2      Repeat to generate the distributions for C1, C2 in SSB

3      Simulate a draw of 300 (or variable, as noted below) members from C1 and 300 (or variable, as noted
        below) from C2 from both SSA and SSB.  Synthetic matching of members between SSA and SSB is
        dependent on the specific study.  Determine the AUROCS for distinguishing C1 from C2 in SSA and SSB.

4      Fuse the Systems SSA and SSB by adding the normalized scores or ranks.  This is one data point

5      Repeat Steps 1-4 120,000 times

F     Flowchart of the Simulation Approach  (Detailed schematic view in METHODS)

E     System Fusion:  A Schematic View of the Problem

Given the Scoring Systems A,B that 
transform Data, D to Information, I

Can we identify a Scoring System "A" that is 
"better" (i.e., IA>IB) than another Scoring 
System "B" all, or at least most of the time?

No (by No Free Lunch The reo ms)

D
A

B

IA

IB

Then...consider 2 Systems, A and B, and a third, 
combination algorithm, C, where C = A+B

So, is C>A (i.e., is IC>IA), is C>B, Both?  Neither?

By NFL, these must be indeterminate (or we could 
replace B in the above example with A+B, and we would
know that IA+IB>IA)... Thus, we can never tell whether
fusion would help without understanding the domain

For Data-level and Feature-levels fusions, this is 
equivalent to asking whether increasing the number 
of variables is useful

For Decision-level fusion, this falls into the realm of 
voting theory, with well-established approaches

System-level fusion is murkier, as it is unclear how to 
combine system scores

Figure 1. Schematics showing fusion levels

and the simulation approach used

(A–D) Schematically presented levels of data and

analysis. The top layer(s) represent(s) ‘‘raw data

and/or features.’’ The following main layer is the

output of a scoring system, e.g., the score following

a simple statistical model such as regression. We

note that the scoring system may be as simple as

‘‘report the value of variable n,’’ and matches the

observation ID to its cognate score. The third main

layer is the class prediction list, i.e., whether, based

on the score above, the observation (and cognate

ID) is assigned to class 1 (C1) or class 2 (C2). The

potential levels of fusion (or lack thereof in A) are

labeled in red, highlighted in yellow, and denoted by

the rotated brace ({) in (B) to (D).

(E) Overview of why system-level fusion has been

problematic.

(F) Basic flowchart of the initial simulations used in

this study.

Details and additional schematics are provided in

experimental procedures. The schema from (A) to

(D) parallels that in Jaafar and Ramli,10 but the

nomenclature scheme parallels Ng and Kantor.14
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The modeling methods applied in these domains span the

breadth of statistical and mathematical knowledge, from

straightforward parametric methods such as linear and logistic

regression, through more complex non-parametric methods

such as random forest classification and support vector ma-

chines, to ensemble classifiers and deep-learning neural net-

works. With sufficient data and in well-characterized domains,

optimal modeling and analysis approaches drawn from the

above are well studied. Where these conditions cannot be

met, it is well recognized that determining the optimal
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modeling approach may be impossible.

Such limitations also often make it

impossible to build single models that

optimally capture the richness of a given

dataset. A potential alternative lies in

the well-recognized observation that

combining multiple different prediction/

classification approaches may some-

times improve overall accuracy. Our

inability to know when such combina-

tions are useful—and thus to take advan-

tage of the individual systems’ strengths

and compensate for their weaknesses—

is due to an incomplete understanding

of how such combination approaches

may act to improve overall accuracy.

Combining multiple, weaker models

has the potential to improve outcomes.

Similar to personal opinions and judg-

ments, different data sources and mathe-

matical models may agree, partially

agree, or totally disagree with each other.

The potential utility—and complexity—of

taking multiple points of view into ac-

count has long been recognized, and
has been formally considered since at least the 1700s.1–9

Today, the overall approach itself is known by many names,

including information fusion (IF), and the specifics of such com-

bination processes are as varied as they are widespread.

These processes fall into one of three general categories (Fig-

ures 1A–1D), which we refer to as data (or feature) fusion, sys-

tem fusion, and decision fusion,10–13 but all aim to improve

output prediction accuracy. We begin by describing the dis-

tinctions between these categories, along with their specific

advantages and disadvantages.
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Data (or feature) fusion is the most straightforward of the three

fusion categories and can be thought of as a concatenation of

two or more sets of measurements or engineered features per-

taining to the same population of samples (e.g., concatenating

a population’s gene expression levels with a dataset of corre-

sponding clinical phenotypes). Concatenation itself is conceptu-

ally well understood,13 and the resulting concatenated dataset is

potentially richer and amenable to all of the familiar statistical/

informatics analysis approaches already outlined, such as

regression, classification trees, and ensemble classifiers. To

succeed, this approach requires the analyst to identify appro-

priate scaling and appropriate weighting (e.g., millions of genetic

markers versus a few clinical variables), and must also address

other mismatch problems such as categorical versus continuous

variables, all of which potentially complicate model choice and

increase model complexity. Data fusion approaches also inher-

ently worsen N versus P problems (number of observations

versus number of measured variables), increasing the chance

of overfitting, and requiring large sample numbers (often prohib-

itively large) for adequate training, testing, and validation.

Decision fusion approaches, such as voting, operate at the

other end of the spectrum from data fusion and involve the inte-

gration of the final decisions of a set of mathematical models.

For example, if a pool of different classifier systems is to predict

a patient’s disease status (positive/negative), decision fusion in-

volves combining the positive/negative votes of each classifier

into a final output decision. Decision-level fusion approaches

have been studied in depth, particularly in the context of voting

theory,5,15 and remain an active area of research16 Decision

fusion approaches inherently circumvent the scaling, weighting,

and mismatch problems inherent to data fusion, but have limited

ability to address diverse opinions, can create ties, and cannot

naturally account for the certainty/confidence of individual classi-

fiers, although approaches to all of these have been proposed.4

System fusion combines mathematical models at a level be-

tween data fusion and decision fusion: after the models have

been derived from the input data but before a classification de-

cision has been reached. This involves combining appropriately

scaled intermediate output of the classification systems in ques-

tion before this output is transformed into a decision. Differing

data types or measurement distributions are accommodated

by training separate specialized systems on each, eliminating

mismatch problems, and the scaled scores assigned by these

systems typically reflect the certainty of the individual sample

predictions. As a result, system fusion has the potential to be

more flexible and powerful than data or decision fusion, but as

a general category it is also the least well understood.

It has been recognized that system fusion performance (i.e.,

whether fusion improves accuracy or not) is determined, at least

in part, by the accuracy of the initial systems and by the diversity

between (or among) them.3,5,6,17–20 For the accuracy of the fused

system to be an improvement over that of its constituents, it

seems intuitive—and is generally accepted—that these constit-

uents must be both ‘‘good’’ enough to begin with and ‘‘different’’

enough to be worth combining. Despite decades of work, the

quantitative details of the relationship between accuracy and di-

versity remain elusive.20,21 Multiple approaches for system

fusion have been developed and found to work well in some do-

mains but not in others,14,22,23 and it is recognized that the
generalized problem of determiningwhether two systems should

be fused has no solution. This limitation derives from the ‘‘no free

lunch’’ (NFL) theorems,24–28 which were formalized in the 1990s

in the context of optimization theory and machine learning. The

NFL theorems indirectly indicate that, in the general case (across

all possible application domains), the benefit, or lack thereof,

derived from the fusion of two models is inherently unknowable;

there is no optimal algorithmic approach in the absence of

context (Figure 1E). The mathematical implication of this result

for our report is that, in the absence of context, it is impossible

to tell whether fusing the output of two systemswill be beneficial.

