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Introduction

The field of infectious diseases is currently in crisis given that
(1) there is an increasing prevalence of infections with highly
resistant microorganisms that are not susceptible to existing
antimicrobial agents; (2) many infections occur in immuno-
suppressed individuals such as patients with cancer, organ
transplants recipients, human immunodeficiency virus
(HIV)-infected patients in whom standard antimicrobial ther-
apy is not very effective; and (3) there is a dearth of new anti-
microbial drugs in the development pipeline as evidenced by
the paucity of new drugs in the past decade. In the last de-
cades, we witnessed such events as global outbreak of severe
acute respiratory syndrome, introduction of Monkeypox virus
into the United States, and emergency of extensively drug-
resistant tuberculosis and other bacterial infections. In this
environment, we need new approaches to antimicrobial ther-
apy. Specifically we need new strategies that can facilitate
rapid development of new antimicrobial agents. Current stra-
tegies for the development of antimicrobial drugs and vaccines
take many years to yield clinically useful products. However,
monoclonal antibodies (mAbs) can be made very rapidly and
the linkage of radionuclides to specific mAbs provides the
means to generate microbicidal antibodies.

Antibody-antigen (Ab-Ag) interaction is a powerful tool to
circumvent the problem of multidrug resistance. Radioimmu-
notherapy (RIT) is a therapeutic modality that uses Ab-Ag
interaction and utilizes Abs radiolabeled with therapeutic ra-
dioisotopes to selectively deliver lethal doses of particulate ra-
diation to cells in cancer treatment [1]. Radiolabeled mAbs
provide a valuable alternative to cancer treatments with
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chemotherapy or external radiation beam. Radiation is micro-
bicidal and g-irradiation is routinely used for the sterilization
of medical supplies and certain foods. Ionizing radiation such
as g-rays, b-, and especially a-particles from external sources
can kill different strains of bacteria and fungi such as Escher-
ichia coli, Cryptococcus neoformans (CN), and Mycobacterium
tuberculosis [2–4]. Despite its microbicidal properties, radia-
tion is not used in current antimicrobial therapy. Our group
proposed to use therapeutic radionuclides for the treatment of
various infections [5]. We hypothesized that RIT of infec-
tions can work in several waysdin case of fungal and bacte-
rial cells, it can kill them with ‘‘direct hit’’ or via ‘‘cross-fire
effect’’. For viral infections such as HIV, the goal of RIT
would be not to kill the virus that is accomplished by the an-
tiretroviral drugs but rather to target and kill the infected
hosts cells where virus propagates itself (so called viral fac-
tories). This could be accomplished by targeting viral antigens
expressed on the surface of the infected host cells with the ra-
diolabeled mAbs specific for those antigens [6]. Finally, when
developing a novel approach to treatment of infectious dis-
eases, three very important factors have to be taken into
consideration as in any new drug developmentdefficacy,
safety, and mechanism of action.

RIT of Fungal Infections

CN served as a first model organism in our laboratory for
development of infection RIT. CN is an encapsulated human
pathogenic fungus. CN provides an excellent model for a
chronic infection, and advantages of the CN system include
(1) animal models including those for pulmonary, meningeal,
and latent infection; (2) the availability of very-well-
characterized mAbs to CN that can be developed into RIT
agents; (3) well-understood pathogenesis of infection and im-
mune response. MAb 18B7 to CN capsular polysaccharide an-
tigen has been used in clinical trial in patients with cryptococcal
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meningitis [7]. In the first series of experiments, the efficacy of
RIT against CN infection was tested in A/JCr mice (NCI,
NIH). This mouse strain was selected because it is very suscep-
tible to CN infections, presumably because of partial comple-
ment deficiency [8]. Mice with partial complement deficiency
succumb rapidly with disseminated infection when infected
IV [9]. Nine groups of 10 A/JCr female mice were infected
IV with 105 CN cells. Mice were treated with different doses
of 188Re-18B7 and 213Bi-18B7 mAbs, control mAbs 188Re-
MOPC21 and 213Bi-MOPC21, unlabeled mAb 18B7, and
with phosphate-buffered saline. Mice treated with radiolabeled
mAb 18B7 lived significantly longer, on average, than mice
given radiolabeled MOPC21 or phosphate-buffered saline.
We used irrelevant immunoglobulin 1 (IgG1) mAb 213Bi-
MOPC21 or 188Re-MOPC21 to control for the possibility
that Fc receptor binding by the radiolabeled IgG1 to phagocytes
at the site of infection might result in nonspecific killing.
Remarkably, on day 75 after therapy, 60% of mice in 213Bi-
group were alive after treatment with 100 mCi 213Bi-18B7 (P
< .05). In the 188Re group, 40% and 20% of animals were alive
after treatment with 100 (P < .005) and 50 mCi (P < .05)
188Re-18B7, respectively. The survival of mice was dose depen-
dent in the range of 50–100 mCi for both 188Re and 213Bi with
significantly more mice surviving in 100 mCi-dose groups. The
dose of 200 mCi, although the most efficient in eliminating the
fungal load in the target organs as shown by colony-forming
units (CFUs), proved to be radiotoxic as shown by the toxicity
studies. The optimal treatment doses for mice appear to be in
the 50–150 mCi range. Mice infected with CN and given RIT
had significantly reduced fungal burden in lungs and brains
48 hour after treatment than infected mice in the control
groups. Although there was no difference in the reduction of
the fungal burden in the lungs between the groups that received
50 and 100 mCi 188Re-18B7, treatment with 200 mCi 188Re-
18B7 significantly lowered lung CFUs relative to the lower ac-
tivities (P< .05). Hence, administration of CN-specific radio-
labeled mAb prolonged survival and reduced organ fungal
burden in infected mice. Low levels of CFUs were detected in
the lungs of surviving animals sacrificed at the completion of
survival studies [10]. In the follow-up experiments, we have
compared the RIT with amphotericin B, which is currently
the standard of care for treatment of invasive fungal infections.
Remarkably, a single injection of 213Bi-labeled 18B7
completely eliminated CN infection from the lungs and brains
of C57Bl6 mice, whereas 2-week course of amphotericin B was
unable to significantly lower the fungal burden in these organs
[11].

