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Abstract

Motion-induced artifacts can significantly corrupt optical neuroimaging, as in most

neuroimaging modalities. For high-density diffuse optical tomography (HD-DOT)

with hundreds to thousands of source-detector pair measurements, motion detection

methods are underdeveloped relative to both functional magnetic resonance imaging

(fMRI) and standard functional near-infrared spectroscopy (fNIRS). This limitation

restricts the application of HD-DOT in many challenging imaging situations and sub-

ject populations (e.g., bedside monitoring and children). Here, we evaluated a new

motion detection method for multi-channel optical imaging systems that leverages

spatial patterns across measurement channels. Specifically, we introduced a global

variance of temporal derivatives (GVTD) metric as a motion detection index. We

showed that GVTD strongly correlates with external measures of motion and has

high sensitivity and specificity to instructed motion—with an area under the receiver

operator characteristic curve of 0.88, calculated based on five different types of

instructed motion. Additionally, we showed that applying GVTD-based motion cen-

soring on both hearing words task and resting state HD-DOT data with natural head

motion results in an improved spatial similarity to fMRI mapping. We then compared

the GVTD similarity scores with several commonly used motion correction methods

described in the fNIRS literature, including correlation-based signal improvement

(CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted

principal component analysis (tPCA). We find that GVTD motion censoring on HD-

DOT data outperforms other methods and results in spatial maps more similar to

those of matched fMRI data.
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1 | INTRODUCTION

High-density diffuse optical tomography (HD-DOT) has tremendous

potential to be a surrogate for functional magnetic resonance imaging

(fMRI) (Eggebrecht et al., 2014; Hassanpour, Eggebrecht, Culver, &

Peelle, 2015; Ferradal et al., 2016; White et al., 2009; Sherafati

et al., 2018; Hassanpour, 2015; Burke et al., 2019; Sherafati

et al., 2020). However, methods for dealing with detection and sup-

pression of motion artifacts in HD-DOT data are relatively underde-

veloped, which limits its application to many important clinical

populations. While fMRI has become a gold standard for cognitive

neuroimaging, it is contraindicated in subjects with metal implants and

cannot be used in many clinical settings, and studies seeking more

naturalistic imaging environments. In contrast, functional near-infrared

spectroscopy (fNIRS)-based methods are portable, suitable for natu-

ralistic imaging, and not contraindicated in subjects with electronic or

metal implants (Dashtestani et al., 2018; Dashtestani et al., 2019;

Farzam et al., 2017; Fishell et al., 2016; Fishell et al., 2020; Fishell,

Burns-Yocum, Bergonzi, Eggebrecht, & Culver, 2019; Franceschini &

Boas, 2004; Khaksari et al., 2019; Liao et al., 2012; Lloyd-Fox, Blasi, &

Elwell, 2010; Morishita et al., 2016; Saliba, Bortfeld, Levitin, &

Oghalai, 2016; Salsabilian et al., 2019; Salsabilian et al., 2020). Sparse

fNIRS imaging arrays yield poor resolution and low image quality. HD-

DOT provides improved image resolution and depth profiling, particu-

larly when used with anatomical head models (Eggebrecht

et al., 2012; Ferradal et al., 2014; Wu, Eggebrecht, Ferradal, Culver, &

Dehghani, 2014). However, as in both fMRI and fNIRS, detection,

classification, and removal of motion-induced artifacts remains a chal-

lenge for HD-DOT.

Multiple fMRI studies have documented the spurious effects of

motion artifacts in blood oxygen level-dependent (BOLD) fMRI despite

the use of common motion suppression methods (Fair et al., 2013;

Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; Power, Plitt,

Kundu, Bandettini, & Martin, 2017; Satterthwaite et al., 2012; Siegel

et al., 2017; Van Dijk, Sabuncu, & Buckner, 2012). Motion-induced

changes in T2*-weighed fMRI signals are shared across brain voxels,

hence generate spatially structured artifacts. Such artifacts alter

functional connectivity by decreasing long-distance correlations and

increasing short-distance correlations (Power et al., 2012; Power

et al., 2017; Satterthwaite et al., 2012; Van Dijk et al., 2012). However,

two simple data quality indices, frame-wise displacement (FD) and root

mean squared (RMS) signal change over sequential frames (DVARS), are

commonly used in fMRI data processing pipelines to identify and

exclude data segments (motion censoring or scrubbing) from behavior-

ally relevant fMRI measures (Power et al., 2012; Satterthwaite

et al., 2013; Yan et al., 2013).

In HD-DOT, similar to fMRI, the effects of head motion are global

across the field of view (FOV) and impact a majority of measurements

or voxels. In fMRI, head movements shift the position of the brain in

space and modulate the BOLD signal (Friston et al., 1995; Friston,

Williams, Howard, Frackowiak, & Turner, 1996). In HD-DOT, head

motion induces a torque on the fibers in the optical imaging array that,

in turn, modulates the location, angle (Figure 1b center), or both loca-

tion and angle (Figure 1b right) of optode-scalp coupling. Thus, motion

induces artifacts in the optical signals that can appear as brief tran-

sient spikes or baseline shifts. These artifacts propagate from mea-

surement space to voxel space in the image reconstruction process

and corrupt the neuroimaging results.

F IGURE 1 Effects of head motion on HD-DOT optode coupling. (a) Research participant wearing an HD-DOT imaging cap. Head rotation
may occur about three axes (roll, pitch, and yaw). (b) Schematic illustration of how head motion can affect optode couplings. The far-left figure
shows the ideal perpendicular angle between the source-detector optodes and the head. The middle figure shows the angled optodes as a result
of nodding up and back to the center. The far-right figure shows the angled and shifted optodes as a result of nodding up and body movement
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Numerous strategies for managing motion-induced artifact have

been described in the fNIRS literature. However, a consensus on how

best to correct for motion artifacts has not emerged (Brigadoi

et al., 2014; Cooper et al., 2012; Di Lorenzo et al., 2019). Extant

motion correction methods in fNIRS mainly involve two steps: first,

motion detection, and second, signal correction (Aghayee et al., 2017;

Chiarelli, Maclin, Fabiani, & Gratton, 2015; Cui, Bray, & Reiss, 2010;

Fishburn, Ludlum, Vaidya, & Medvedev, 2019; Jahani, Setarehdan,

Boas, & Yücel, 2018; Molavi & Dumont, 2012; Scholkmann, Spichtig,

Muehlemann, & Wolf, 2010). The fNIRS literature has largely focused

on correcting motion artifacts on individual source-detector pair mea-

surements and much less attention has been placed on multi-channel

or full-array assessments. Moreover, most fNIRS studies have not

assessed the efficacy of the denoising methods through comparison

against fMRI.

We address these limitations by conducting a comprehensive

evaluation of motion artifact removal methods for HD-DOT data by

including independent measures of motion (accelerometry) and com-

parisons against gold standard matched fMRI data sets. We introduce

a novel index of motion, the global variance of the temporal deriva-

tives (GVTD) for multi-channel optical devices, inspired by the DVARS

in fMRI (Smyser et al., 2010). For each time point, GVTD, similar to

DVARS, is computed as the RMS of the temporal derivatives across

time-courses. In fMRI, DVARS is calculated based on the voxels time-

courses, and in optical imaging, it can be calculated based on either

measurements or voxels time-courses. In HD-DOT, the equivalent of

the framewise displacement (FD) cannot be defined, since there is no

access to the absolute x, y, z coordinates of the image, and thus, we

use an external motion sensor as the direct measurement for transla-

tional and rotational movements.

We first evaluate the efficacy of GVTD by calculating its correla-

tion with directly transduced measures of motion using an accelerom-

eter. We then optimize the parameters of GVTD and compare its

application to voxel time-courses versus measurement time-courses

using an artifact-to-background ratio (ABR) as a metric of quality.

Finally, we investigate the efficiency of the GVTD-based motion

detection and censoring on HD-DOT task and resting state images by

comparisons with fMRI gold standards and to other fNIRS motion

removal methods.