Given this general constraint on predictability in the absence of

context, it is important to note that some understanding14,23 has

been gained in domain-specific subclasses of information fusion,

such as the use of linear combinations and rank-score diversity in

information retrieval29–31 and rank-score diversity in in silico drug

screening.32–34 In both these domains the signal of interest tends

to lie in a single tail of thedistributions of themodel outputs, giving

a probabilistic structure that can guide fusion approaches and

circumvent the NFL limitations. Accuracy improvements in these

approaches have been typically in the 70% range, although iso-

lated fully accurate predictions have been observed.34,35

In the current study, rather than focusing on a domain-specific

context (e.g., information retrieval) to understand and improve

system-level fusion, we took the converse approach. Specif-

ically, we sought to identify general-purpose signatures of

context to find another route to circumvent NFL’s limitations.

We thus focused on one particular type of system fusion across

as many different input data distributions as possible, so as to

identify characteristics of the input systems and their data that

may identify in advance situations where fusion is likely to be

beneficial. The systems that we focused on were quantile classi-

fication systems similar to those that we commonly encounter in

our biological work. These assign a monotonically increasing

score to each sample to be classified and measure class sepa-

ration performance using the area under the receiver-operating

characteristic curve (AUROC). We measured the diversity be-

tween these systems using common correlation metrics (e.g.,

Pearson correlation) and restricted ourselves to the examination

of pairwise fusions only, performing these by averaging the

scores of the two systems across each sample.

The results were compelling, revealing a precise, quantitative

relationship between DIVERSITY and ACCURACY, which held in both

simulated and real-world biological data (regarding notation, we

hereafter use bolded, italicized, small-capitals DIVERSITY and ACCU-

RACY to refer to these as generalized mathematical concepts, and

normal-font ‘‘diversity’’ and ‘‘accuracy’’ to refer to these in spe-

cific instances). Secondary analysis revealed that the relationship

observed is solelydependenton the rankingsof thesamples in the

classification systems and is not a direct result of their scores.We

refer to this relationship as the DIRAC framework (DIVERSITY of

Ranks and ACCURACY). We present the empirical evidence for

the relationships underlying this framework, and discuss its po-

tential implications, applications, and future extensions.

RESULTS

We begin by exhaustively exploring simple averaging of model

outputs to determine whether there are conditions in which this
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average will consistently outperform the better of the two individ-

ualmodels. This is pairwise system fusion in itsmost basic instan-

tiation.Weuse the terms ‘‘system’’ and ‘‘scoring system’’ to repre-

sent anything (e.g., analytical test, algorithm,mathematicalmodel)

that first gives a single numerical assignment to every sample in a

population of samples and then classifies based on that score, for

exampleby thresholdingorby separating the topquantile from the

bottomquantile.We note that such ‘‘systems’’ can be as complex

as fitted ensemble classifiers or as simple as single measure-

ments, such as fasting blood glucose levels. We denote systems

as ‘‘SSA,’’ ‘‘SSB,’’ and so forth, and scale their output from 0 to 1.

The objectivewas to study the conditions inwhich a fused scoring

system proved more accurate as a classifier (measured using the

AUROC) than either of the progenitor scoring systems.

Simulated data and scoring systems
To determine the relationship between the characteristics of the

input systems and the outcome of their fusion without confound-

ing by domain-specific factors, analytical noise, and/or classifi-

cation errors (such as incorrect labeling), we studied fusion in

simulated scoring systems created from probability distributions

chosen to approximate those of the data that we typically see in

real-world applications (Figures 1F and S18). Commonly, this is a

mixture of two Gaussian-family distributions; these distributions,

hereafter class 1 (denoted C1) and class 2 (denoted C2), may

represent, for example, the measurement of a given biomarker

in individuals with or without a given disease. Furthermore, stan-

dard Gaussian distributions may be combined with exponential

distributions to create exponentially modified Gaussian (EMG)

distributions, which can have a significantly wider tail, represent-

ing many types of real-world measurements with greater fidelity.

Each of the simulated scoring systems to be fused thus consists

of two Gaussian or EMG distributions that represent the two

classes, so each pairwise fusion event features four different dis-

tributions: C1_SSA, which denotes the distribution correspond-

ing to class 1 within scoring system A, and likewise C1_SSB,

C2_SSA, and C2_SSB.

Data samples drawn from the C1 and C2 distributions from one

scoring system (e.g., C1_SSA, C2_SSA) can be interpreted as

scores for the purpose of classification, with the score of a single

data sample within a single scoring system, e.g., SSA, reflecting

the likelihood of that sample having originated from C1 or C2.

Altering the relative difference between the means of C1 and

C2 will affect this likelihood, as will altering the standard devia-

tions.When theC1 andC2 distributions are fully separated, it rep-

resents a perfect classifier (i.e., all the C1 scores will be less than

the C2 scores and AUROC = 1), and conversely, when there is

nearly complete overlap, the classifier will be closer to a random

guess and AUROC = 0.5. The greater the probability distribution

separation between C1 and C2 along this continuum, the higher

the accuracy (AUROC) of the corresponding scoring system. The

AUROC is a generally accepted and useful metric of classifier

performance, as it captures the tradeoff between sensitivity

and specificity without requiring the selection of a specific

threshold, which is required for other performance metrics

such as misclassification rate. AUROC is thus a single number

that captures overall classifier performance; given this utility

and AUROC’s ubiquity, it was the metric that we focused on

for measuring scoring system accuracy.
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Performance of fusions of simulated scoring systems: A
quantitative role for ACCURACY

To explore the effects of the C1/C2 distribution parameters on

pairwise fusion performance, a large pool of simulated scoring

systems was created, with the means, standard deviations,

and exponential scale parameters sampled randomly from uni-

form distributions (see parameters in experimental procedures).

As noted above, the random variations in the difference between

the means of C1 and C2, coupled with differences in their stan-

dard deviations, led to a broad distribution of AUROCs (i.e., ac-

curacy). Randomly selected pairs of scoring systems (SSA, SSB)

were then fused by averaging individual points (equivalent to the

scores from a synthetic sample) from C1_SSA with those from

C1_SSB, and from C2_SSA with those from C2_SSB, and calcu-

lating the mean score of each pair. It is important to note that

the random sampling inherent to this simulation procedure pro-

duces scoring systems that are relatively uncorrelated, because

the magnitude of a simulated sample’s SSA score carries no in-

formation about that sample’s SSB score. In a real-world sce-

nario a similar uncorrelated pair of scoring systems might be a

blood glucose level and a body weight. We will refer to the

AUROCs of SSA and SSB as AUROCA and AUROCB, respec-

tively, and AUROCM as the AUROC of the superior input classi-

fier (i.e., max[AUROCA, AUROCB]). The AUROC of the fused

system (hereafter, AUROCSF[AB] for the score fusion of SSA and

SSB) was measured, and compared with AUROCM, specifically

DAUROCSF[AB] = AUROCSF[AB] � AUROCM. This quantity is the

change in AUROC of the fused system (either an increase or a

decrease) compared with the more accurate member of the un-

fused pair. Repeating this pairwise fusion process across the

large pool of scoring systems allowed us to explore how the

C1/C2 distribution parameters influence the AUROCSF[AB] of the

resulting scoring systems and the DAUROCSF[AB].