Currently we are developing RIT for treatment of Blastomy-
ces dermatitidis. This fungal pathogen affects both companion
dogs and humans, and not only immunocompromised but
also healthy individuals. The experiments on evaluating safety
of RIT in healthy dogs are currently ongoing and will be fol-
lowed by the clinical trial of RIT in companion dogs with blas-
tomycosis. If successful, the results will provide crucial data on
efficacy and safety of RIT in large animals, which is required for
FDA and Health Canada for human translation.
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RIT of Bacterial Infections

Bacillus anthracis is a powerful agent for use in biological
warfare, and infection with the organism is associated with a
high rate of mortality, underscoring the need for additional
effective therapies for anthrax.We investigated if RIT approach
could be successfully used with toxin-bindingmAbs for diseases
caused by toxigenic bacteria. Indirect immunofluorescence
studies with mAbs to protective antigen and to lethal factor re-
vealed the surface expression of toxins on bacterial cells. Scatch-
ard analysis of mAbs revealed high binding constants and
numerous binding sites on the bacterial surface. To evaluate
the microbicidal properties of these mAbs, our group radiola-
beled mAbs with 188Re and 213Bi. In vitro, 213Bi was more effi-
cient than 188Re in mediating microbicidal activity against B.
anthracis. B. anthracis releases tripartite toxin which is
composed of a cell-binding protein, known as protective anti-
gen, and two enzyme components, called edema factor and le-
thal factor [12]. The administration of 213Bi-labeled mAbs to
protective antigen and to lethal factor prolonged the survival
of A/JCr mice infected with B. anthracis Sterne bacterial cells
[13]. These results indicate that RIT with mAbs that target B.
anthracis toxin components can be used to treat experimental
anthrax infection and suggest that toxigenic bacteriamay be tar-
geted with radiolabeled mAbs.

Total joint replacement is the last resort treatment for
degenerative joint disease. A feared complication is prosthetic
joint infection (PJI) with an incidence of 1%–2% after pri-
mary hip arthroplasty and 1%–4% after primary knee arthro-
plasty [14]. PJI is difficult to treat as the bacteria form a
biofilm on the prosthetic material. This hinders the host im-
mune system, but more importantly, the bacteria in a biofilm
are mostly in a dormant state and therefore not susceptible to
most antibiotics [15]. Currently in collaboration with Drs.
van der Wal, Weinans and van Dijk from the University of
Medical Center Utrecht, the Netherlands, we are investigating
whether alpha-RIT directed towards wall teichoic acids in
Staphylococcus aureus, a major pathogenic cause of PJI [16],
can kill methicillin-resistant S aureus, thus providing the
proof of principle data needed for the development of RIT
into the strategy for noninvasive treatment of PJI.
RIT of HIV