2 | METHODS

2.1 | Novel motion detection methods

2.1.1 | The global variance of the temporal
derivatives

Global variance of the temporal derivatives (GVTD) indexes global

instantaneous change in the optical time-courses. For each time point,

GVTD is computed as the RMS of the temporal derivatives across a

set of measurements or voxels (Equation (1)). The simple analytic for-

mula for GVTD is

g =

g1

..

.

gM

2
664

3
775, gi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where g is the GVTD vector, yji ε R is either the optical density change

or molar HbO2 or HbR change at spatial coordinate j. i indexes the

time points, N is the number of coordinates, and M is the number of

time points.

2.1.2 | Independent measurement of head motion

A motion sensor (3-space™ USB/RS232; Yost Labs, Portsmouth, Ohio)

was attached to the top strap of the HD-DOT cap in a subset of the

data acquired with instructed motion (more details in §2.6). This sen-

sor includes a triaxial inertial measurement unit (IMU), which uses a

gyroscope, an accelerometer, and a compass sensor (Figure S1).

Onboard electronics compute and report in real-time, the quaternion-

based orientation relative to an absolute reference. We synchronized

the outputs of the motion sensor with our HD-DOT data acquisition

system using audio pulses at the start and end of data streams. The

motion sensor data were down-sampled from 200 to 1 Hz to match

the final sampling rate of the HD-DOT data. Then, the motion sensor

and HD-DOT signals were aligned by delaying the earlier signal based

on the cross-correlation delay time with maximum correlation value.

2.1.3 | Angular rotation

The angular rotation (Φ) time-course was defined as the norm of the

temporal derivatives of the head orientation in terms of Euler angles

(α roll, β pitch, and γ yaw), measured by the motion sensor. This index

was defined in a manner similar to that of GVTD to facilitate compari-

sons between GVTD and motion sensor outputs (Equation (2)).

Φ=
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.
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In this notation, i indexes the time points, and M is the number of

time points.

2.1.4 | Artifact-to-background ratio

To quantify the magnitude of the motion artifacts, we defined the

artifact-to-background (ABR [ρ]), where ABR is the mean GVTD of all

the time points above the noise threshold (defined in §3.3), divided by

the mean GVTD of all the time points below the noise threshold

(Equation (3)).

ρ= n=mð Þ
X
i

gijgi > gthreshð Þ=
X
i

gijgi < gthreshð Þ ð3Þ
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In this formula, gi is the GVTD value at time index i, gthresh is the

threshold value, n is the number of time points below the threshold,

and m is the number of time points above the threshold.

2.2 | Motion removal methods

2.2.1 | Motion censoring using GVTD

Motion censoring (scrubbing) excludes the time points or data blocks

exceeding the GVTD noise threshold from further analysis of resting

state and task data (Sherafati et al., 2017; Sherafati et al., 2018).

Details concerning the noise threshold criterion are explained in §3.3.

This proposed HD-DOT censoring strategy follows a similar practice

that resulted in statistical improvements in resting state as well as task

fMRI data (Birn, Cox, & Bandettini, 2004; Power et al., 2012; Siegel

et al., 2014; Smyser et al., 2010).

2.2.2 | Correlation-based signal improvement

Correlation-based signal improvement (CBSI) motion correction is

based on the assumption that oxygenated and deoxygenated hemo-

globin signals are negatively correlated under all circumstances. In the

presence of motion artifacts, the correlation between these two sig-

nals becomes more positive. CBSI corrects the oxyhemoglobin con-

centrations by subtracting the scaled deoxyhemoglobin to match the

variance of the oxygenated signal. This process removes the positive

correlation content between the two signals, taking into account their

different amplitudes. Then, the corrected deoxyhemoglobin is calcu-

lated by multiplying the corrected oxyhemoglobin by the inverse of

the same scaling factor between the original signals (Cui et al., 2010).

In this paper, we performed this motion correction method after spec-

troscopy on the down-sampled 1 Hz data (Figure S2).

2.2.3 | Targeted principal component analysis

Principal component analysis (PCA) projects an arbitrary set of signals

onto orthogonal principal components. Then, the principal compo-

nents with the least variance are excluded, and the signal is

reconstructed from the remaining components. Targeted PCA (tPCA)

applies PCA to temporal epochs of the data that are identified to con-

tain motion artifacts. tPCA reduces the risk of eliminating the physio-

logical content in the motion-free epochs of the signal (Yucel

et al., 2014a). Hence, this method is followed by a prior step of

motion detection in the temporal domain. Conventionally, this motion

detection is performed by setting a threshold on signal amplitudes or

the windowed signal amplitude changes. In this paper, we used the

HOMER2 functions hmrMotionArtifactByChannel to detect noisy time

points, and hmrMotionCorrectPCA to perform PCA, and set the param-

eters of this algorithm in the similar range as in the original study

(Yucel et al., 2014a); tMotion = 0.5, tMask = 2, STDEVthresh = 20,

AMPthresh = 0.5, nSV = 0.97 (Tables S1 and S2, Figure S2).

2.2.4 | Wavelet filtering

Wavelet-based motion correction is based on discrete wavelet transfor-

mation of single-channel measurements. This method assumes that the

distribution of the wavelet coefficients of a motion-free signal should

follow a Gaussian distribution. Therefore, motion artifacts are detected

based on the deviations from the Gaussian distribution. By setting an

outlier detection threshold, the coefficients associated with motion arti-

facts are excluded, and the clean signal is reconstructed based on the

remaining wavelet coefficients (Molavi & Dumont, 2012). We used the

HOMER2 hmrMotionCorrectWavelet function, setting the interquartile

parameter as 1.5, as suggested in the original paper (Molavi &

Dumont, 2012) (Tables S1 and S2, Figure S2).

2.2.5 | Kurtosis-based wavelet filtering

The kurtosis-based wavelet filtering (kbWF) method optimizes the use

of the wavelet filtering motion correction by setting the threshold

based on the kurtosis of the coefficient distributions (Chiarelli

et al., 2015). The hmrMotionCorrectKurtosisWavelet function was used

with the kurtosis threshold parameter set to 3.3, as recommended in

the original paper (Chiarelli et al., 2015) (Tables S1 and S2, Figure S2).

2.2.6 | Hybrid (spline + Savitzky Golay)

The spline and Savitzky–Golay hybrid method is a three-step algorithm

that aims to identify and correct different types of motion artifacts

(Jahani et al., 2018). First, single-channel measurements are passed

through a Sobel filter to identify time points exceeding a threshold of

1.5 times the interquartile interval of the signal gradient. Second, this

method performs a spline interpolation on those epochs containing

motion to remove the baseline shifts and slow spikes. Steps 1 and

2 were introduced in a previous fNIRS motion removal method, com-

monly known as the motion artifact removal algorithm (MARA)

(Scholkmann et al., 2010). After this step, the hybrid method then

applies a Savitsky-Golay smoothing filter to remove the remaining fast

spikes. We used the HOMER2 hmrMotionCorrectSplineSG function

defined in the original paper with its default parameters and setting

p = .99 and FrameSize_sec = 1.5 (Jahani et al., 2018) (Tables S1 and S2,

Figure S2).

2.2.7 | Temporal derivative distribution repair

Temporal derivative distribution repair (TDDR) also is a three-step

algorithm that aims to automatically identify and correct motion arti-

facts at the single-channel level. First, by computing the temporal

derivative of the signal, TDDR initializes the vector of observation

weights. Second, it iteratively estimates the robust observation

weights by applying the resulting robust weights to the centered tem-

poral derivative to produce the corrected derivative. Finally, it inte-

grates the corrected temporal derivative to yield the corrected signal

4096 SHERAFATI ET AL.



(Fishburn et al., 2019). We used the HOMER2 function

hmrMotionCorrectTDDR proposed in the original paper with its default

parameters (Fishburn et al., 2019) (Tables S1 and S2, Figure S2).