A visually striking result emergedwhen the improvement of the

fused classifier systems (i.e., DAUROCSF[AB] > 0; presented as

binary true/false) was plotted as a function of the two input

AUROCs (AUROCA and AUROCB; synthetic EMG and Gaussian

score data fusions [Figure 2]). The space is separated into two

distinct regions: one central region where DAUROCSF[AB] >

0 (which is notably wider in Gaussian fusions) and a peripheral re-

gion where DAUROCSF[AB] % 0 (Figure 2A). The separation of

these two regions is not perfect; between them a relatively nar-

row band exists where the outcome is uncertain (Figures 2A

and 2B). This area of uncertainty is notably wider in the EMG-

derived fusions (Figure 2B). Plotting DAUROCSF[AB] directly

shows that the area of greatest AUROC improvement lies on a

diagonal, symmetric about AUROCA = AUROCB (i.e., where the

input scoring system performances are equal), and that a rela-

tively wide area of zero-to-vanishingly small improvement sepa-

rates this area from that where the AUROCSF[AB] is not a net

improvement over AUROCM (Figures 2C and 2D). These data

provide qualitative evidence that, in the context of a uniformly

high level of diversity (correlation near zero), there exists a strong

relationship between AUROCA, AUROCB, and AUROCSF[AB].

Performance of fusions of simulated scoring systems: A
quantitative role for DIVERSITY

As noted earlier, it is generally accepted that when combining

two scoring systems, the resulting accuracy is typically better
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Figure 2. Success or failure of Gaussian and

EMG score fusions is predictable

(A–D) Binary (A and B) and continuous (C and D)

fusion outcomes of pairwise Gaussian (A and C) and

EMG (B and D) score fusions (N = 300/class). Each

point represents one fusion and its outcome. The x

and y axes indicate AUROCA and AUROCB. The

color indicates the net improvement of the fusion

AUROC (AUROCSF[AB]), versus AUROCM. In (A) and

(B), blue is positive (DAUROCSF[AB] > 0) and red is no

(or negative) improvement (DAUROCSF[AB] % 0); (C)

and (D) show continuous DAUROCSF[AB].

(E) Each row restricts the within-class Pearson

correlation between the fused pair to a 0.1 unit

portion of the range from �1 to 1. Moving left to

right, the first column shows the distribution of

correlations in each slice, the next two columns

present binary results for Gaussian and EMG dis-

tributions, and the last two columns present the

continuous fusion outcomes.
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when the input systems are both relatively accurate and also

diverse. Having identified a role for ACCURACY in terms of the

AUROCs, we next investigated the role of DIVERSITY on the re-

sults of pairwise scoring system fusions. As a quantitative

measure of DIVERSITY, we used the average of the C1 and C2

Pearson correlations between any two scoring systems SSA

and SSB (i.e., avg[Pearson(C1_SSA, C1_SSB), Pearson(C2_SSA,

C2_SSB)]), and we refer to this quantity as the ‘‘within-class’’

correlation and denote it as DPC(SSA,SSB). The use of

within-class correlations was designed to remove the con-

founding dependence of the overall, or ‘‘global’’ correlation

(Pearson(SSA, SSB)) on the relative performance of the two

scoring systems. For instance, if both SSA and SSB have

almost perfect AUROC accuracy, it is implicit that SSA and

SSB must be very similar to each other overall, and therefore

have high Pearson correlation. By averaging the correlations

specific to each class, this influence of accuracy is removed

(there is relevant information in this ‘‘global’’ correlation,
which we address in a subsequent report

now in preparation; M.J.S. et al., unpub-

lished data).

Using the sampling algorithm outlined

above, we altered the within-class pairing

of the simulated samples to produce

different levels of within-class correlation

(see experimental procedures, including

schematics). An advantage of using simu-

lated scoring systems like this is that, by

explicitly controlling the sample pairing in

the generation of the simulated datasets,

the correlation between two systems can

be varied without changing the mean dif-

ferences, standard deviations, or any other

parameter. This enables an unbiased

examination of the effects of correla-

tion alone.

Higher diversity is associated with

increased probability that fusion will
improve accuracy (i.e., DAUROCSF[AB] > 0) and with increases in

the maximal improvement resulting from fusion. As the mean

within-class SSA-SSB correlation increased (Figure 2E, moving

top to bottom), the area where DAUROCSF[AB] > 0 became

increasingly narrow, until at highly positive mean correlation

values only a sliver of the originally wide area of improvement re-

mained. The absolute gains inDAUROCSF[AB] at these high corre-

lation values were also reduced, whereas absolute gains were

maximized in fusions between strongly negatively correlated

scoring systems (Figure 2E, top of rightmost columns).

These results demonstrate that increasing the diversity of the

scoring system pair acts everywhere to increase the resulting

fusion accuracy (DAUROCSF[AB]) and to shift the boundary be-

tween positive and negative change outward. This provides

quantitative support for the intuitively satisfying notion that, for

the fusion of two scoring systems to be worthwhile, they should

each contribute at least some different information about the

samples under consideration.
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Figure 3. Increasing the number of observa-

tions improves prediction precision

Effect of the sample size (N) on the sharpness of the

boundary of the region of fusion improvement. The

N shown represents the number of samples in C1

and C2 (simulated class numbers are balanced).

Plotting artifacts are visible in the top left subpanel,

where the resolution of the total possible number of

AUROC values (with a total balanced N = 20) is

smaller than the points representing each fusion in

the figure.

ll
OPEN ACCESS Article
Performance of fusions of simulated scoring systems:
The effect of N
The number of samples generated for the simulated datasets

(the N of the simulation, equivalent to the number of observations

in a real-world dataset) affects the accuracy of fusion prediction,

as it is directly related to the size of the interval of uncertainty be-

tween positive and negative DAUROCSF[AB]. We evaluated the

effect of sample size N on fusion performance in a series in which

each scoring system had 20, 40, 100, 200, 600, or 1,200 total

samples split evenly between C1 and C2 (Figure 3), and found

that increasing N shrinks the region of relative uncertainty be-

tween areas of positive and negative DAUROCSF[AB]. While it is

the accuracy of the two scoring systems and the diversity be-

tween them that determines the overall size and shape of the re-

gions of positive and negativeDAUROCSF[AB], the data show that

the sample size N affects how distinct these positive and nega-

tive areas are from each other.

At this point, we have shown using simulated data that the

improvement in accuracy of a pairwise system fusion is deter-

mined by three parameters: (1) the pairwise diversity,

DPC(SSA,SSB); (2) the accuracy of the first scoring system of

the pair, AUROCA; and (3) the accuracy of the second scoring

system of the pair, AUROCB. We have further shown that our

ability to predict this improvement accurately (most critically

near DAUROCSF[AB] = 0) is determined by a further parameter,

the sample size N.

Performance of fusions of simulated scoring systems is
driven by ranks
The success of AUROC as a metric of scoring system ACCURACY

suggested to us that the relationship described between ACCU-

RACY, DIVERSITY, dataset size, and fusion performance (change in

accuracy and predictability), is mediated by the rankings of the

samples and not by their absolute scores. The true-positive
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and false-positive rates on which the

AUROC is based depend only on the

ordering of the samples induced by the

associated scores. This convinced us to

extend our study of pairwise system fusion

to focus on analysis of ranking systems.

Ranking systems are created by replacing

the score of each sample with its corre-

sponding ranking within the dataset under

consideration. Two further factors pro-

pelled our study in this direction. First,

ranking systems have been examined in
previous fusion studies, including several that identified condi-

tions in which ranking system fusions outperformed scoring

system fusions.34,36–38 Second, rankings themselves are of

particular utility in situations such as ranking candidates (e.g.,

by risk) for clinical trial enrollment, ranking a list of potential

stocks to include in a portfolio, or using rank-based statistics

such as the Mann-Whitney U (MWU) test, in situations involving

data that are not normally distributed. Previous work has high-

lighted the equivalence of the MWU test and the AUROC, mean-

ing that pairwise fusions that improve the AUROC inherently

improve statistical significance and power.39

We repeated the analyses as described above (Figure 2) but

using the ranking systems corresponding to each scoring sys-

tem. This yielded nearly identical plots (Figure 4), with the notable

difference that the boundary between the areas of positive and

negative DAUROCRF[AB] (the rank equivalent of DAUROCSF[AB])

is much sharper, considering an equivalent sample size (N) and

within-class correlation range. This results in a generally better

ability to predict the accuracy change of a pairwise fusion; visual

comparison of scoring and ranking system fusions suggests the

improved discrimination at the boundary approximates a 10-fold

increase in the sample size. We note that the rank-based equiv-

alent of Pearson correlation is the Spearman rank correlation,

which is scaled similarly (1 for perfect correlation to �1 for per-

fect anticorrelation). Pearson correlation on discrete integer

ranks yields the Spearman rank correlation directly (i.e.,

DPC(RSA,RSB) = DSR(RSA,RSB)).