HIV/AIDS remains an enormous public health burden. Ad-
vances in combination antiretroviral therapy have greatly
reduced mortality and morbidity but HIV remains incurable,
with people living with HIV suffering numerous comorbidities
and treatment-related side effects. Even with strict ART adher-
ence, they are at significantly increased risk for cognitive deficits,
cancer, osteoporosis, etc., at an earlier age than the uninfected
population [17]. ART acts by blocking HIV replication steps
and thus prevents infection of new cells, but it does not kill ex-
isting infected cells. Long-lived cell populations such as resting
memory CD4 T cells and cells of monocytic lineage can act as
reservoirs, harboring infectious HIV even in people living with
Radiation Sciences 50 (2019) S49-S52



HIV with undetectable peripheral virus levels. These reservoirs
are formed within the first months after HIV infection and, on
interruption of ART, will reestablish productive infection [18].
In addition to cellular reservoirs, there are anatomic reservoirs
created by cell-to-cell spread and the inability of drugs to reach
therapeutic concentrations in various tissues. The central ner-
vous system (CNS) is particularly vulnerable asHIV neuroinva-
sion that can occur as early as 4–10 days after peripheral
infection, but the blood-brain barrier (BBB) restricts passage
of many ART drugs [19]. The resulting sustained viral replica-
tion increases the likelihood of emergence of drug-resistant
strains which can infect systemic sites. In addition, even the
presence of nonreplicating virus can contribute to reinfection
of the periphery and CNS when reactivated. Neurocognitive
disorders affect over 50% of patients with HIV in the United
States, and the prevalence will increase because of the longer
life spans of HIV-infected individuals [20]. While early and
aggressive treatment with ART can substantially reduce the
size of the total reservoir, a stable population of latently infected
CD4 T cells appears unaffected by early ART in the periphery
[21]. The CNS remains a reservoir of HIV even with successful
ART. In fact, recent data indicated that even ART regimens that
penetrate theCNSdo not decreaseHIV-associated neurocogni-
tive disorders, and often make it worse [22]. With so far unsuc-
cessful attempts to cure HIV using bone marrow transplants
[23,24], new treatments that eliminate both anatomical and
cellular reservoirs of HIV are needed.

We reported on the use of RIT with radiolabeled mAb to
effectively target HIV-infected cells. Our proof-of-principle
experiments using RIT to eradicate HIV infection utilized hu-
man mAbs to gp41 glycoprotein as lead candidates for the
RIT component [25,26]. When conjugated to an alpha-
emitter 213Bi, human mAb to glycoprotein 41 (gp41) 2556
safely eliminated HIV-infected human peripheral blood
mononuclear cells implanted in severe combined immunode-
ficiency mice, with no hematologic toxicity based on platelet
count [26]. RIT specifically killed HIV-infected cells from
people on two different ART regimens and from ART-na€ıve
individuals [27]. Using the same radiolabeled mAb to gp41,
we demonstrated that nonactivated latently infected cells of
both monocytic and lymphocytic lineages expressed low levels
of gp41 on their surfaces, which were nevertheless sufficient
for their targeted killing with RIT [27]. Radiolabeled 2556
mAb was able to penetrate to some extent an in vitro human
BBB and selectively killed infected monocytes and peripheral
blood mononuclear cells that had transmigrated across the
barrier and resided in the CNS [28]. The mAbs used as hom-
ing devices in RIT are non-neutralizing and do not put selec-
tive pressure on the infectious agent. Although RIT can cause
both transient and long-term myelodysplasia, neutropenia,
and thrombocytopenia in patients with cancer, the overall
safety record of RIT is strong [1] and is particularly important
in light of the continuing high mortality and low success rates
of bone marrow transplants and gene therapy approaches for
treating HIV [29]. Currently we are developing novel human
antibodies to gp41 with better penetration through the intact
E. Dadachova/Journal of Medical Imaging and
BBB that will be subsequently tested first in the state-of-the-
art humanized HIV mouse model triple-knockout mice en-
grafted with fetal human bone marrow, liver, thymus
(TKO-BLT mice) [30] followed by studies in simian/human
immunodeficiency virus–infected nonhuman primates.

Conclusions

RIT was developed for the treatment of cancer decades
ago. Experimental results repeatedly provide strong evidence
of the potential usefulness of RIT in different microbial infec-
tions. In fact, because microbes express antigens unique and
different from host antigens, simplicity in targeting them
with high specificity and low cross-reactivity may potentially
be achievable with fewer complications. Recent approval of
several targeted radionuclide therapies in cancer arena both
in Europe and the United States demonstrates that medical
community has become much more willing to utilize such
therapies in patients’ care. We believe that the combination
of immune and radiation therapy provides an exciting new
strategy that may be potentially useful against a variety of
intractable infectious diseases.
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