2.3 | Data sets and their objective

Data set 1: For validation, we collected an fMRI data set in which

adult subjects (n = 8) were scanned in both resting state and during a

hearing words (HW) task. This data set served as ground truth. Data

set 2: As a positive control, in this HD-DOT data set, healthy adults

(n = 12) performed instructed motion while performing the same HW

task performed during fMRI. Data set 3: In this HD-DOT data set,

adult subjects (n = 13) performed the same HW task without

instructed motion. Data set 4: In this HD-DOT data set, healthy adults

(n = 8) were scanned while awake in a task-free (resting) state. Data

set 5: In this HD-DOT data set, healthy term infants (n = 11) were

imaged in the resting state (awake or asleep). This is a previously pub-

lished data set (Ferradal et al., 2016). Demographic information and

the objective of using each data set are reported in Table 1

All aspects of these studies were approved by the Human

Research Protection Office of the Washington University School of

Medicine. All adult participants in the previous and new data sets

were right-handed, native English speakers, and reported no history

of neurological or psychiatric disorders. Adults were recruited from

the Washington University campus and the surrounding community

(IRB 201101896, IRB 201609028). All full-term infants were recruited

from the Newborn Nursery at Barnes-Jewish Hospital in St Louis,

Missouri, within the first 48 hr of life (IRB 201101813). All subjects

(or their guardians) gave informed consent and were compensated for

their participation in accordance with institutional and national

guidelines.

2.4 | HD-DOT systems, image reconstruction, and
spectroscopy

All adult HD-DOT data sets (Data sets 2, 3, and 4) were collected

using a previously described continuous-wave HD-DOT system com-

prising 96 sources (LEDs, at both 750 and 850 nm) and 92 detectors

(coupled to avalanche photodiodes, APDs) (Eggebrecht et al., 2014).

Acquisition in infants was performed at the bedside using a previously

reported portable continuous-wave HD-DOT system with an optode

array consisting of 32 sources (LEDs, at both 750 and 850 nm) and

34 detectors (Ferradal et al., 2016). The setup time for both systems

was approximately 5–15 min for combing the HD-DOT optode array

embedded in a cap design through the hair to ensure the maximum

optode scalp coupling using a real-time software for light level read-

outs. More detailed descriptions of the imaging systems and the setup

process are given in the corresponding references. Light modeling was

computed using the standard MNI atlas-based absorption model;

details can be found in (Ferradal et al., 2014). Volumetric movies of

relative changes in absorption at 750 and 850 nm were reconstructed

after inverting the sensitivity matrix using Tikhonov regularization and

spatially variant regularization (Eggebrecht et al., 2014). Relative

changes in hemoglobin concentration were obtained via a spectral

decomposition of the absorption data, as previously described

(Eggebrecht et al., 2014; Ferradal et al., 2016).

2.5 | Functional MRI system and imaging

All Functional MRI (fMRI) data were collected on a research-dedicated

Siemens 3.0 T Magnetom Prisma system (Siemens Medical Solutions,

Erlangen, Germany) with an iPAT compatible 20-channel head coil.

Blood Oxygenation Level Dependent (BOLD) sensitized fMRI data

with TR = 1,230 ms, TE = 33 ms, voxel resolution = 2.4 mm3, FA = 63�,

with a multiband factor of four for both resting state functional con-

nectivity MRI (3 runs each 10 min) and HW task BOLD (1 run,

3.5 min) were acquired for all subjects in Data set 1.

2.6 | Paradigms

Hearing words: Subjects were seated for HD-DOT or supine for fMRI

and instructed to fixate on a white crosshair against a gray back-

ground while listening to words. The HW task was administered as

block design. Each trial consisted of 15 s of hearing words followed

by 15 s of silence. Each run included multiple trials, n = 10 for Data

set 2, and n = 6 for Data sets 1 and 3. The total number of acquired

runs per session was 7 (Data set 2) or 1 (Data sets 1 and 3).

Instructed motion: The instructed motion was performed by sub-

jects during the HW task (Data set 2), with 15% of the trials including

instructed motion. Participants viewed a screen with a crosshair and

TABLE 1 Demographic information

Data set Number of subjects Sex (f/m) Age mean (STD) Condition Modality Objective

1: Adults 8 6/2 62.37 y (6.3) Rest and HW fMRI Gold standard

2: Adults 12 8/4 25.41 y (2.06) HW HD-DOT Instructed motion, motion sensor

3: Adults 13 10/3 42.92 y (19.75) HW HD-DOT Natural motion method comparison

4: Adults 8 5/3 30.25 y (11.18) Rest HD-DOT Natural motion method comparison, ABR test

5: Infants 11 6/5 1.1 d (0.4) Rest HD-DOT Validation for ABR test

Abbreviations: ABR, artifact-to-background ratio; d, day; HW, hearing words; y, year.
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were instructed to perform a specific motion type when the crosshair

color changed. Movements were performed for about 2 s every 3–5 s

over a 15s word presentation section. Subjects were monitored in

real-time using a digital camera to ensure that they were engaged in

the assigned tasks. Specific motions included (a) head turn to the left

and back to center (roll, Figure 1a left), (b) head nod up and back to

center (pitch, Figure 1a center), (c) shifting body position, (d) taking

deep breaths, and (e) raising eyebrows. Head twist (yaw, Figure 1a

right) motion was avoided to prevent cap displacement.

Resting state: Resting state data in adults (Data sets 1 and 4) were

collected over 10 min runs while subjects were seated for HD-DOT

or supine for fMRI and visually fixating on a white crosshair against a

gray background. Subjects were asked to stay awake and still during

data acquisition. The number of runs per session was 3 (Data set 1) or

1 (Data sets 4). Resting state HD-DOT in infants was acquired at the

bedside (Data set 5) within the first 24–48 hours of life during natural

(un-medicated) sleep or quiet rest (Ferradal et al., 2016).

2.7 | HD-DOT preprocessing

All HD-DOT data were processed using the NeuroDOT toolbox follow-

ing the flowchart in Figure S2 (Eggebrecht et al., 2014; Eggebrecht &

Culver, 2019; Eggebrecht & Culver, n.d.). HD-DOT light measurement

data were converted to log-ratio (using the temporal mean of a given

source-detector pair measurement as the relative baseline for that mea-

surement). Noisy measurements were empirically defined as those with

greater than 7.5% temporal standard deviation in the least noisy (lowest

mean GVTD) 60 s of each run (Eggebrecht et al., 2012) and were

excluded from further processing. Then the data were high-pass filtered

(0.02 Hz cutoff for task-based data sets, 0.009 Hz for resting state data

sets) to remove low-frequency drift. To serve as an estimate of the

global superficial signal, we computed the average of all remaining first

nearest neighbor measurements (13 mm source-detector pair separa-

tion in the adult system and 10 mm source-detector pair separation in

the infant system). This global signal estimate was regressed from all

measurements (Gregg et al., 2010). After that, all adult task-based data

were low-pass filtered to 0.5 Hz cutoff to remove the cardiac oscilla-

tions (Brigadoi et al., 2014; Cui et al., 2010; Fishell et al., 2019; Jahani

et al., 2018). All resting state data were low-pass filtered to 0.08 Hz to

remove the cardiac oscillations and to narrow the signal to the sponta-

neous, low-frequency fluctuations of the signal following the previous

recommendations for functional connectivity analysis in both adults

and infants (Eggebrecht et al., 2014; Ferradal et al., 2016; Biswal, Zerrin

Yetkin, Haughton, & Hyde, 1995; Smyser, Snyder, & Neil, 2011). Task

data provides two advantages over resting state. First, the task design

can impart high-amplitude and high-frequency dynamics beyond what

would normally be found in resting state. Second, the block averaging

of the tasks provides an approach to lower the noise and physiological

clutter in the data. While resting state uses the common infra-slow

band (0.009–0.08 Hz) of the vast majority of the functional connectiv-

ity MRI literature (Eggebrecht et al., 2014; Ferradal et al., 2016; Biswal

et al., 1995; Smyser et al., 2011), the task pre-processing uses a higher

filter band (0.02 to 0.5 Hz) to avoid the 1/f noise (Brigadoi et al., 2014;

Cui et al., 2010; Fishell et al., 2019; Jahani et al., 2018). Following this

band-pass filtering, the time-courses were then down-sampled from

10 to 1 Hz and then used for image reconstruction. The efficacy of

GVTD was evaluated at four stages of the HD-DOT processing pipe-

line, as indicated in Figure S2 (green boxes) on 10 Hz sampled data. All

other motion correction methods except CBSI were also performed on

the 10 Hz sampled optical density signals (immediately after the log-

ratio step) (Figure S2).