These results provide evidence that the geometric relationship

observed in our initial studies of scoring system fusion and, by

extension, the relationship that we propose between ACCURACY

and DIVERSITY, is a manifestation of structure at the level of the

sample rankings only (i.e., the ordering imposed by SSA and

SSB on [the observations in] C1 and C2.), and do not involve

the absolute or relative values of the sample scores directly.
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Figure 4. Success or failure of rank fusions is

more predictable than score fusions

The analysis shown in Figure 2 is repeated using the

rank data.

(A–D) Binary (A and B) and continuous (C and D)

fusion outcomes of pairwise Gaussian (A and C) and

EMG (B and D) rank fusions (N = 300/class). Each

point represents one fusion and its outcome. The x

and y axes indicate AUROCA and AUROCB. The

color indicates the net improvement of the fusion

AUROC (AUROCSF[AB]) versus AUROCM. In (A) and

(B), blue is positive (DAUROCSF[AB] > 0) and red is no

(or negative) improvement (DAUROCSF[AB] % 0); (C)

and (D) show continuous DAUROCSF[AB].

(E) Each row restricts the within-class Pearson

correlation between the fused pair to a 0.1 unit

portion of the range from �1 to 1. Moving left to

right, the first column shows the distribution of

correlations in each slice, the next two columns

present binary results for Gaussian and EMG dis-

tributions, and the last two columns present the

continuous fusion outcomes.
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LOWESS curves capture the boundary between
beneficial and non-beneficial fusions
To validate our simulated data findings and to enable the

testing of our ability to predict fusions in the real world, we

sought a compact representation of the boundary separating

positive and negative DAUROCRF[AB]. Describing this boundary

is complicated by (1) the variability of the shape of the bound-

ary and (2) the lack of a concise equation describing this

boundary (in terms of input accuracy [AUROC] and diversity

[Pearson/Spearman]), or a full mathematical description of

the pairwise fusion characteristics that give rise to it. We there-

fore elected to leverage the ability of our simulation framework

to generate large amounts of very-high-resolution (high N) data

and model the boundary non-parametrically using LOWESS

curves. LOWESS (locally weighted scatterplot smoothing

also known as LOESS [locally weighted smoothing]) curves

model relationships between variables without assuming any

mathematical structure and, when trained on our simulated

data, produced an excellent approximation of the boundary,
correctly separating the vast majority of

positive and negative DAUROCSF[AB] and

DAUROCRF[AB] (Figure 5).

The DIRAC framework predicts
fusions of real-world data
We then examined pairwise system

fusion in a real-world situation by

applying the DIRAC framework to medi-

cal imaging data using the LOWESS

curves described above. Medical imaging

data were drawn from the Multiethnic

Cohort Adiposity Phenotype Study

(MEC-APS),40 a study of adiposity pheno-

types in men and women from five ethnic

groups, specifically the initial 1,000 sub-

jects recruited (533 women) consisting

of approximately equal numbers of Japa-
nese-Americans, African-Americans, Latino(a)s, native Hawai-

ians, and Caucasians. In MEC-APS, body distributions were

determined using both dual-energy X-ray absorption (DXA)

and magnetic resonance imaging (MRI). DXA imaging is

cheaper than MRI and more clinically available but is less ac-

curate for determining body fat distribution in the viscera, for

which MRI is the gold standard. We tested DIRAC’s real-world

applicability by systematically assessing DIRAC’s ability to

‘‘predict’’ whether or not the fusion of two DXA metrics

improved predictions of a given MRI metric versus the better

DXA predictor. Independent of specific biological outcome(s),

we tested the mathematical question of whether our simula-

tions reflect real-world performance. We first converted 31

different DXA measurements into ranking systems (assigning

ranks based on the magnitude of the measurements), and for

each of these we calculated AUROC against 39 different binary

MRI measurement targets (for lists of variables see Data S1

[DXA] and Data S2 [MRI]). We then carried out pairwise

within-class Spearman correlation measurement, followed by
Patterns 3, 100415, February 11, 2022 7
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Figure 5. LOWESS curves accurately capture

the boundary in rank fusions of simulated

data

LOWESS (locally weighted scatterplot smoothing)

curves were fit to the rank fusion training data,

stratified by correlation into 20 bins as before (r =�1

to 1, upper left to lower right, with 0.1 unit intervals).
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system fusion, on all possible pairings of DXA measurements,

in a manner identical to our simulated data experiments, calcu-

lating the DAUROCSF[AB], DAUROCRF[AB], AUROCSF[AB], and

AUROCRF[AB] of the fused predictor against these same 39

MRI measurement targets (108,810 fusions [54,405 unique]).

Figure 6 shows the real-world pairwise fusions colored by pos-

itive/negative DAUROCSF[AB], and overplots the LOWESS

curves generated from the positive/negative boundary in the

simulated data. It is visually evident that the ACCURACY/DIVERSITY

relationship is identical in both simulated and real-world data-

sets. The boundary uncertainty in both simulated and real data

likely derives at least in part from the range of pairwise within-

class correlations included in each plot (i.e., the DR = 0.1 cor-

relation range); decreasing DR would be expected to reduce

such uncertainty.

With respect to the specific analyses shown, this MEC-APS

analysis demonstrates how fusing predictors, in this case DXA

imaging measurements, can improve classification accuracy,

yielding more accurate estimates of given ground-truth MRI-

based classification groupings (i.e., quantiles). These

analyses also highlighted potentially unexpected pairwise rela-

tionships for follow-up. In the demonstration above, for

example, the DIRAC framework correctly predicted a substan-

tial gain in accuracy predicting extreme quintiles of visceral fat

when some metrics of total fat, percent fat, or fat distribution

were fused with a bone mineral density measurement (overall,

spine, or pelvis; see subchondral bone mineral density/bone

mineral content metrics [Figure S1], RANK fusions [Figures

S2–S7], and specific SCORE fusions [Figures S8–S14]). This

was unexpected (by us) biologically, and led us to identify ex-

isting literature linking bone mass and visceral fat.41,42

More importantly, this real-world validation of DIRAC has

important implications for the generalized understanding of

how information fusion for classification works. Under the spe-

cific conditions tested, the DIRAC framework can recapture
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and use >99% of system-level information

without referring to the primary data or

scores information. This reveals the

following: (1) the basic geometric relation-

ship between AUROCA, AUROCB, and

the DSR(SSA,SSB) of the ranks of the ob-

servations in the dataset holds between

simulated data and a large real-world data-

set; (2) the specifics of this relationship are

essentially perfectly captured by LOWESS

curves based solely on simulated rank

data, consistent with the argument above

that it is ranks that drive the success of

the DIRAC framework; and (3) DIRAC

quantitatively captures the interaction be-
tween ACCURACY and DIVERSITY in information fusion for

classification.

