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Abstract
The	Mauritia flexuosa	L.f.	palm	is	known	as	the	“tree	of	life”	given	its	importance	as	
fundamental	 food	 and	 construction	 resources	 for	 humans.	 The	 species	 is	 broadly	
distributed	in	wet	habitats	of	Amazonia	and	dry	habitats	of	the	Amazon	and	Orinoco	
river	basins	and	in	the	Cerrado	savanna.	We	collected	179	individuals	from	eight	dif-
ferent	localities	throughout	these	habitats	and	used	microsatellites	to	characterize	
their	population	structure	and	patterns	of	gene	flow.	Overall,	we	found	high	genetic	
variation,	except	in	one	savanna	locality.	Gene	flow	between	populations	is	largely	
congruent	with	river	basins	and	the	direction	of	water	flow	within	and	among	them,	
suggesting	 their	 importance	 for	 seed	 dispersal.	 Further,	 rivers	 have	 had	 a	 higher	 
frequency	 of	 human	 settlements	 than	 forested	 sites,	 contributing	 to	 population	 
diversity	and	structure	through	increased	human	use	and	consumption	of	M. flexuosa 
along	rivers.	Gene	flow	patterns	revealed	that	migrants	are	sourced	primarily	from	
within	the	same	river	basin,	such	as	those	from	Madeira	and	Tapajós	basins.	Our	work	
suggests	that	rivers	and	their	inhabitants	are	a	critical	element	of	the	landscape	in	
Amazonia	and	have	impacted	the	dispersal	and	subsequent	distribution	of	tropical	
palm	species,	as	shown	by	the	patterns	of	genetic	variation	in	M. flexuosa.
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During my residence in the Amazon district I took every 
opportunity of determining the limits of species, and 
I soon found that the Amazon, the Rio Negro and the 
Madeira formed the limits beyond which certain spe-
cies never passed. The native hunters are perfectly ac-
quainted with this fact, and always cross over the river 
when they want to procure particular animals, which are 
found even on the river’s bank on one side, but never by 
any chance on the other. On approaching the sources of 
the rivers they cease to be a boundary, and most of the 
species are found on both sides of them.
 (Alfred .R. Wallace, 1852)

1  | INTRODUC TION

Environmental	and	geographic	features	of	the	landscape	are	crucial	in	
shaping	the	population	genetic	structure	and	demography	of	plants.	
The	 impact	 of	 rivers	 on	 population	 structure	 in	 the	 Amazonia	 has	
been	documented	in	birds,	small	mammals,	invertebrates	(e.g.,	Aleixo,	
2006;	Colwell,	2000;	Pellegrino	et	al.,	2005;	Ribas,	Aleixo,	Nogueira,	
Miyaki,	&	Cracraft,	2012;	Vallinoto	et	al.,	2006),	and	in	trees	and	un-
derstory	plant	species	 (Huaman	&	Matthies,	2008;	Nazareno,	Dick,	
&	Lohmann,	2017;	Schleuning	et	al.,	2011;	Stevenson,	2007;	Zhang,	
Zheng,	&	Song,	2007).	Nonetheless,	the	extent	to	which	rivers	impact	
fine-	scale	population	genetic	patterns	and	in	particular,	how	factors	
such	as	the	direction	of	river	flow	structure	populations,	are	unknown.

Mauritia flexuosa	is	a	conspicuous,	widespread	plant	distributed	
most	 of	 South	 America.	 This	 species	 is	 long-	lived	 and	 dioecious,	
and	its	stems	can	reach	up	to	40	m	in	height	(Delgado,	Coutourier,	
&	Mejia,	2007).	The	species	 is	 likely	pollinated	by	beetles	(Barfod,	
Hagen,	&	Borchsenius,	2011)	and	wind	(Rosa	&	Koptur,	2013).	Seeds	
are	dispersed	by	a	variety	of	mammals	(Acevedo-	Quintero	&	Zamora-	
Abrego,	 2016)	 and	 fruits	 are	 capable	 of	 floating	 (Moegenburg,	
2002).	Mauritia flexuosa	 generally	 occurs	 below	1,000	m	over	 sea	
level	throughout	Bolivia,	Brazil,	Colombia,	Ecuador,	French	Guiana,	
Guyana,	Peru,	Surinam,	and	Venezuela.	Its	ample	distribution	com-
prises	 populations	 of	 thousands	 of	 individuals	 forming	 oligarchic	
forests	(Peters,	Balick,	Kahn,	&	Anderson,	1989)	and	palm	swamps,	
known	as	Aguajes	(Peru),	Buritizais	(Brazil),	or	Morichales	(Colombia,	
Venezuela),	and	are	found	in	both	rainforest	and	savanna	biomes.