2.8 | fMRI preprocessing

fMRI preprocessing was performed using in-house 4dfp tools

(Snyder, 2019): (a) correction for systematic slice-dependent time

shifts; (b) elimination of odd-even slice intensity differences due to

interleaved acquisition; (c) rigid-body realignment for head motion

within and across runs; (d) normalization of signal intensity to a mode

value of 1,000. Signal intensity normalization enables identification of

artifact by evaluation of the temporal signal derivative. Atlas transfor-

mation was computed by the composition of affine transforms

derived by a sequence of coregistration of the fMRI volumes via the

T2-weighted and MP-RAGE structural scans. Head motion correction

and atlas transformation were applied in a single resampling step that

generated volumetric time series in (3 mm3) atlas space. Data under-

went spatial smoothing (6 mm full width at half maximum in each car-

dinal direction) and temporal band-pass filtering (0.02–0.5 Hz for the

HW task and 0.009–0.08 for resting state). Nuisance regressors

included six rigid body values derived from head motion correction,

white matter, and CSF signals and the mean whole-brain signal.

Motion artifacts were reduced in resting state data through DVARS-

based motion scrubbing using session-specific thresholding express-

ible as gthresh = ~κ +2:5σL (Equation (5)) (White 3rd et al., 2019). The

fraction of censored frames was 21 ± 12%.

2.9 | Statistical analysis

2.9.1 | HW task response mapping in Data sets
1, 2, and 3

Another objective of acquiring HW task data was to evaluate GVTD

as an index of HD-DOT data quality (Data set 2). To this end, 70 trials

of HW (15 s of HW (On), 15 s of silence (Off)) were acquired in each

session; 10 trials included instructed motion; the remaining 60 trials

(ordinary trials) did not. The reconstructed voxel-wise data represent

the changes in the hemoglobin concentrations (ΔHbO2 or ΔHbR) in

units of μmol/L (Bluestone, Abdoulaev, Schmitz, Barbour, &

Hielscher, 2001). The quantitative response magnitude was then cal-

culated with a standard general linear model (GLM). The design matrix

was constructed by convolving the experimental design with a canoni-

cal hemodynamic response function (HRF) using a two-gamma func-

tion fitted to the in vivo HD-DOT data, as described in (Hassanpour
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et al., 2014). Extracted hemodynamic response estimations for each

subject were then combined in a simple group-level fixed effects anal-

ysis (Friston, Holmes, & Worsley, 1999). Fixed effect analysis was

adopted as we expect the variance in our data set to be most strongly

driven by scan-to-scan variability rather than from subject-to-subject

differences.

2.9.2 | Seed-based correlation analysis of
functional connectivity in Data sets 1 and 4

Seed regions were 5 mm radius spheres centered on coordinates used

in our previous study (Eggebrecht et al., 2014). Five seeds representing

the auditory (AUD.), visual (VIS.), somatomotor (MOT.), dorsal attention

network (DAN), and frontoparietal cortex (FPC) networks were selected

within the HD-DOT FOV. Correlation maps were generated by calcu-

lating the Pearson correlation between the time-series of each seed

region with all other voxels in the FOV. Correlation maps in individuals

were Fisher's z-transformed and averaged across subjects.

2.9.3 | Similarity metric

To summarize the quality of each HD-DOT image into a quantitative

reduced metric that does not lose the spatial structure information,

we computed a Similarity score for each HD-DOT image with the

corresponding image in the fMRI data set. The Similarity metric is cal-

culated as the voxel-wise Pearson correlation between the non-

thresholded HD-DOT and the corresponding fMRI images by only

including voxels in the HD-DOT FOV (Figures 6, 7, and 8). HD-DOT

FOV is defined as the voxels with greater than 1% of the maximum

sensitivity after inverting and smoothing (details explained in the sup-

plementary materials of [Eggebrecht et al., 2014]).

2.9.4 | Receiver operator characteristic curve

To evaluate the sensitivity and specificity of different motion detection

indices, we evaluated the experimental receiver operator characteristic

(ROC) curves for binary classification of clean and noisy time points by

sweeping the detection threshold. We defined ground truth for motion

as the time points during which the subjects performed instructed

movements. The ROC curves were then created by plotting the true

positive rate (sensitivity) against the false positive rate (1 minus speci-

ficity) at various threshold settings for each motion index.

3 | RESULTS

3.1 | Effect of motion artifacts on HD-DOT data

We investigated the effects of various types of movements on HD-

DOT data using the instructed motion. During the HW task, subjects

performed five different types of instructed motion, including large

movements (head rotation) and small movements (raising eyebrows)

(§2.6). One way to track the effect of motion is to spatially display the

measurement pair channels (Figure 2b). For example, for all the sec-

ond nearest neighbor (nn2) pairs, we can mark sources and detectors

with very high standard deviations over time during instances of

instructed roll rotation (red circles) and eyebrow motion (blue circles)

(Figure 2b). Alternatively, one can analyze a source-detector pair mea-

surement (pair highlighted by large circles in Figure 2b) by comparing

its time-course during runs without instructed motion (“ordinary”), or

with different levels of instructed motion, that is, low eyebrow motion

or gross roll rotation (Figure 2c). The difference in signal quality

between the clean and corrupted responses are evident after block

averaging (Figure 2d).

We assessed the effects of different motion artifacts on the mea-

surements by calculating the number of measurements with excessive

noise for each type of motion artifact across all subjects. The HD-

DOT array contains n = 1,500 total measurements per wavelength

with nn1 � 13 mm, nn2 � 30 mm, nn3 � 39 mm, and nn4 � 47 mm

separations, respectively. All five motion types affected multiple

source-detector channels distributed across the FOV; specifically,

51 ± 8% of the channels for gross body movement and 39 ± 4% for

small eyebrow movement (Table 2). Based on these observations, we

concluded that each type of motion generates global effects. There-

fore, we adopted the GVTD as a global index of motion, taking into

account optical signals over the full FOV.

3.2 | GVTD and its correlation with the head
angular rotation

The global effect of motion artifacts in HD-DOT can be visualized as a

matrix where each row is a measurement signal, and the columns

index time (Figure 3a). This type of visualization is similar to fMRI gray

plots (Power et al., 2012; Power et al., 2013; Power et al., 2014).

Inspection of Figure 3a reinforces the notion that the effects of head

motion in HD-DOT are global. GVTD time-course is computed in four

steps. First, starting from the matrix of selected 850 nm nn1 optical

density changes (Figure 3a), the matrix of the backward differentiation

of the selected time-courses is calculated (Figure 3b). Then, from the

matrix of the squares of backward differences (Figure 3c), GVTD is

defined as the square root of the mean across the selected measure-

ment array (Figure 3d). This sequence of steps progressively increases

the sensitivity and specificity of the measure to motion (Figure 3a–d).

To evaluate the sensitivity of GVTD to motion, we concurrently

recorded accelerometry as an independent measure in a subset of our

instructed motion data set (Figure 3e–h). The graded quantitative

motion capture of the accelerometer provided insight into the sensitiv-

ity and specificity of GVTD to motion. To facilitate comparisons

between the accelerometer and GVTD, the angular rotation was calcu-

lated based on the final head orientation time-course (§2.1.3, Figure 3i).

We evaluated the efficacy of GVTD and angular rotation for

motion detection through different scenarios. First, we compared
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these two motion indices for a gross and a small artifact and found

that GVTD shows a higher amplitude spike than the angular rotation

in the case of small artifacts such as eyebrow motion (Figure 4a,b). To

quantify these comparisons, we first calculated the Pearson correla-

tion between GVTD and angular rotation (Φ) for all runs containing

instructed motion. The correlations were averaged over the six sub-

jects that had concurrent HD-DOT and motion sensor data for all runs

in the session (Figure 4c). These correlations were greatest in cases of

head rotations (r = 0.86 ± 0.06 for roll and pitch) and lowest for eye-

brow motion (r = 0.46 ± 0.2). This difference most likely reflects the

transducer characteristics of the motion sensor and the fact that it is

not sensitive to the small muscle movements when attached to the

top of the HD-DOT cap.