DISCUSSION

System-level information fusion: An overview
It is possible to view system-level information fusion from several

different perspectives, and it is important to recognize that these

partially overlapping perspectives often have notably different

approaches, goals, assumptions, and nomenclature. A primary

nomenclature difference is an ambiguity in the names used for

approaches that we identify as system fusion. These terms

include (but are not limited to) system fusion, model fusion,43 in-

formation fusion, measurement or confidence-level fusion,44 and

score-level fusion,44,45 multiple classifier systems (MCS),45,46

and combinatorial fusion analysis (CFA).12 A second nomencla-

ture ambiguity involves descriptive terms being used differently

by different authors at different times. For example, the term ‘‘in-

formation fusion’’ is variously used to cover the entire area, but

also to refer to many different and specific processes of informa-

tion combination nested within it that occur at various levels of

fusion, including what we call system fusion. For example,

consider two studies that define information fusion as occurring

at two possible stages, either ‘‘early’’ (corresponding to what we

call data/feature fusion), or ‘‘late’’ (which we term decision

fusion). They independently consider the advantages of an ‘‘in-

termediate’’ fusion step between these two points, which is anal-

ogous to what we call system fusion in this study. Both are work-

ing using neural networks; Arevalo et al.47 propose using gated

multimodal units to fuse intermediate representations learned

by the network, and Kim et al.48 use separate deep-learning net-

works to construct the intermediate representations and then

combine the outputs of these. A third nomenclature difference,

which is more of a functional distinction, pertains to whether

additional data-driven training or model fitting is involved in the
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Figure 6. LOWESS curves built on simulated rank fusion data accurately capture the boundary in real-world score and rank fusions

Fusions of two DXA measures to predict the extreme quantiles (tertiles, quartiles, quintiles) of MRI-based measures. Plots are presented in the same way as

simulated data in Figures 2, 4, and 5 with the LOWESS curves from Figure 5 superimposed.

(A–D) Binary (A and B, blue is positive [DAUROCSF[AB] > 0] and red is no (or negative) improvement [DAUROCSF[AB] % 0]) and continuous (C and D) fusion

outcomes of score (A and C) and rank-based (B and D) fusions. Continuous fusion panels are winsorized at ±0.05 for visual clarity. Equivalent panels without

winsorization and winsorized at ±0.2 and ±0.1 are provided as Figures S15, S16, and S17 (respectively, these are versions of this figure at full scale, at�0.2 to 0.2,

and at �0.1 to 0.1 for comparison). Each point represents one fusion and its outcome (i.e., two DXA variables and a single MRI target). For visual clarity

(symmetry), each fusion is plotted twice (i.e., once with each system as SSA and again as SSB). Data are drawn from 1,000 individuals in the MEC-APS; see text

and Lim et al.40
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system fusion. For instance, in many applications the system

fusion acts similarly to the final combination step in an ensemble

classifier, where each separate system’s outputs are used as in-

puts to a separate modeling step, trained on additional data to

optimize their combination. Several authors use the term ‘‘infor-

mation fusion’’ to refer to what we would consider standard sta-

tistical or machine-learning modeling steps, using Bayesian

model averaging,49 elastic-net regularization,50 or Kalman fil-

ters.51,52 This differing use of vocabulary is by no means

incorrect, but underscores the difficulty encountered when sum-

marizing a research area that is only nominally united and

exceedingly broad. In contrast, in this study we specifically iden-

tify system fusion as the combination of model outputs involving

no additional/subsequent data-driven training.
With these semantic distinctions in mind, we will summarize

some of the recent history of system-level information fusion

research. While this will cover many specific applications and

identify several heavily studied areas, it will also reveal that there

is currently little in terms of high-level, general, domain-indepen-

dent analysis—this is the main contribution we are hoping to

make with this study. We will summarize this recent research

in the context of three overlapping categories: (1) approaches

that emphasize fusion as a technique in leveraging application/

domain-specific knowledge; (2) approaches that emphasize

the manipulation of modeling approaches to achieve or improve

system fusion; and (3) approaches that emphasize the logistics

of the fusion process itself. Reading across these divisions pre-

sents a cross-section of the many areas in which the many
Patterns 3, 100415, February 11, 2022 9
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variants of system fusion are playing important roles in address-

ing information-rich problems.

Examining the history of system-level information fusion from

the perspective of application/domain specificity, it becomes

apparent that many methods seek to fuse information to take

advantageof theusers’domain-dependentknowledgeof specific

complementarity existing between/among certain domain-spe-

cific signals. This occurs, for example, in information retrieval31

in in silico drug screening32,34 and biometric and multibiometric

system fusion,45,46 aswell as opinionmining (also known as senti-

ment analysis)53 and stock market prediction.43,46 In information

retrieval the goal is to identify a small number of documents that

are most relevant, considering a set of query criteria. A system-

level fusion that emphasizes a domain-knowledge approach is a

natural fit here, as different models can be employed that each

specialize in different aspects of the desired output, with system

fusion combining them into a single information retrieval system.

For example, to identify documents pertaining to the business as-

pects of professional sports, a model trained to filter business-

related documents could be fused with a model trained to filter

sports-related documents. With the system fusion appropriately

configured, only documents scored highly by both input systems

will be flagged as relevant. The information retrieval task has his-

torically motivated a great deal of work in fusion approaches, and

this tendency continues into the present day, with recent work

such as that from Benham and Culpepper, who examine the

risk-reward tradeoffs inherent in the domain, showing that care-

fully selected rank- or score-fusion approaches may help in

discriminating irrelevant from relevant results.54 The overall situa-

tion is similar in in silico screening, although it is notable that both

the target and the inputs are likely to be extremely specific and

quantitative as compared with the broader, more qualitative in-

puts found in information retrieval. A system-level fusion

approach that emphasizes domain knowledge is similarly a natu-

ral fit here, as one can fuse different models that each capture

different setsof local or global chemical properties.32,34 In thefield

of biometrics, the goal is to determine whether the subject is the

person of interest or to find the optimal matching of the subject

to biometric profiles in a database. Biometrics lends itself to

domain-driven fusion at multiple levels; the output of redundant

sensors for a given property may be fused (inviting a data fusion

approach), and the output of multiple sensors for unrelated prop-

erties (e.g., retinal andfingerprint scans)mayalsobecombined,at

either a system fusion or a decision fusion level.10,44,45 Other

recent fusion applications emphasizing domain-centric knowl-

edge and local context include target tracking applications55–57

whereby the local conditions (the weather conditions, for

instance) may direct the combination of relevant target informa-

tion, and medical/diagnostic applications,58 which take advan-

tage of the fundamentally different types of information available

from wearable sensors and from electronic medical records.