It	is	increasingly	evident	that	pre-	Columbian	and	modern	peoples	
that	live	along	rivers	have	impacted	the	genetic	patterns	of	forests	
within	and	among	basins	(Piperno	et	al.,	2015;	Stahl,	2015).	Although	
there	is	no	evidence	of	domestication	of	M. flexuosa,	it	is	widely	used	
by	indigenous	groups	and	local	communities	along	rivers,	who	refer	
to	it	as	the	“tree	of	 life”	because	it	provides	a	variety	of	resources	
and	it	is	consumed	daily	as	a	food	staple	(Barros	&	Da	Silva,	2013).	
This	palm	is	also	used	for	raw	material	for	construction	and	for	dif-
ferent	 handicrafts	 (Santos	&	Coelho-	Ferreira,	 2011)	 and	 its	 fruits,	
leaves,	 and	 seeds	 are	 sold	widely	 in	markets	 (Gilmore,	 Endress,	&	
Horn,	2013).	Mauritia flexuosa	has	been	termed	a	“hyperdominant”	
species	 (Steege	et	al.,	2013),	 in	which	population	densities	are	five	

times	higher	than	expected	by	chance,	and	that	has	recently	been	
attributed	to	human	use	and	tending	practices	associated	to	its	use	
(Levis	et	al.,	2017;	Rull	&	Montoya,	2014).

Previous	genetic	studies	of	M. flexuosa	using	 ISSR	markers	show	
high	genetic	diversity	compared	to	other	plants	with	similar	life	history	
traits	(Gomes	et	al.,	2011;	Rossi	et	al.,	2014).	Chloroplast	markers	used	
to	characterize	M. flexuosa	in	different	river	basins	revealed	low	nucle-
otide	diversity	within	populations	from	the	Brazilian	savannas,	which	
was	interpreted	as	range	retraction	followed	by	population	subdivision	
during	the	cold	and	dry	periods	of	the	Quaternary	glacial	periods	(de	
Lima,	Lima-	Ribeiro,	Tinoco,	Terribile,	&	Collevatti,	2014).	These	stud-
ies	begin	to	provide	information	on	the	genetic	structure	of	M. flexu-
osa,	yet	the	genetic	variation	and	population	structure	of	M. flexuosa 
across	different	river	basins	remain	to	be	tested	more	explicitly.

Our	main	 research	questions	 are	whether	 rivers	 in	Amazonian	
forests	are	facilitators	or	barriers	to	gene	flow,	whether	population	
genetic	structure	is	maintained	in	populations	throughout	river	ba-
sins,	 and	 if	 recruitment	 is	 associated	with	 river	 flow.	We	 address	
these	questions	using	microsatellite	markers	 across	different	 river	
basins	in	tropical	forests	and	savanna	sites,	and	we	also	discuss	the	
impact	of	human	river	inhabitants	in	the	generation	of	recent	popu-
lation	structure	of	this	palm	species.

2  | MATERIAL S AND METHODS

2.1 | Collection sites and sampling

Plants	were	sampled	from	two	of	the	major	river	basins	in	Amazonia—
the	Madeira	and	the	Tapajós	(Figure	1).	The	Madeira	basin	includes	the	
Guaporé	(GUA),	Madeira	 (MAD),	and	Mamore	(MAM)	rivers;	and	the	
Tapajós	basin	includes	the	Juruena	(JUR),	Tapajós	(TAP),	and	Teles	Pires	
(TPI)	rivers	(Figure	1).	Additional	collections	were	also	made	from	the	
Brazilian	 savanna	 (hereafter	 Cerrado)	 sites:	 Boa	 Vista	 (BVI;	 Roraima	
State)	and	Chapada	dos	Guimarães	(XAP;	Mato	Grosso	State),	although	
these	are	limited	in	their	representation	of	this	wide	geographic	distri-
bution.	Sampling	different	environments	(moist	tropical	forest,	Cerrado)	
allows	 for	 contrasting	 levels	 of	 population	 diversity	 and	 structure.	
Given	the	broad	distribution	of	this	species	(Brazil,	Bolivia,	Colombia,	
Ecuador,	 French	 Guiana,	 Guiana,	 Peru,	 Surinam,	 and	 Venezuela)	 we	
collected	from	sites	that	were	at	least	300	km	away	from	each	other	
in	 places	 that	we	 considered	 representative	of	 the	 region	 (Figure	1).	
Leaves	were	collected	from	an	average	of	22	reproductive	individuals	
per	site	and	sampled	at	least	100	m	within	the	same	location	to	avoid	
spatial	autocorrelation	and	to	increase	the	amount	of	information	per	
population	in	microsatellite	amplification,	for	a	total	of	179	samples	dis-
tributed	across	eight	sites	in	Amazonia	(Figure	1;	Table	1).