To evaluate the sensitivity of the GVTD to motion, we leveraged

the ground truth built into our instructed motion paradigm. Experi-

mental ROC curves for GVTD (based on both nn1 with SD distance

�13 mm and nn2 with source-detector distance of �30 mm) and

angular rotation were created for binary classification of clean and

noisy time points by sweeping the detection threshold (§2.9.4,

Figure 4d). We defined ground truth for motion as the time points

during which the subjects performed instructed movements. We also

plotted these ROC curves for two common temporal motion detec-

tion methods in fNIRS, that is, absolute single-channel signal ampli-

tudes and windowed amplitude changes for all motion types and all

850 nm nn1 measurements (Figure S3) and compared the mean of

these ROC curves against GVTD and angular rotation (Figure 4d). In

all motion types, GVTD (for either nn1 or nn2 measurements) showed

better or similar performance area under the curve (AUC) compared

to angular rotation, absolute signal amplitudes, and windowed ampli-

tude changes (Table 3).

We used the instructed motion protocol to examine the relation

between GVTD and angular rotation for all runs with instructed

motion (Figure 4e). Low versus high motion time points (black vs. red

in Figure 4e) were determined based on the ground truth of the

F IGURE 2 (a) Adult HD-DOT cap structure illustrating a subset of optical fibers. (b) Green lines indicate source-detector pairs that have
standard deviation of less than 7.5%. Source or detector locations identified as noisy for the roll (large red circles) and the eyebrow (large blue
circles) movements, respectively. (c) Changes in the light levels of a representative source-detector pair during HW runs that were ordinary
(black), instructed roll motion (red), and instructed eyebrow motion (blue). Arrows indicate motion. Gray shading indicates auditory stimulus
presentation. (d) Block averages of ordinary (black), instructed roll motion (red), and instructed eyebrow motion (blue) runs. Error bars represent
standard error of the mean across trials

TABLE 2 Percent of the noisy measurements (nn1 through nn4) across five different instructed motion artifacts in Data set 2. Noisy
measurements were empirically defined as ones having a temporal standard deviation of 7.5% or greater.

Type of motion Roll Pitch Deep breaths Body motion Eyebrow motion

% Noisy measurements 49 ± 9% 47 ± 4% 41 ± 5% 51 ± 8% 39 ± 4%
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instructed motion protocol (high motion as defined as time points

when the subject performed instructed motion). When the motion

was low (black dots) GVTD and angular rotation were not correlated

(r = 0.05 ± 0.05), but when the motion was high (red dots), GVTD and

angular rotation were highly correlated (r = 0.8 ± 0.1). The same log–

log scatter plots for absolute signal amplitudes (Figure 4f) and the win-

dowed amplitude changes (Figure 4g), show much lower correlations

with the angular rotation (0.2 and 0.1, respectively) compared to

GVTD using either nn1 or nn2 measurements (0.7).

In summary, these results show that GVTD can be used as an alter-

native or in conjunction with motion sensors in detecting noisy time

points of data. For the rest of this paper, 850 nm nn1 measurements

were used with a source-detector distance of 13 mm for the adult and

10 mm for the infant HD-DOT systems for GVTD calculations.

3.3 | Motion detection strategy using GVTD

To censor data using the GVTD time-course, we developed an outlier

detection strategy that separates good data from motion artifacts.

We assume that the detected signal, y(t), is a linear combination

of the true physiological signal, S(t), and noise, ε(t):

y tð Þ= S tð Þ+ ε tð Þ ð4Þ

We followed the fMRI approaches for DVARS and FD and devel-

oped a data distribution driven strategy for finding motion criterion. In

fMRI, S(t) is approximately normally distributed (Laumann et al., 2017).

Accordingly, the DVARS distribution is right-skewed (Afyouni &

Nichols, 2018). Therefore, we investigated the skew of the GVTD dis-

tribution as a potential index of head motion artifact in HD-DOT. We

evaluated the GVTD distribution for HD-DOT data from a still Styro-

foam phantom, a low motion trial, and a high motion trial. The phan-

tom GVTD histogram peaked at a relatively small value (mode =

4 × 10−5) and exhibited a small rightward skew (Figure S4a). In the

low motion human data, GVTD values had a higher mode and propor-

tionately smaller skew (Figure S4b). In data with instructed motion

(high motion), the GVTD distribution is strongly skewed to the right

(Figure S4c). These results suggest that the skew provides a basis for

censoring HD-DOT data.

Thus, we defined a noise threshold (gthresh) based on the

GVTD distribution mode (~κÞ plus a constant (c) times the standard

deviation computed on the left (low) side of the mode (σL). The right

tail of the GVTD distribution corresponds to motion artifacts

(Equation (5)). Thus,

gthresh = ~κ + cσL, ð5Þ

where ~κ is the histogram mode and σL is computed as

σL =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nLð ÞP

gi <~κ
gi− ~κð Þ2

r
, where nL is the number of GVTD time points

less than ~κ. The value of c controls the tradeoff between the exclusion

of artifact versus data loss. Source code calculating the GVTD time-

course and GVTD threshold can be accessed at https://github.com/

sherafatia/GVTD.

F IGURE 3 (a) All 850 nm nn1 measurements (n = 322) for a run containing instructed roll motion, represented as a matrix of measurements
by time. (b) Temporal derivative of the data shown in (a); note intensified contrast between instructed motion versus neighboring time points.
(c) Squared values (by element) of the matrix shown in (b). (d) GVTD time-course is calculated as the RMS of the squared values shown in (c).
(e–h) Standardized (Z-scored) time-courses captured during instructed head motion in one subject. Colored traces correspond to x-, y-, and z-axes
of the (e) accelerometer, (f) gyroscope, (g) compass, and (h) head orientation. (i) Angular rotation is calculated as the norm of the temporally
differentiated x, y, and z time-courses shown in (h)
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3.4 | Determining the best stage for performing
GVTD-based motion detection and censoring

GVTD is a generic measure that can be applied to any data in the form

of channels (or voxels) by time. Therefore, we needed to determine

where in the processing pipeline, GVTD should be performed. We

evaluated four potential locations (green boxes in Figure S2). To eval-

uate GVTD's ability to separate noise from the signal, we defined an

ABR as the mean of the GVTD values above a noise threshold over

the mean of the GVTD values below the threshold (Equation (3)). Spe-

cifically, GVTD was calculated for (a) source-detector pair log-mean

optical densities (after log-mean; unit = optical density change per sec-

ond [ΔOD/s]), (b) after temporal filtering before superficial signal

regression (SSR) (after filtering no SSR; unit = ΔOD/s), (c) after both

temporal filtering and SSR (after filtering with SSR; unit = ΔOD/s), and

(d) on reconstructed image voxels (after reconstruction; unit = ΔHbO2/

s). These results were compared based on their ABR means on two

different data sets with a natural motion to determine the most

F IGURE 4 GVTD and angular rotation for an example HW run containing instructed (a) roll and (b) eyebrow motion artifacts. Gray shaded
regions indicate auditory stimulation. The Pearson correlations between each pair is noted on the GVTD plots. (c) Pearson correlation between
GVTD and angular rotation averaged over the six subjects with instructed motion runs. Note a high Pearson correlation of GVTD with roll, pitch,
and body motion. (d) Experimental ROC plots for GVTD based on nn1 and nn2 measurements and angular rotation and the mean of the ROCs for

signal amplitudes (Amp.) and windowed amplitude changes (Amp. change) for five types of instructed motion. Log–log scatter plots of 850 nm
(e) nn1 GVTD, (f) nn2 GVTD, (g) nn1 signal amplitudes, (h) nn1 windowed amplitude changes versus angular rotation are shown for all runs with
instructed motion. The correlation between the GVTD (either nn1 or nn2) and the motion sensor is higher than both amplitudes and the
windowed amplitude changes. The cutoff between black and red dots is based on the instructed motion time points

TABLE 3 The area under the curve (AUC) of the experimental receiver operator characteristic (ROC) of GVTD and angular rotation (based on
the motion sensor outputs), and the mean of the ROC of the absolute signal amplitudes and windowed amplitude changes based on the
instructed motion as ground truth, in Data set 2.