Other areas where information fusion may be able to take advan-

tage of specific domain-centric knowledge include food quality

authentication,59 construction engineering and management,60

kiwifruit detection,61manufacturing service resource allocation,62

and wind turbine fault diagnosis,63 although some of these appli-

cations, particularly those deriving from fuzzy set theory, blur the

line between the two classes we are referring to as ‘‘system

fusion’’ and ‘‘decision fusion.’’
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Examining the history of system-level information fusion from

the perspective of the creation and manipulation of the input

models themselves reveals a set of methods that take a different

approach. These methods focus on finding or creating inputs

that aremost likely to capture distinct (and possibly complemen-

tary) signals due to their mathematical nature. In other words,

these approaches seek to select and configure models such

that the diversity between them is maximized.46,64 Examples

include fusing a projection-based method that extracts linearly

independent information from multiple weak signals with a least

absolute shrinkage and selection operator (LASSO)-based

approach that emphasizes only the strongest variables, or with

a random forest model capable of representing non-linear sig-

nals. Another proposed alternative is the deliberate use of unsta-

ble classifiers.46 Though occurring at the system fusion level,

many of these approaches incorporate a secondary data-driven

training step which learns how to optimally combine the inputs

(similar to an ensemble classifier) or incorporate the fusion

directly into the primary statistical or machine-learning modeling

step. Of the recent work that falls into this category, one uses a

multiple kernel support vector machine (coupled with Hilbert-

Schmidt independence criterion) to combine the results of

different algorithms,65 one uses a neural network,66 and another

uses Gaussian process regression.67 Another is a stock market

prediction study of bagging and boosting approaches for the

maximization of diversity in a base pool of classifiers which

may then be fused linearly, non-linearly, statistically, or by using

separate machine-learning approaches.46 A different approach

attributed to Gao et al. also focuses on diversity of information,

in this case using canonical correlation analysis to effectively

construct representative low-dimensional features.68

Examining the history of system-level information fusion from

the perspective of the fusion process itself reveals approaches

that seek to amplify useful signals from the input models in a fully

domain- and model-agnostic manner by defining goals or opti-

mality criteria that are independent of both the domain of origin

and the mathematical nature of the systems being fused. There

are at least two broad classes: those that are purely procedural

(i.e., run method A, run method B, then perform a specific action

to fuse them) and those that attempt to define rules/criteria that

determine when and how to fuse systems, based on some

domain-independent aspect of the information at hand. In the

first class, commonly used fusion approaches include SUM,

PRODUCT, and MIN/MAX (e.g., Fierrez et al.,45,46 Barak

et al.45,46). Broadly speaking, ‘‘SUM’’- and ‘‘PRODUCT’’-based

approaches generally seek to leverage concurrence between

the input systems (operating similarly to a Boolean ‘‘AND’’),

whereas ‘‘MIN/MAX’’-type fusions attempt to incorporate each

system’s specific knowledge into the fused system (operating

similarly to a Boolean ‘‘OR’’). Other approaches attempt to

combine the systems differentially, for example by employing

various fixed weighting criteria. In the second class of ap-

proaches in this category, various rules are defined prescribing

when and how system fusion should be carried out. These ap-

proaches differ from the first class in this category in that they

are ‘‘adaptive’’ and prescribe different fusion approaches for

different input information/signals. However, unlike the other

fusion approaches discussed previous to this section, these ap-

proaches use only domain-independent aspects of the input
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information and remain agnostic to the specific models used for

processing it. An example of system fusion approaches in this

latter class includes those based on rank-score diversity, where

the information used to direct system fusion is the relationship

between a sample’s rank (within a dataset) and its score (as-

signed by a modeling system).12,30,32,34 Research within both

classes in this category generally emphasizes the study of the

fusion procedure itself, and pays comparatively less attention

to context/domain or to specifics of upstream modeling/repre-

sentation. Some foundational work in this area includes a

decomposition of ensemble mutual information into ‘‘accuracy’’

and ‘‘diversity’’ components,69 a geometric treatment of informa-

tion fusion,70 and a revisitation of this concept some years later in

the context of information retrieval.71 Recent work includes a

recent survey of fusion techniques in themedical field,72 a clinical

and sensor fusion approach examiningmultiple different levels of

fusion to create an optimal blood-pressuremodel,73 and a review

of different fusion methods (also applicable at multiple levels) for

use in combining image and textual data.74 Other recent applica-

tions of interest in this area include an adaptive system fusion

approach for optimally combining biometric data (and detecting

identity fraud) in a dynamic environment,75 an examination of

methods for creating a pool of classifiers that are more likely to

fuse with each other beneficially,76 and a dynamic classifier

fusion system whereby the question is both which input systems

to fuse and how to do it (including on a sample-by-sample

basis).64

While these approaches have moved the field forward and

have been demonstrably helpful for improving modeling and ad-

dressing real-world problems, none of the existing approaches

we have surveyed have successfully attained two major goals

of information fusion that are alluded to throughout the perspec-

tives discussed above, specifically: (1) providing a quantitative

understanding of the roles played by DIVERSITY and ACCURACY,

and the relationship between them, so as to enable development

of primary modeling approaches more amenable to downstream

system-level fusion; and (2) providing a robust, domain-indepen-

dent framework for system-level fusion such that relevant signal

present in primary models is captured if possible and, in the

worst case, not destroyed in the system fusion step. Similarly,

two other important issues have also largely remained unad-

dressed. One issue is that most of the existing approaches are

heavily focused on improving prediction of the top hits (e.g., in-

formation retrieval, in silico screening, biometrics), whereas

there has been little if any investigation on the effects of sys-

tem-level fusion’s ability to improve accuracy across the entire

distribution. The other issue is the one that arguably encom-

passes them all—there is, as yet, no truly general, unifying theory

describing how and why system fusion approaches work. In this

report we have largely addressed the first three, and these set

the stage for addressing the fourth (now in preparation; M.J.S.

et al., unpublished data).

Fusion, DIRAC, and ranks
The main objective in fusion is to achieve a level of accuracy that

is higher than is achieved by either of the input systems alone.

The current study shows that, for a particular type of pairwise

system fusion, the accuracy of the fused system can bemodeled

with high precision, knowing only the accuracy of the two input
systems and the within-class correlation between them. We

have explored the dependence of this result on the size of the da-

taset and have shown that, although systems may be combined

at the score level or at the rank level, rank-level fusion predictions

are more accurate. This difference is especially noticeable at

smaller sample sizes.

We conjecture that the relationships described by the DIRAC

framework between input system accuracy (AUROC), pairwise

system diversity (within-class correlation), and fused system ac-

curacy (AUROC) originate directly from the sample rankings and

not from their absolute scores. The difference in prediction pre-

cision between score and rank fusions (i.e., the different amounts

of noise at the boundary) may be because the set of rankings of

any given length is of finite size, whereas the set of possible

score vectors that can give rise to each of these rankings is infin-

ite. We hypothesize that this one-to-infinity mapping produces

the additional noise at the DAUROCSF[AB] = 0 boundary, as

scoring systems will then fuse with perfect predictability only if

their distributions sufficiently resemble the uniform distributions

of their corresponding ranking systems (i.e., are well calibrated),

which is a rare event within the Gaussian/EMG-based simulation

framework. The additional information present in the score distri-

butions is not properly accommodated in the system fusion

framework that we describe (and which is implicit in the AUROC

metric), andmanifests instead in the additional noise/uncertainty

observed at the scoring system fusion decision boundary. Given

this, it is notable that the data shown in Figures 2, 4, and 6 sug-

gest that rank-based fusions are a very close approximation for

score-based fusions under the simulation conditions used and in

the real-world data tested. In some exceptions, most noticeably

those visible here as better-than-expected fusions in the score

plots in the �0.6 < r < �0.5 panel, additional information

present/embedded/encoded in the scores (versus ranks)

engenders unexpectedly improved fusions. Further examination

determined that many of these fusions involve a high-accuracy

system with a bimodal distribution or very wide central peak;

112/135 (83%) of these systems were positively biased toward

females (primarily percent fat). Conversely, the lower-accuracy

systems here are positively biased toward males (108/135,

80%, primarily lean mass metrics), suggesting the possibility

that sex drives the within-class anticorrelation and the fusion

essentially attenuates/removes sex as a source of systemic

noise in the classification.

The distributions of the scores, or functions involving both

scores and rankings, may encode domain-specific information

that may be exploited for additional performance in certain situ-

ations, although the NFL theorems preclude this from being true

generally. This is a promising area for future study. For now, the

important point to note is that if fusion prediction relies only on

the rankings of the input systems, there is no longer any connec-

tion to the original score distributions. Thismeans that the results

we present are, by definition, general and domain independent;

the only restriction is that the input systems be monotonically

increasing scoring functions.