2.2 | Microsatellite amplification

Leaves	were	 collected	 in	 the	 field	 and	 stored	 in	 silica	 gel.	DNA	
was	 extracted	 following	 the	 manufacturer’s	 protocol	 of	 the	
Wizard	 Genomic	 DNA	 Purification	 kit	 (Promega,	 Madison,	 WI,	
USA).	 We	 selected	 10	 microsatellites	 previously	 designed	 for	
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M. flexuosa	 (Federman,	 Hyseni,	 Clement,	 &	 Caccone,	 2012;	
Menezes	et	al.,	2012;	Table	S1)	based	on	consistency	of	amplifi-
cation.	PCR	conditions	for	all	primers	in	individual	reactions	were	
94°C	for	5	min;	35	cycles	of	94°C	for	1	min,	62°C	for	1	min,	and	
72°C	for	1	min;	then	72°C	for	2	min.	Amplification	products	were	
genotyped	 using	 capillary	 electrophoresis	 system	 (7.5	kW	 for	
120	min;	 Advanced	 Analytical,	 Ankeny,	 IA,	 USA),	 together	with	
standardized	markers	containing	fragments	of	35	and	500	bp	and	
75–400	bp	DNA	 ladder	 in	a	single	well	 to	determine	the	size	of	
the	amplified	fragments.

2.3 | Genetic diversity and population 
genetic structure

MICRO-	CHECKER	v	2.2.3	was	used	to	correct	genotypes	for	null	al-
leles,	scoring	errors,	and	allelic	dropout	(van	Oosterhout,	Hutchinson,	
Wills,	&	Shipley,	2003).	LOSITAN	was	used	to	test	for	neutrality	in	

each	locus	with	1,000,000	simulations	and	a	99.5%	confidence	inter-
val	using	both	stepwise	and	infinite	mutation	models	(Antao,	Lopes,	
Lopes,	Beja-	Pereira,	&	Luikart,	2008).	To	test	for	biases	in	the	sam-
ple	sizes	and	large	distribution	of	this	species,	we	estimated	allelic	
richness	by	 rarefaction	 for	all	populations	using	 the	Vegan	v	2.4-	6	
package	(Oksanen,	Kindt,	Legendre,	O’Hara,	&	Stevens,	2011)	in	the	
R	 statistical	 platform	 (R	 Core	 Team,	 2014).	 Genetic	 diversity	 was	
calculated	 by	 assessing	 the	 number	 of	 alleles	 per	 locus,	 observed	
heterozygosity	(Ho),	expected	heterozygosity	(He),	and	the	inbreed-
ing	coefficient	(F)	using	Arlequin	v	3.5	(Excoffier,	Laval,	&	Schneider,	
2005).	We	measured	pairwise	population	genetic	structure	with	FST 
(Wright,	1949)	and	RST	(Slatkin,	1995),	also	using	Arlequin.	RST	was	
used	to	complement	FST	as	 it	 is	 less	sensitive	 to	 the	 fast	mutation	
rate	reported	in	microsatellites	(Holsinger	&	Weir,	2009).	We	visu-
alized	pairwise	FST	and	RST	 in	a	heat	map	using	 the	R	package	 lat-
tice	 v	0.20	 (Sarkar,	2015).	Finally,	given	 the	 large	geographic	 scale	
of	our	samples	and	potentially	confounding	signals	from	isolation	by	

F IGURE  1 Map	of	the	locations	sampled	in	this	study:	the	orange	circles	are	the	sites	of	the	sampled	populations.	In	purple,	the	Tapajós	
basin	that	includes	the	Juruena	(JUR),	Tapajós	(TAP),	and	Teles	Pires	(TPI)	rivers;	in	green	the	Madeira	basin	which	include	the	Guaporé	
(GUA),	Madeira	(MAD)	and	Mamore	(MAM)	rivers;	in	solid	blue	we	mark	the	closest	river	to	the	Boa	Vista	(BVI)	population.	In	dashed	
lines	are	other	rivers	of	the	Amazonia.	The	arrows	show	the	direction	of	the	water	flow.	Chapada	dos	Guimarães	(XAP)	population	is	
approximately	25	km	to	any	other	river