Motion index GVTD (either nn1 or nn2) Angular rotation Signal amplitude Windowed amplitude change

AUC 0.88 ± 0.08 0.77 ± 0.08 0.6 ± 0.04 0.76 ± 0.04
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effective GVTD strategy. GVTD time-courses, GVTD histograms, and

their associated gray plots calculated at these four stages are plotted

for an example resting state data from Data set 4 (Figure 5a–c). The

ABR index (Equation (3)) was calculated using the motion threshold

defined as gthresh = ~κ + 4σL (Equation (5)). Results showed that ABR

was consistently highest after both filtering and SSR but before image

reconstruction in both Data sets 4 and 5 (Figure 5d).

3.5 | Indexing data quality with GVTD in task HD-
DOT data by comparison against fMRI

Data set 2 was used to evaluate the ability of GVTD to index the HD-

DOT data quality. HD-DOT responses to hearing words were

compared to the group-mean fMRI response to the same task, which

was independently acquired in a separate experiment and treated as a

gold standard. We rank-ordered ordinary HD-DOT trials (trials with-

out instructed motion) for each subject according to their mean GVTD

value; for each subject, the 10 lowest and 10 highest GVTD ordinary

trials were defined as low motion and medium motion, respectively.

The instructed motion trials were defined as high motion. Responses

were extracted from a fixed region of interest (ROI) defined as p < .05

in the fMRI data set (Figure 7a, third column map), expressed as per-

cent signal change (Figure 6a, third row). The Pearson correlation

between the HD-DOT and fMRI time-courses were computed for

each of the three HD-DOT conditions (Figure 6b–d). This correlation

progressively decreased from 0.97 for low motion to 0.86 for medium

motion, to 0.78 for instructed motion. Medium motion responses

F IGURE 5 Determination of optimal GVTD stage in the processing pipeline based on the artifact-to-background ratio (ABR [ρ]; Equation (3)) of
the 850 nm first nearest neighbor measurements. (a) GVTD computed after log-mean, after filtering and without SSR, after filtering and with SSR,
and after reconstruction. (b) Histograms of the GVTD values for the four time-courses; black lines indicate the noise threshold (~κ + 4σL). (c) Four
gray plots associated with the four GVTD time-courses shown in (a). Black arrows indicate a small motion artifact. Note the greatest contrast
between the motion artifact and the baseline after filtering (third time-course). (d) ABR values calculated for all four processing stages for all
subjects in Data sets 4 and 5. GVTD after filtering (light and dark blue) was maximal in all cases and the highest after filtering with SSR (dark blue)
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were comparable to fMRI, but with a smaller peak value and higher

mean squared error (0.08). Trials that GVTD identified as low motion

(Figure 6b) generated the cleanest maps with the lowest mean

squared error (0.06). Additional results derived from the HW response

analysis show a progressively lower similarity of the HW responses

with fMRI results in association with greater GVTD values (Figure 6e,

f). The relationship between low motion and medium motion data

within each session shows that the GLM-derived beta-values are sys-

tematically greater in low motion as opposed to medium motion (true

in 15 of 17 sessions) (Figure 6g). The responses are comparably com-

promised by spontaneous motion in medium motion trials (as indexed

by greater GVTD) and spuriously higher in instructed motion trials

with the highest GVTD scores (Figure 6h).

A cautionary point regarding GLM-derived beta values is raised by

the instructed motion trials, which generated the highest mean squared

error (0.12) as well as the greatest HbO2 response modulations, hence,

the greatest GLM-derived beta values (Figure 6h). These response

time-courses were the least similar to those obtained by fMRI and were

accompanied by voxel-wise activations outside of the auditory cortex.

Thus, the apparently strong HD-DOT responses in the instructed

motion condition are attributable to motion artifacts, as detected by

GVTD (Figure 6e). We conclude that the results shown in Figure 6

demonstrate that GVTD effectively indexes HD-DOT data quality.

We replicated these results with the HbR contrasts in Figure S5.

For the rest of the paper, we presented the results only using one chro-

mophore (HbO2) as we did not expect to see any significant changes in

the performance of the denoising methods across chromophores.

3.6 | Comparison between motion removal
methods applied to HW task HD-DOT data

To compare the performance of different motion removal methods on

HD-DOT data, we used Data set 3, acquired in older subjects (n = 13;

42 ± 19.75 years old) performing the hearing words task

(no instructed motion). Data set 3 included a wide range of motion

contamination levels. The details of the various motion removal

methods used in this analysis are explained in §2.2. Responses were

evaluated in terms of statistical significance at the voxel and ROI

levels as well as voxel-wise similarity with fMRI (§2.9.1 and §2.9.3).

Without motion removal, the group-level t-statistic map contained

several spurious activations that are not present in the fMRI results

(Figure 7b). Moreover, the expected superior temporal cortex response

did not achieve statistical significance at p < .05. In this analysis, the

GVTD threshold was computed as gthresh = ~κ +3σL (Equation (5)). Exem-

plary low motion and high motion runs are illustrated in Figure S6.

This threshold excluded all blocks in 6 subjects, leaving 7 subjects

contributing to the final result illustrated in Figure 7c. Results

obtained with TDDR, tPCA, CBSI, kbWF, hybrid (spline + Savitzky

Golay), and wavelet filtering are illustrated in Figure 7d–i. GVTD cen-

soring, TDDR, and CBSI methods recovered bilateral superior tempo-

ral cortex activations in thresholded t-statistic maps (p< .05). tPCA

and hybrid methods also recovered a unilateral right hemisphere

activation. However, no statistically significant (p< .05) response was

obtained with other methods (wavelet and kbWF).

We quantified the performance of the results shown in Figure 7b–i

using two metrics: (a) Similarity score, defined as the voxel-wise Pear-

son correlation between the non-thresholded maps and the fMRI gold

standard map (§2.9.3), and (b) mean t-value in the auditory ROI defined

as the voxels with p < .05 in the fMRI t-map (Figure 7a, third column).

The spatial similarity to fMRI was greatest for the GVTD-censored

map, followed by TDDR, tPCA, hybrid, not-corrected, CBSI, wavelet,

and kbWF maps (Figure 7j). The mean ROI t-value was greatest for the

GVTD-censored maps, followed by TDDR, CBSI, hybrid, not corrected,

tPCA, kbWF, and wavelet corrections (Figure 7k).

3.7 | Comparison between motion removal
methods applied to resting state HD-DOT data

We compared the performance of different HD-DOT motion

removal methods in application to resting state HD-DOT data using

Data set 4 (n = 8 adults, 30.25 ±11.18 years old). Seed-based func-

tional connectivity (FC) was computed using the five seed ROIs

(§2.9.2, Figure 8 top row). In parallel with §3.6, we quantified the

performance of each correction method using two metrics:

(a) Similarity score, defined as the spatial similarity between the HD-

DOT and fMRI FC maps (§2.9.3); and (b) mean FC in functionally

connected ROIs identified based on the fMRI data. The spatial simi-

larity was computed as the spatial Pearson correlation between non-

thresholded mean Fisher's z-transformed maps, evaluated over the

HD-DOT FOV (white area illustrated in the top row of Figure 9).

Mean FC was evaluated in the colored ROIs illustrated in Figure 8a.

Thus, this measure reflected simple homotopic FC in primary cortical

areas as well as ipsilateral FC in the higher-order networks (DAN and

FPC). The GVTD threshold was computed as gthresh = ~κ +10σL

(Equation (5)). This lenient threshold minimized data loss. On the basis

of preliminary testing, GVTD censoring was extended to retain only

epochs of duration at least 30 s.