Relative importance of ACCURACY versus DIVERSITY

Whether considering scoring systems or ranking systems, the

distinct regions of positive and negative DAUROCSF[AB] visible

in the figures herein make explicit the relationship between
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ACCURACY and DIVERSITY in this general context. ACCURACY and DI-

VERSITY have long been hypothesized to be of fundamental impor-

tance to fusion in general, but the relationship has been poorly

understood. Our analysis of pairwise fusions in simulated data

and our validation of this frameworkwith real-world data has pro-

vided quantitative support for the intuition that improvements in

accuracy occur more readily when fusing two uncorrelated sys-

tems (i.e., with an average within-class correlation near zero). It

has further revealed the more surprising reality that fusing nega-

tively correlated system pairs is even more likely to produce

increased accuracy, and that the increase itself is likely to be

larger, boosting even marginal individual systems to higher

(and occasionally very good) performance. Provided both sys-

tems in a pairwise fusion have some predictive value, a strongly

negative correlation can allow an already accurate system to

fuse beneficially with a poor one. In the limiting case, a nearly

perfect negative correlation can fuse to perfection (AUROC =

1.0) two systems that are only minimally better than random

chance.

Data in the figures make explicit that it can be more beneficial

to choose two less accurate systems to fuse than two more ac-

curate systems if and only if the correlation is lower (ideally nega-

tive) for the former pair than for the latter. Conceptually, systems

with high within-class correlation are typically understood to be

representative of the same latent signal in the data with respect

to the target outcome, and systems with near-zero within-class

correlation are representative of different latent signals with

respect to the target outcome. In this interpretation, systems

with negative within-class correlation can be understood to

represent complementary latent signals with respect to the

particular target on which the performance metric is based. In

this case, that target is an ordering of the samples in the dataset

that perfectly separates both classes: *an* ordering, because

there are inherently many (NC1!*NC2!/2) such orderings that

have the same AUROC. By calculating the average within-class

correlation as described, rather than the global correlation, the

target is implicitly taken into account, and the within-class corre-

lation metric then directly quantifies the complementarity of sys-

tems with respect to the target.

DIRAC has broad potential implications
There are at least four direct ways in which the results of this

study may be useful where system fusion is applicable, i.e., in

a domain within which multiple scoring systems can be

constructed.

First, the study described here provides strong evidence for

the generally accepted but imprecise idea that combining sys-

tem pairs that are diverse is likely to be a beneficial strategy,

and the results presented quantitatively describe the extents to

which this intuition applies in practice. This includes a demon-

stration of the specific utility of fusing negatively correlated sys-

tems. These results suggest that a beneficial approach, when

constructing classification systems, may be to select compo-

nent pieces that have a high a priori likelihood of having a null

or negative within-class correlation (and are therefore comple-

mentary). One approach might fuse systems built on unrelated

or inversely related subdomains of the problem at hand, for

example fusing a system built on gene expression data with

one built on categorical environmental variables. Another
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approach might involve the fusion of two very different statistical

approaches built on the same dataset, fusing, for instance, a

system that identifies single strong variables (e.g., LASSO) with

one that distributes predictive power (e.g., projection methods).

Second, the DIRAC framework provides a direct test of

whether a less accurate system can be successfully fused with

amore accurate system. Historically, it was known that including

a less capable classifier system in a fusion can sometimes boost

overall accuracy, but the reasons for this improvement could not

be generally described, and the resulting performance was only

weakly predictable at best. With the accuracy of an initial system

assessed in a test population, the DIRAC framework indicates

the combination of within-class correlation and AUROC that is

needed in a second system for the fusion of these two systems

to outperform either alone. Perhaps more importantly, it estab-

lishes hard boundaries below which fusing a second, less accu-

rate system can never possibly help. In this way, the DIRAC

framework suggests a targeted, iterative approach to classifier

system construction.

Third, the DIRAC framework suggests that estimates of each

system’s AUROC and the within-class correlation may be ob-

tained separately from each other in space or time, provided

the populations in which they are determined are sufficiently

similar. This is a potential advantage when attempting to inte-

grate the results of disparate previous studies or when selecting

previously tested systems to include in a fusion system under

construction.

Fourth, the DIRAC framework implies that any two highly

correlated, equally accurate scoring systems have essentially

equivalent utility. This means that the easier or cheaper option

may be selected without compromising the overall accuracy of

the fused system.

Because the DIRAC framework is inherently domain indepen-

dent, it is expected to be applicable in far-ranging areas. As

DIRAC is based only on sample rankings, the only assumption

made about the scoring systems to be fused is that they are

monotonically increasing functions. This decouples the DIRAC

ACCURACY/DIVERSITY relationship from all other aspects of the

scoring systems, such as their absolute magnitudes, their distri-

butions, or their outlier and error behavior, and results in system

fusion behavior that is truly domain independent. Applications of

the DIRAC framework are thus likely to be found in wide-ranging

areas such as clinical biomarker development/personalized

medicine (e.g., to determine whether combinations of specific

markers can be beneficial, to optimize information gain relative

to cost, and integrate multiple information sources such as clin-

ical chemistry and clinical phenotypes), clinical trial enrollment

(e.g., maximize enrollment of informative subjects), insurance

pricing (e.g., to leverage distinct information streams about po-

tential risks), portfoliomanagement (e.g., maximizing information

gain from a variety of market and pricing models, or effectively

combining predictors of potential gain with predictors of poten-

tial risk), and sensor network optimization.

Score fusions versus rank fusions
We now revisit the differences observed between scoring sys-

tem fusions and ranking system fusions. As noted above, ranking

system fusions are more predictable than their scoring system

counterparts, especially at lower sample sizes (N). Despite the
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loss of information inherent in converting scores to ranks, many

classification problems arewell represented by sample rankings.

These include such ‘‘top-N/bottom-N’’ problems as separating

the top and bottom quintiles of a population in terms of disease

risk or selecting the ten best performing stocks for a portfolio.

Often these types of problems interface with an external

constraint. For example, if a researcher only has enough funding

to enroll 100 patients in a clinical trial, what is important is select-

ing the 100 best candidates. Of less importance is the exact nu-

merical difference between the 100th and the 101st candidates.

Instead of constructing full predictive systems of classifier score

distribution, then establishing a numerical threshold for identi-

fying the ‘‘top-N’’ samples, the ranking system fusion approach,

applied as described in the DIRAC framework, suggests a

method for system construction using the rankings of the sam-

ples directly.

Although ranking system fusions may be more predictable in

general, scoring system fusions may have distinct utility in

certain situations. Score fusions can have a higher absolute

gain in accuracy compared with their ranking system equivalents

(cf., Figures 2 and 4). Furthermore, fusions built around scoring

systems can enable the creation of discriminative systems with

absolute numerical bounds and address situations where a

test subject ranking does not convey adequate information

(e.g., within a highly unbalanced dataset). We hypothesize that

the specifics of score-based fusion approaches are likely to be

more domain dependent. It is likely that the additional informa-

tion separating a ranking system from its scoring system progen-

itor originates from the interaction of specific score distribution

shapes, outlier and error generating processes, and other

domain-dependent factors. Making use of the extra information

present in the score distributions and combining those ap-

proaches into this DIRAC framework is another area of future

interest.