TABLE  1 Levels	of	genetic	variation	per	sampling	locality

Locality (population code) N

Na He Ho F

Mean (SE)

Rio	Teles	Pires,	Alta	Floresta,	Mato	Grosso	(TPI) 24 6.5	(0.52) 0.70	(0.03) 0.63	(0.07) 0.08	(0.10)

Rio	Juruena,	Juruena,	Mato	Grosso	(JUR) 22 5.7	(0.33) 0.70	(0.04) 0.59	(0.07) 0.13	(0.10)

Rio	Tapajós,	Santarém,	Pará	(TAP) 23 6.7	(0.58) 0.70	(0.03) 0.60	(0.06) 0.13	(0.09)

Rio	Guaporé,	Vila	Bela	da	Santissima	Trindade,	Mato	
Grosso	(GUA)

22 5.8	(0.39) 0.73	(0.02) 0.56	(0.09) 0.24	(0.12)

Rio	Mamoré,	Guajará-	Mirin,	Rondônia	(MAM) 22 7	(0.73) 0.74	(0.02) 0.62	(0.07) 0.17	(0.08)

Rio	Madeira,	Porto	Velho,	Rondônia	(MAD) 21 5.9	(0.43) 0.69	(0.02) 0.59	(0.07) 0.15	(0.10)

Boa	Vista,	Roraima	(BVI) 24 6.2	(0.47) 0.72	(0.02) 0.55	(0.08) 0.22	(0.12)

Chapada	dos	Guimarães,	Mato	Grosso	(XAP) 21 4.6	(0.54) 0.63	(0.05) 0.60	(0.09) 0.05	(0.13)

N	=	number	of	samples	evaluated;	Na	=	number	of	alleles;	He	=	expected	heterozygosity;	Ho	=	observed	heterozygosity,	F	=	fixation	index.
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distance	(IBD;	Meirmans,	2012),	we	estimated	IBD	between	all	sam-
pling	sites	and	within	Basins,	using	the	adegenet	v	2.0.0.	R	package	
(Jombart,	2008).

To	calculate	regional	and	within-	population	genetic	diversity	from	
different	 river	 basins	 and	 different	 regions,	 a	Molecular	 Analysis	 of	
Variance	(AMOVA)	was	conducted	using	the	sum	of	squares	size	dif-
ference	(RST).	The	eight	collection	sites	(GUA,	MAD,	MAM,	JUR,	TAP,	
TPI,	BVI,	and	XAP)	were	divided	into	four	groups	based	on	major	geo-
graphic	 areas:	Madeira	 basin	 (GUA,	MAD,	 and	MAM),	 Tapajos	 basin	
(JUR,	TAP,	 and	TPI)	 and	BVI	and	XAP.	Significance	was	 tested	using	
1,000	permutations	with	a	95%	confidence	interval.	Population	genetic	
structure	was	also	measured	using	 the	Bayesian	assignment	method	
STRUCTURE	v	2.3.4,	which	uses	genotypes	to	assign	individuals	to	a	
genetic	group	without	a	priori	assumptions	of	populations	(Pritchard,	
Stephens,	&	Donnelly,	2000).	We	used	the	admixture	model	and	a	cor-
related	model	with	a	burn-	in	length	of	100,000	steps	with	2,000,000	
replicates.	We	tested	the	number	of	distinct	genetic	clusters	(popula-
tions;	K)	present	 in	the	data	set	from	1	to	10	using	20	iterations	per	
K.	We	used	a	maximum	of	ten	populations	to	allow	for	the	possibility	
that	a	sampled	location	is	substructured	into	more	than	one	population.	
We	used	the	ΔK	method	of	Evanno,	Regnaut,	and	Goudet	(2005),	im-
plemented	in	STRUCTURE	Harvester	v	0.6.94,	to	determine	the	most	
likely	number	of	genetic	clusters	K	given	our	data	(Earl	&	Von	Holdt,	
2011).