The results obtained by the various correction methods are

shown in Figure 8c–i. The most extensive HD-DOT FC maps were

obtained in uncorrected data (Figure 8b). However, these maps were

not spatially most similar to the fMRI gold standard data set. Rather,

GVTD censoring (Figure 8c) yielded HD-DOT FC maps most similar to

fMRI (Figure 8j). Of all motion removal methods, GVTD had the

highest similarity to fMRI, followed by tPCA, CBSI, wavelet, not

corrected, TDDR, KbWF, and hybrid. For mean FC in each network

ROI (defined based on fMRI data), the scores were: not corrected,

wavelet, and then GVTD, followed by CBSI, TDDR, tPCA, kbWF, and

hybrid, respectively (Figure 8k). As in the HW task responses, strong

FC in the evaluation of network ROIs does not necessarily indicate

good data quality, especially when accompanied by spurious effects

outside of the network identified on the basis of fMRI (e.g., as seen in

the no correction, wavelet, and CBSI maps). On the other hand, some

methods may overcorrect, leading to falsely weak correlations (TDDR,

tPCA, kbWF, and hybrid methods).
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4 | DISCUSSION

4.1 | A general summary of the novel strategies
and findings

We developed a novel motion detection method suitable for high-

density optical imaging arrays, inspired by the DVARS in fMRI (Smyser

et al., 2010). Specifically, we defined the global measure of variance of

the temporal derivatives across measurement channels (GVTD) and

developed a method for denoising structured artifacts in HD-DOT.

We found that GVTD successfully indexes motion artifacts in HD-

DOT and has higher sensitivity and specificity (evaluated using AUC

of the ROC curve against the ground truth of instructed motion) for

motion detection compared to an accelerometer motion sensor and to

single-channel motion detection methods commonly used in fNIRS

(absolute signal amplitudes and windowed amplitude changes).

While there are a number of papers evaluating motion removal

methods for standard fNIRS (Chiarelli et al., 2015; Cui et al., 2010;

Fishburn et al., 2019; Izzetoglu, Devaraj, Bunce, & Onaral, 2005;

Jahani et al., 2018; Metz et al., 2015; Molavi & Dumont, 2012;

Scholkmann et al., 2010; Yucel et al., 2014a; Yucel et al., 2014b;

Zhang et al., 2005), the literature on motion removal strategies for

HD-DOT is limited. Previous studies lack some combination of HD-

DOT data sets and comparisons to gold standard data (fMRI) for

image quality validations, and most are restricted to single-channel

motion detection. In this paper, we introduce a novel global approach

and evaluate the efficacy of multiple motion removal methods in HD-

DOT by comparison against matched fMRI data sets.

We show that the mean GVTD score is correlated with the simi-

larity of the HD-DOT task images to those of fMRI. Thus, the mean

GVTD score can be used to classify data sets as either clean or noisy

(Figure 6). We also show that applying GVTD censoring to both task

and resting state HD-DOT data sets outperforms other fNIRS-based

motion correction methods and makes HD-DOT maps more similar to

those of fMRI (Figures 7 and 8). Together, HD-DOT imaging arrays

and anatomical atlasing combined with GVTD motion censoring, all

aid in making HD-DOT data more comparable to fMRI and furthers

the use of HD-DOT as a surrogate to fMRI.

4.2 | Optimizing the implementation of GVTD in
the HD-DOT processing pipeline

We optimized the use of GVTD motion detection in HD-DOT by test-

ing it at different steps of the processing pipeline using the artifact-

to-background ratio (ABR). In fMRI, DVARS has only been evaluated

before and after filtering (Power et al., 2013). In contrast, in HD-DOT,

we can consider GVTD in either measurement space or image space

(after image reconstruction). Our results show that the ABR was the

highest in measurement space prior to image reconstruction and after

filtering the high-frequency content of the data. It was also statisti-

cally better when performed after SSR, a common fNIRS and DOT

processing step (Figure 5d). Therefore, based on our ABR analysis, we

recommend performing GVTD after filtering the measurements, but

prior to image reconstruction.

An important decision with GVTD is to determine the censoring

threshold. Since the baseline GVTD value was different across people,

similar to findings with DVARS in fMRI (White 3rd et al., 2019), we

evaluated a noise detection strategy based on the GVTD distribution

(histogram) specific to each subject. The differences in the baseline

GVTD distribution is possibly due to variable physiological signal

levels as well as respiratory patterns, heart rate, facial muscle activity,

restlessness, tremor, and so forth (Power et al., 2012; Power

et al., 2013). Therefore, we developed an outlier detection strategy

individualized for each subject's data that semi-automates the noise

threshold determination and takes into account subject differences.

Specifically, we set the threshold using the GVTD distribution mode

(~κÞ plus a constant (c) determined based on the left side (lower side) of

the mode of the GVTD distribution. For practical implementation, we

recommend that the threshold be greater than the standard deviation

of the baseline signal.

4.3 | Evaluation and validation of denoising
through comparisons to fMRI

Most fNIRS studies measure the efficiency of motion removal tech-

niques based on the recovery of a synthetic HRF (Brigadoi

et al., 2014; Cooper et al., 2012; Di Lorenzo et al., 2019; Jahani

et al., 2018), or in the case of real data, based on the variance across

subjects or data sets (Di Lorenzo et al., 2019). However, as fMRI is

the current gold standard, the strongest validation of image quality

advancements in HD-DOT is through direct comparisons to fMRI

(Eggebrecht et al., 2014; Ferradal et al., 2014; Eggebrecht

et al., 2012). We follow this approach herein to evaluate the efficacy

of motion removal methods in HD-DOT using a control fMRI data set

with identical paradigms. Although cross-modality comparisons are

the strongest at the single-subject level or with identical subjects at

the group level, identifying atlas-based group-level cortical ROIs is a

common practice in the fMRI literature for localizing the cognitive

task responses and resting state networks (Barch et al., 2013; Caspers,

Eickhoff, Zilles, & Amunts, 2013; Glasser et al., 2016; Gratton

et al., 2018; Power et al., 2011). In general, it is more difficult to find

cross-modality agreement in non-matched groups (our case) than a

matched control group or single-subject level. Therefore, we expect

that the similarity scores reported in this paper to only improve by

having a subject-matched control fMRI group.

The comparisons in this study are based on the reasonable

assumption that the functional maps for a basic auditory activation

(superior and middle temporal gyri ROIs) and dominant resting state

networks would be approximately similar across healthy adult Data

sets 1, 3, and 4. However, we think that subject-matched comparisons

both at the subject level and group level would be informative to

explore in another study.

Using the fMRI-based ROIs for both hearing words task and rest-

ing state functional connectivity enables identifying false negatives,
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false positives, and localization errors (Figures 7 and 8), all of which

would be difficult to determine without a target image. The advan-

tages over in silico simulations are that both the HD-DOT and fMRI

data contain real image features, including the spatial extent, signal

magnitude, distribution of spatial frequencies, and time-courses. Fur-

ther, the noise structure has real-world complexity. In contrast, in sil-

ico studies that would permit manipulation of many parameters, while

out of the scope of the current work, would be informative and

should be the focus of future studies.

Using the fMRI comparisons, we rank-ordered several motion

removal methods in both task and resting state data. The general pat-

tern observed was that motion censoring using GVTD worked best,

with near contenders being CBSI, TDDR, and following those, tPCA in

both task and rest data. TDDR and tPCA both suppressed the mean t-

value in the auditory ROI and FC in the evaluation ROIs, which may

indicate overcorrection, that is, removal of the true signal. Wavelet

filtering ranked higher in resting state data both in terms of similarity

with fMRI and mean FC in the resting state networks. This is in dis-

tinction to its lower performance in the task data.

4.4 | On different performances of motion
correction methods in fNIRS literature

A striking aspect of the fNIRS literature is the variable performance of

motion correction methods across different studies (Brigadoi

et al., 2014; Chiarelli et al., 2015; Cooper et al., 2012; Di Lorenzo

et al., 2019;Fishburn et al., 2019; Jahani et al., 2018). One possible

reason for the variability between the studies could be the different

levels of motion present in each study. This variability has also been

evaluated in a recent fNIRS study (Di Lorenzo et al., 2019). To address

this topic, we performed a supplementary analysis of the low motion,

F IGURE 6 HW task t-statistic evoked responses. Voxel-wise maps are shown in the first and second rows; the percent signal changes are
averaged over a region of interest (ROI) and shown in the third row. Error bars on the time-courses indicate standard error of the mean across
sessions. (a) Reference data set. (b) Low motion data. (c) Medium motion data. (d) Instructed motion data. Black arrows indicate false-positive
responses, designated since they occur outside auditory ROI defined based on the reference fMRI data set. The maximum t-value of each group
is shown below the maps. (e) Mean GVTD values across all trials in low motion, medium motion, and instructed motion data. (f) Mean similarity of
the maps in each condition with the reference data set; similarity defined as the voxel-voxel Pearson correlation. (g) Scatter plot of responses in
low versus medium motion ordinary trials; GVTD indexed stronger responses in low motion trials in 15 of 17 sessions. (d) Scatter plot of medium
motion versus instructed motion trials; note the higher spurious response magnitudes for the instructed motion
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mediummotion, and high motion HW task data in Data set 2 (Figure 6).