The relationship between ACCURACY and DIVERSITY, widely

acknowledged to play a fundamental role in information fusion,

has long eluded a precise, quantitative, and general formulation;

the DIRAC framework presented in this study introduces such a

formulation. From its origin within this specific context, this

framework opens multiple avenues for future research into

both the mathematical underpinnings and possible extensions

of the observations presented in this work, and their practical ap-

plications (M.J.S. et al., unpublished data). This being a limited

study, it was impossible to empirically explore the full range of

possible methods for combining systems and the metrics for

measuring ACCURACY and DIVERSITY. In the DIRAC framework as

presented, we focused on a single fusion approach (pairwise

averaging), a single accuracy metric (AUROC), and a single di-

versity metric (Pearson and Spearman correlation for score

and rank, respectively). In addition to their specific utility in our

work, these metrics are well understood, generally applicable,

and popular. The integration of other fusion approaches and per-

formance metrics into the DIRAC framework is a key area for

future research. Additionally, our restriction to pairwise system

fusions does not preclude the fusions of more than two systems

within this framework, but it does restrict such a construction to

an iterative series of pairwise fusions, similar in practice to for-

ward stepwise regression. This sequential fusion approach,

and an extension to simultaneous fusion of multiple (>2) scoring
systems, is another promising area for future work (M.J.S. el al.,

unpublished data).
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Bruce Kristal (bkristal@

bwh.harvard.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The accession number for the imaging data (reduced form only—no identifiers)

reported in this paper is Zenodo: https://doi.org/10.5281/zenodo.5711898. The

accession number for the simulation and figure generation code used in this pa-

per (which includes the imaging data as a dependency) is Zenodo: https://doi.

org/10.5281/zenodo.5711948. Code is freely available for non-commercial

use; inquiries concerning commercial use should be addressed to the lead con-

tact, Bruce Kristal (bkristal@bwh.harvard.edu).
Simulations: Scoring systems based on Gaussian and EMG data

To simulate C1 and C2 data using a Gaussian density function, four param-

eters must first be chosen: the means and standard deviations of the C1

and C2 distribution. To enforce some degree of separation between the

component distributions, the mean of the C1 component was sampled at

random from the range �10 to 0 and the mean of the C2 component was

sampled at random from the range 0–10. The standard deviations of both

components were then sampled uniformly and at random from the range

1–20. For EMGs, a separate exponential distribution was parameterized

(separately for both the C1 and C2 datasets) by selecting the exponential

mean uniformly and at random from the range 0–1,000. To sample exponen-

tially modified data, a sample is first drawn from the Gaussian distribution,

then a sample is drawn from the corresponding exponential distribution,

and these samples are added together. With the sampling distributions

parameterized, an equal number of samples were then drawn from the C1

and C2 distributions and pooled. This created a single instance of a simu-

lated C1 versus C2 scoring system. To explore the effect of the number of

samples drawn (simulating the N of the experiment), this process was

repeated many times, with the sample number ranging from 10 to 600/class.

All systems were scaled from 0 to 1. If necessary, one scoring system may

be inverted (multiplied by �1.0, then rescaled) to properly orient the class

separation they induce (i.e., mean score[C1] % mean score[C2]). Simulations

were coded in Haskell (ghc 7.10.3). The process is shown schematically in

Figure 7, and we note that these distributions are representative of those

observed in our real-world studies (see Figure S18).
Simulations: Matching SSA to SSB

Simulated scoring systems do not correspond to multiple measurements of

a single set of phenomena. Therefore, the scores that are sampled from the

C1 and C2 distributions of each of the pair of systems can be explicitly

paired in order to influence the apparent correlation of the two scoring sys-

tems. When the C1_SSA to C1_SSB and C2_SSA to C2_SSB pairings are

done at random, the within-class correlation between the two systems

will be minimal (i.e., r � 0). When the pairing is not random and (for

example) low-scoring, mid-scoring, and high-scoring case (and respec-

tively control) samples from SSA are paired with equivalent low-scoring,

mid-scoring, and high-scoring case (respectively control) samples from

SSB, a non-zero level of correlation can be induced. In the extreme case,

with the points matched exactly by rank, the correlation will achieve a

maximum value. Although the actual maximum value will also be influenced

by other properties of the sampling distributions, if the distribution shapes

are very similar the maximum correlation will approach 1.0; similar but

opposite strategies can be used to build inversely correlated dataset. Sim-

ulations were coded in Haskell (ghc 7.10.3). The process is shown sche-

matically in Figure 8.
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Figure 7. Schematics showing details of

parameterization of primary models

Each example shows scoring system pairs gener-

ated by Gaussian and exponentially modified

Gaussian probability distributions. Each row ma-

nipulates a different one of our three main param-

eters on the classification accuracy (as shown by

AUROC plot). The top row shows the effect of

altering the C1 andC2Gaussianmeans. Themiddle

row shows the effect of altering the Gaussian

standard deviation (SD). The bottom row shows

the influence of the exponential mean parameter.

The red and blue points directly under the distri-

butions are raw samples drawn from those distri-

butions. These data are then scaled to fall within

the range 0–1; the normalized points are shown

next to the respective ROC curves. The main

parameter altered is bolded and enlarged. In the

bottom right panel, both the Gaussian SD and the

exponential was modified (all SDs in that row are

shown in bold italic to highlight this).
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Fusion

The process of fusion creates a single, new scoring system from two input

scoring systems. In this study we examined the simplest type of fusion, which

simply averages the value of the two input scoring systems in a pairwise

fashion, after each input scoring system has been scaled to fall between amin-

imum value of 0.0 and a maximum value of 1.0. Ties were stochastically

broken. Simulations and fusions were coded in Haskell (ghc 7.10.3). The pro-

cess is shown schematically in Figure 8.

LOWESS curves

LOWESS curves were created in R version 3.5.2, and were trained on the rank

fusion data shown in Figure 4.

Real data: DXA/MRI data from MEC-APS

To test the applicability of the fusion techniques presented in this work to real-

world data, we used MRI-based measures of body fat distribution (e.g., liver

fat, visceral fat at the L1-L2 vertebral boundary, etc., see Data S1 and Data

S2 for full lists) as the ground-truth target variables, and DXA variables that

captured general body fat serving as the predictor variables to fuse. These

data were drawn from theMEC-APS, in which 1,861 individuals from theMulti-

Ethnic Cohort had their body composition measured by DXA and their abdom-

inal fat distribution assessed by MRI between L1 and L5 between 2013 and

2016. This study was approved by the Institutional Review Board. Data from

the initial 1,000 participants recruited were used. Details on the MEC itself

and the imaging study have been published, but are not critical for the current

study.42

We divided each of the target MRI variables into quantiles (tertiles, quartiles,

and quintiles), and measured how well each DXA variable was able to discrim-
14 Patterns 3, 100415, February 11, 2022
inate the top quantile from the bottom in terms of AUROC. We then fused all

possible pairs of DXA predictors, measuring the within-class correlation be-

tween the two input scoring systems and the AUROC of the fused system.

This fusion performance was then compared with that of the simulated data.

The target variables were coded using a dummy variable that assigned the

top quantile to class 2, the bottom quantile to class 1, and discarded samples

from the other quantiles.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100415.
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Figure 8. Schematics showing a detailed full

representation of pairwise system fusion at

the score level

First, two scoring systems are generated and scaled

as described in Figure 7. The correlation induction

algorithm then pairs the C1 samples from SSA and

SSB, and the C2 samples from SSA and SSB, in a

way that influences the resulting within-class cor-

relation (bottom three columns separated by black

bars). On the left, low-valued C1 samples from SSA

are preferentially paired with low-valued C1 samples

in SSB, and this is repeated for C2, resulting in

relatively high correlation. In the center, C1 samples

from SSA and SSB are paired randomly, and this is

repeated for C2, resulting in low values of correla-

tion. On the right, low-valued C1 samples from SSA

are preferentially paired with high-valued C1 sam-

ples in SSB and vice versa, and this is repeated for

C2, resulting in a negative correlation. Note that, for

visual clarity, these show Ns of 40/class; main

studies in the report use Ns of 300/class, except

when varied as a test (Figure 3).
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