We	 also	 employed	 a	 graph	 theoretical	 framework	 to	 estimate	
population	genetic	summary	statistics	and	to	visualize	the	network	
of	gene	flow	among	populations	that	presumably	results	from	both	
historical	and	contemporary	history	(Dyer	&	Nason,	2004).	We	de-
fined	each	original	sampling	 locality	as	a	node	and	an	alpha	of	 .01	
as	 the	 significance	 level	 to	 test	 edge	 retention,	 in	 the	 R	 package	
popgraph v	1.4	 (Dyer	&	Nason,	2004).	Additionally,	to	evaluate	the	
direction	of	river	water	flow	and	its	 impact	on	gene	flow	patterns,	
we	 calculated	 migration	 rates	 among	 all	 sampled	 localities	 using	
BayesAss+	 (Wilson	&	 Rannala,	 2003),	 which	 is	 a	method	 that	 es-
timates	 immigration	rates	of	a	population	with	respect	to	all	other	
populations,	 based	 on	 the	 analysis	 of	 genotypes	 using	 coalescent	
theory.	Values	closer	to	one	indicate	that	individuals	in	that	popula-
tion	are	a	result	of	self-	recruitment,	while	values	closer	to	zero	sug-
gest	that	a	population	comprises	migrants	from	other	populations.

Finally,	 given	 the	 possibility	 of	 one	 or	 several	 founder	 events	
as	 a	 result	 of	 long-	distance	 seed	 dispersal	 by	 river	 water	 cur-
rents	or	by	human	use,	we	 tested	 for	 reduction	 in	population	size	
using	Wilcoxon	sign-	rank	test	 implemented	 in	Bottleneck	v	1.2.02	
(Cornuet	&	Luikart,	1996).	Under	a	model	of	mutation-	drift	equilib-
rium,	 populations	 that	 have	 experienced	 a	 recent	 reduction	 in	 ef-
fective	population	sizes	may	present	higher	observed	than	expected	
heterozygosity	(Maruyama	&	Fuerst,	1985).	Although	various	mod-
els	exist	for	microsatellites	(Putman	&	Carbone,	2014),	the	SMM	mu-
tation	model	 can	 implement	 equal	 probability	 of	 gaining	 or	 losing	
repeats,	 therefore	 accounting	 for	 homoplasy.	We	 used	 the	 SMM	
model	at	100%;	the	two-	phase	mutation	model	allows	for	mutations	
of	a	larger	magnitude	than	SMM	but	retains	the	mutation	model	and	
was	used	at	70%	(Di	Rienzo	et	al.,	1994).