We evaluated the performance of different motion correction

methods on different levels of motion artifacts in these three catego-

ries (Figures S7 and S8).

This analysis shows that, in the low motion group, all methods

can preserve bilateral auditory cortex HW responses. In the medium

and instructed motion groups, GVTD, TDDR, CBSI, and tPCA again

outperformed other methods by recovering either a unilateral or bilat-

eral HW activation with no obvious false positives in the p < .05

thresholded maps (Figure S7). Note that, in the high motion data

(instructed motion group), none of the motion correction techniques

fully recovered bilateral auditory responses (present in fMRI). How-

ever, GVTD was able to distinguish between clean versus motion-

corrupted data (Figure 6). We hypothesize that GVTD can provide a

F IGURE 7 Comparison
between different motion removal
methods on HW task HD-DOT data
in Data set 3 based on the gold
standard fMRI map from Data set
1. Three columns represent the
same t-statistic map for each row
with: 1. no threshold, 2. thresholded
at 40% of the maximum t-value of

each method (mapped as an
alternative visualization), and
3. thresholded based on the p < .05
statistical significance. The
maximum t-value of each group is
shown below the maps in column
one. (a) fMRI maps based on
reference Data set 1. HW map for
Data set 3 with (b) no motion
correction, (c) GVTD-based motion
censoring, (d) TDDR, (e) tPCA, (f)
CBSI, (g) kbWF, (h) hybrid, and
(i) wavelet motion correction
methods. (j) The similarity between
the non-thresholded t-statistic maps
is calculated based on the voxel-
wise Pearson correlation with fMRI
t-statistic map. (k) The mean t-value
is calculated in the auditory ROI
based on the fMRI HW map
thresholded at p < .05 shown in
panel (a) column 3
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F IGURE 8 Comparison between different motion removal methods on resting state HD-DOT data in Data set 4 and gold standard fMRI data.
Five columns represent the seed maps for visual (VIS.), auditory (AUD.), somatomotor (MOT.), dorsal attention (DAN), and frontoparietal (FPC)
networks. (a) fMRI maps based on reference Data set 1. HD-DOT maps for Data set 4 with (b) no motion correction, (c) GVTD-based motion
censoring, (d) TDDR, (e) tPCA, (f) CBSI, (g) kbWF, (h) hybrid, and (i) wavelet motion correction methods. Spatial similarity (j) was computed as the
Fisher's z-transformed spatial correlation between the HD-DOT and fMRI FC maps, evaluated over the HD-DOT FOV (white area illustrated in
the top row). (k) ROI-based FC was evaluated as the mean Fisher's z-transformed correlation with the seed in the colored regions shown in panel
(a). These regions were determined by thresholding the group-level fMRI FC maps at 10% for lower-level networks (VIS., AUD., and MOT.) and
5% for higher-level networks (DAN and FPC) of maximum z(r) value
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means of rank-ordering data based on quantitative motion estimation

(as suggested in Figure 6), something that is normally done subjec-

tively prior to applying motion correction methods. Thus, GVTD may

also be useful in denoising sparse fNIRS data. This notion could be

tested by evaluating the efficacy of GVTD in sparse fNIRS arrays or

by subsampling the HD-DOT imaging array.

GVTD focuses on motion detection, followed by simple censor-

ing. GVTD could be used as an alternative to either absolute signal

amplitudes or windowed amplitude changes included in the HOMER2

code package (Huppert et al., 2009). Further, GVTD could be used in

conjunction with motion correction methods such as spline interpola-

tion (MARA) (Scholkmann et al., 2010), Kalman filtering (Izzetoglu,

Chitrapu, Bunce, & Onaral, 2010; Zhang et al., 2005), PCA (Zhang

et al., 2005), tPCA (Yucel et al., 2014a), hybrid methods (Jahani

et al., 2018), or any method that depends on motion detection in the

temporal domain. However, we note that, in the results presented

here, GVTD-based censoring alone provided better image quality than

any of the alternative motion correction procedures.

4.5 | Strengths and limitations of the GVTD-based
motion censoring

When tested in HD-DOT, the most promising results were obtained

using GVTD-based motion censoring. A likely reason for GVTD effi-

cacy is that it leverages the effect of small artifacts across many mea-

surements. The simplicity of GVTD censoring guarantees that the

signal is neither over-smoothed nor overcorrected.

As described here, GVTD is used as a binary classifier to censor

the time points marked as noisy. However, it also could work with a

non-binary weight associated with the time points based on their

GVTD value to soften the impact of threshold choice. For example,

time points with GVTD values closer to the GVTD distribution mode

could be assigned higher weights than ones further from the mode

(Tanenbaum, Snyder, Brier, & Ances, 2015).

Another important challenge in scrubbing data is the tradeoff

between losing signal versus removing noise (Raut, Mitra, Snyder, &

Raichle, 2019). For motion criterion, one can ensure that sufficient

data remains after censoring by tuning c (Equation (5)). Another

approach would be to use GVTD to determine the useable data

yielded from a run and then adjust the data collection to either collect

more data within the session or add sessions to the study. These

active data quality approaches are currently being pioneered in fMRI

with runtime assessment of motion (Dosenbach et al., 2017; Fair

et al., 2019; Greene et al., 2018).

4.6 | Summarizing the consensus regarding the
top-performing denoising strategies in the fNIRS
literature

Among the fNIRS-based methods that worked best for HD-DOT,

besides GVTD, CBSI performed well in both task and resting state data.

CBSI does not require tuning of parameters but has been less rec-

ommended in the literature (Fishburn et al., 2019; Jahani et al., 2018)

as it relies on the assumption of a negative correlation between HbO2

and HbR. Therefore, it is limited to populations in which a normal corre-

lation between HbO2 and HbR can be assumed (Cui et al., 2010).

The TDDR method performed well in the task HD-DOT data and

fairly well in the resting state analysis. TDDR, like CBSI, does not

require tuning of parameters. However, one disadvantage of TDDR is

that it relies on the derivative of single measurements and, thus, is less

sensitive to small motion artifacts such as eyebrow motion. Moreover,

TDDR only performs an efficient motion correction on the low-

frequency content of the data, because the higher frequencies inflate

the variance of the temporal derivative distribution and create bias in

the distribution of estimates (Fishburn et al., 2019).

Targeted PCA also yielded HD-DOT maps similar to those in fMRI

but with decreased response magnitudes in both task and resting

state data. tPCA removes a fixed proportion of variance through the

removal of the principal components with the least variance; hence,

as observed here and in other studies, it is prone to overcorrection

(Fishburn et al., 2019; Yucel et al., 2014a).

Wavelet filtering, despite a poor performance in task data,

showed good performance in resting state HD-DOT data. However,

this method is computationally expensive. On average, for both HW

and rest HD-DOT runs, wavelet filtering ran 10 times slower than

other motion removal methods. The kbWF method, while faster than

the full wavelet approach, did not perform well in either task or rest

HD-DOT data.

5 | CONCLUSION

We developed GVTD, a novel motion detection metric, and optimized

its use in the HD-DOT pre-processing pipeline. GVTD can be used

alone or in combination with other motion correction methods to

increase the quality of data obtained with multi-channel optical imag-

ing systems. We evaluated GVTD using several independent HD-DOT

data sets, including an instructed motion protocol, accelerometer

motion measures, and a matched fMRI data set serving as ground

truth. Although GVTD-based censoring removes data, the obtained

HD-DOT maps were most similar to those of fMRI, and it out-

performed alternative motion correction methods previously

described in the fNIRS literature.
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