3  | RESULTS

3.1 | High genetic variation in Mauritia flexuosa

No	genotyping	errors	or	null	alleles	were	inferred	using	MICRO-	
CHECKER.	Eight	pairs	of	loci	were	in	linkage	disequilibrium	(Table	
S2),	 all	 populations	 deviated	 from	Hardy–Weinberg	 Equilibrium	
with	 the	 exception	of	XAP	 (Table	 S2).	 Rarefaction	 estimates	of	
allele	 richness	 in	 all	 populations	 showed	 that	 70%	 of	 all	 pos-
sible	 alleles	 were	 sampled	 for	 all	 populations	 except	 for	 XAP	
(Table	S2).	A	total	of	67	alleles	were	 identified	from	the	10	 loci	
sampled,	 ranging	 from	six	 (MF28)	 to	16	alleles	per	 locus	 (MF14	
locus).	The	mean	of	number	of	alleles	for	each	population	ranged	
from	to	4.6	(XAP)	to	7.0	(MAM;	Table	1,	Tables	S2	and	S3).	Only	
one	 locus	 (MF13)	showed	signatures	of	positive	selection	using	
both	mutation	models	 (stepwise	and	 infinite	allele	models)	with	
a p	=	.999,	 although	 a	 comparison	 of	 genetic	 structure	 results	
with	and	without	it	were	similar,	and	the	locus	was	maintained	in	
the	analysis.	Expected	heterozygosity	ranged	from	0.63	 in	XAP	
to	0.74	in	MAM.	The	observed	heterozygosity	ranged	from	0.55	
(BVI)	 to	0.63	 (TPI;	Table	1,	Table	S2).	The	 fixation	 index	 ranged	
from	0.05	in	XAP	to	0.24	in	BVI	(Table	1).	Overall,	most	sampled	
localities	 shared	 alleles,	 shown	 by	 the	 number	 and	 distribution	
of	allele	frequencies	(Table	S3),	where	the	MAM	population	had	
the	highest	number	of	private	alleles,	and	GUA	and	XAP	had	no	
private	alleles	 (Table	S3).	We	found	 IBD	with	marginally	signifi-
cant	 values	 of	 r	=	.42	 (p	=	.02)	 among	 all	 populations,	 but	 none	
within	basins	(Table	S2).	Low	values	of	pairwise	FST	(mean	0.08)	
and	 RST	 (mean	 0.09)	 suggested	 low	 population	 structure,	 and	
even	lower	within	river	basins	(Figure	2;	Table	S4),	showing	more	
connectivity	within	them	than	between	them.	The	XAP	site	from	
the	Cerrado	was	inferred	as	the	most	distinct	and	genetically	dif-
ferentiated	 from	 all	 other	 sites	 (Figure	2).	 Congruent	 with	 FST,	
our	AMOVA	 results	 showed	 that	 78%	of	 the	 variation	 is	 found	
within	 individuals	and	4.3%	of	 the	variation	among	populations	
(Table	S5).	Also	congruent	with	high	 levels	of	gene	 flow	among	
populations,	the	most	likely	number	of	populations	inferred	from	
our	data	was	three	(ΔK	=	3;	Figure	3).	In	K = 3,	the	Madeira	basin	
(GUA,	MAM,	and	MAD)	and	the	Tapajós	basin	(TPI,	JUR,	and	TAP)	
individuals	 from	 Amazonia	 are	 assigned	 into	 two	 clusters.	 The	
XAP	Cerrado	population	was	inferred	as	an	independent	genetic	
cluster,	together	confirming	the	results	obtained	by	FST	and	RST. 
BVI	individuals	had	either	admixed	genotypes	or	shared	ancestry	
within	 the	 Tapajós	 basin	 cluster.	 The	 population	 graph	 analysis	
showed	 that	 populations	 from	 the	 same	 river	 basin	 are	 highly	
connected,	as	in	the	case	of	JUR	and	TPI	rivers	that	flow	into	the	
TAP	(Figure	S1)	and	the	GUA,	MAD,	and	MAM	rivers	that	are	part	
of	the	same	basin.	Our	results	showed	some	genetic	connectivity	
between	XAP	and	BVI,	and	it	is	clear	that	its	genetic	diversity	is	
lower	 than	 the	 rest	 of	 the	 populations	 sampled	 (Figure	 S1),	 al-
though	its	smaller	sample	size	may	affect	this	result	(rarefaction;	
Table	S2).	We	did	not	recover	evidence	of	genetic	bottlenecks	in	
any	site	except	for	TAP	(SMM	0.01).
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We	explored	the	exchange	of	migrants	 in	 finer	detail	 to	 test	 if	
direction	 of	 river	 flow	was	 a	 factor	 in	M. flexuosa’s	 genetic	 struc-
ture.	BayesAss+	results	(Figure	S1,	Table	2)	showed	that	populations	
with	the	lowest	proportion	of	self-	recruitment	were	GUA	(0.79)	and	
MAM	(0.67)	and	thus	more	open	to	outside	immigrants.	The	MAD	
population	received	the	largest	proportion	of	migrants	from	MAM	in	
the	direction	of	river	flow	(0.24).	However,	most	populations	show	
high	levels	of	self-	recruitment,	with	XAP	and	JUR	being	the	highest	
(both	0.91)	and	thus	directionality	of	rivers	was	harder	to	test.

Overall,	our	population	genetic	structure	and	admixture	analyses	
showed	 that	 there	 is	 considerable	gene	 flow	within	 the	Amazonia	
resulting	in	admixed	populations,	and	that	the	Cerrado	populations	
are	separate	genetic	entities.

4  | DISCUSSION

4.1 | Genetic variation is structured within 
populations of Amazonia

Our	 results	 show	high	 genetic	 variation	 in	Amazonian	M. flexuosa,	
seen	in	the	high	number	of	alleles	present	within	populations	and	no	
evidence	of	heterozygote	deficiency.	This	result	is	consistent	with	a	
high	degree	of	polymorphism	found	in	other	Amazonian	populations	
of	M. flexuosa	where	 loci	from	ISSRs	(Rossi	et	al.,	2014)	and	AFLPs	
(Gomes	 et	al.,	 2011)	 were	 highly	 polymorphic.	 Other	 outcrossing	
tropical	 species	 such	 as	 Inga	 (Fabaceae)	 species	 of	 the	 Peruvian	
Amazon	 (Rollo	 et	al.,	 2016)	 and	 other	 widespread	 and	 abundant	
palms	like	Euterpe precatoria	(Santos	et	al.,	2015)	also	have	high	ge-
netic	variation.

The	finding	of	high	genetic	diversity	concentrated	in	Amazonia	
is	 congruent	 with	 previous	 hypotheses	 that	 parts	 of	 this	 region	
served	as	historical	 refugia	 for	populations	of	M. flexuosa	 (de	Lima	
et	al.,	2014).	Palaeodistribution	models	show	that	M. flexuosa	pop-
ulations	expanded	and	contracted	during	glacial	cycling	throughout	
the	Neotropics	(de	Lima	et	al.,	2014;	Lima-	Ribeiro,	Barberi,	&	Rubin,	
2004),	with	 its	 fossil	 pollen	 record	 persisting	 in	 central	 Amazonia	
throughout	the	Quaternary	(Hermanowski,	Costa,	&	Behling,	2012;	
Hermanowski,	Costa,	Carvalho,	&	Behling,	2012).

In	the	Cerrado,	the	two	populations	we	sampled	have	distinct	
genetic	 patterns	 between	 them	 (BVI	 and	 XAP).	 The	 BVI	 popula-
tion	is	the	least	inbred	of	these	two	according	to	the	fixation	index	
(F).	The	area	surrounding	BVI	(Roraima	State)	is	thought	to	be	the	
“center	of	origin”	 for	many	plant	 species	 (Pielou,	1979),	 including	
M. flexuosa	 and	other	palms	 (Rull,	1998;	van	der	Hammen,	1957).	
This	 region	 is	 a	 transition	 area	 between	 dense	 forests	 and	 open	
areas	 (de	Carvalho	&	Mustin,	2017),	 located	at	 the	 center	of	 the	
Pleistocene	 Intertropical	Convergence	Zone	 (ITCZ),	which	 is	con-
sidered	 an	 important	 source	 area	 of	 establishment	 of	 different	

F IGURE  2 Population	genetic	structure	of	Mauritia flexuosa	as	
measured	by	FST	and	RST

F IGURE  3  Inferred	population	structure	for	K = 2	and	K = 3.	Continuous	lines	represent	divisions	between	basins	and	dashed	lines	
divisions	within	the	basin
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plant	 species	 that	 expanded	 their	 ranges	 during	 that	 geological	
time	period	(de	Lima	et	al.,	2014).

In	contrast,	the	XAP	Cerrado	population	is	less	diverse	and	more	
inbred,	which	is	consistent	with	previously	observed	low	genetic	di-
versity	within	populations	of	M. flexuosa	in	the	Cerrado	(e.g.,	de	Lima	
et	al.,	2014).	This	is	partially	explained	by	our	relative	smaller	sample	
size	as	shown	by	our	rarefaction	results	but	may	also	be	due	to	pop-
ulation	decline	or	incomplete	lineage	sorting	during	shifts	in	forest	
expanse	during	glacial	cycling.	The	absence	of	private	alleles	in	XAP	
suggests	 recent	 population	 establishment	 and/or	 assortative	mat-
ing.	Furthermore,	the	XAP	population	is	higher	in	elevation	(800	m),	
with	 the	nearest	population	at	 least	300	km	away	as	per	our	 field	
observations,	which	 suggests	high	differentiation	and	 lower	 levels	
of	genetic	diversity	among	populations	 increased	due	to	high	geo-
graphic	isolation.

4.2 | Rivers are determinants of Mauritia flexuosa 
population structure

Our	 population	 genetic	 structure	 and	 migration	 analyses	 suggest	
that	the	distribution	of	rivers	 is	an	important	factor	 in	the	popula-
tion	structure	of	Amazonian	M. flexuosa.	Populations	within	basins	
are	 connected,	 while	 populations	 among	 the	 river	 basins	 Tapajós	
(JUR,	TPI,	and	TAP	localities)	and	Madeira	(GUA,	MAD,	and	MAM)	
have	less	gene	flow.	Pairwise	immigration	estimates	show	that	the	
MAD	 population	 receives	 immigrants	 consistent	 with	 river	 flow	
that	moves	 from	the	GUA	to	MAM	then	MAD	 localities	along	 the	
Madeira	 basin.	 Overall	 there	 is	 a	 strong	 contribution	 of	 migrants	
mostly	within	basins,	supporting	the	role	of	exchange	within	basins	
as	part	of	the	seed	dispersal	agents	in	the	population	diversity	and	
structure	of	M. flexuosa.

We	do	not	discount	other	means	of	dispersal	including	humans	
(see	 last	 section),	 yet	 our	 population	 genetic	 structure	 results	
are	congruent	with	 the	 fact	 that	 rivers	are	a	key	element	of	 the	
landscape	in	Amazonia.	Rivers	influence	animal	distributions	such	
as	 birds	 (e.g.,	 Fernandes,	Wink,	 &	 Aleixo,	 2012),	 frogs	 (Gascon,	

Lougheed,	&	Bogart,	1998),	and	mammals	(e.g.,	Patton,	Da	Silva,	&	
Malcolm,	2000)	that	disperse	the	seeds	of	palms	and	other	plants.	
The	impact	of	rivers	on	the	genetic	structure	of	other	plants	such	
as	Myricaria laxiflora	 (Tamaricaceae;	 Liu,	Wang,	 &	 Huang,	 2006)	
has	 shown	 that	water	 flow	 is	 a	major	 driver	 of	 seed	 and	 propa-
gule	dispersal,	and	that	migration	patterns	among	populations	can	
form	 along	 rivers,	 similar	 to	what	we	 found	 here	 in	M. flexuosa. 
Other	Amazonian	studies	have	shown	that	the	fruiting	of	tropical	
wetland	plants	occurs	 in	 the	rainy	season	when	rivers	and	other	
bodies	of	water	are	overflowed,	enabling	 long-	distance	fruit	dis-
persal	(De	Campos,	De	Cedro,	Tejerina-	Garro,	Bayer,	&	Carneiro,	
2013).	Rollo	et	al.	(2016)	found	strong	influence	of	water	dispersal	
in	the	genetic	diversity	and	structure	of	Inga	species	in	Amazonia.	
In	palms,	Oliveira	et	al.	(2014)	found	that	the	genetic	structure	of	
Astrocaryum jauari	among	different	river	sites	within	a	river	basin	
with	high	levels	of	gene	flow	within	them,	likely	due	to	transport	
of	 fruits	 following	 the	 direction	 of	 the	 water	 currents.	Mauritia 
swamps	are	a	permanent	or	 temporary	 shelter	 for	many	 species	
of	animals	that	maintain	gene	flow	via	seed	dispersal	 (Mendieta-	
Aguilar,	 Pacheco,	&	Roldán,	 2015),	 and	 fruits	 have	 the	 ability	 to	
undergo	 long-	distance	 dispersal	 and	 float	 down	 rivers,	 traveling	
thousands	 of	 kilometers,	 connecting	 populations	 at	 large	 dis-
tances	along	the	water	(Moegenburg,	2002).

4.3 | Insights of influence of human management on 
genetic diversity and gene flow

Our	 results	 are	 also	 consistent	 with	 the	 hypothesis	 suggested	
that	hyperdominant	plants	 in	Amazonia,	 such	as	M. flexuosa,	 cor-
relate	with	 their	 proximity	 to	 pre-	Columbian	 archeological	 sites,	
and	that	plant	populations	of	economically	 important	species	are	
maintained	 preferentially	 along	 river	margins	 (Levis	 et	al.,	 2017).	
Furthermore,	 as	 humans	 increasingly	 hunted	 large	 vertebrates	
in	 forests	 typically	 far	 from	 the	 water	 (Peres,	 Emilio,	 Schietti,	
Desmoulière,	 &	 Levi,	 2016),	 animal-	dependent	 seed	 dispersal	 of	
M. flexuosa	decreased	in	those	areas,	resulting	in	lower	gene	flow,	

TABLE  2 Bayesian	assessment	of	migration	within	and	among	sampling	localities	implemented	in	BayesAss+.	For	each	sampling	locality,	
numbers	are	the	mean	proportion	of	individuals	for	each	source	locality.	Boldface	terms	along	the	diagonal	are	proportion	of	non-	migrants	
(self-	recruitment).	Above	and	below	the	diagonal	are	the	estimated	immigrants.	Values	closer	to	one	mean	that	individuals	in	that	population	
are	mostly	a	result	of	self-	recruitment;	values	closer	to	zero	are	closer	to	all	migrants	arriving	from	other	populations.	In	light	gray	are	
populations	from	the	Tapajós	basin,	in	dark	gray	are	populations	from	the	Madeira	basin.	BVI	and	XAP	are	from	the	Cerrado

TPI JUR TAP GUA MAM MAD BVI XAP

TPI 0.85 0.029 0.013 0.011 0.010 0.016 0.019 0.012

JUR 0.012 0.911 0.015 0.011 0.011 0.023 0.013 0.011

TAP 0.013 0.023 0.871 0.011 0.011 0.012 0.022 0.011

GUA 0.013 0.020 0.023 0.791 0.011 0.183 0.011 0.011

MAM 0.016 0.012 0.013 0.018 0.677 0.242 0.011 0.011

MAD 0.017 0.014 0.011 0.011 0.012 0.814 0.012 0.011

BVI 0.021 0.035 0.011 0.011 0.01 0.035 0.845 0.029

XAP 0.011 0.011 0.012 0.011 0.011 0.011 0.012 0.917

BVI,	Boa	Vista;	GUA,	Guaporé;	JUR,	Juruena;	MAD,	Madeira;	MAM,	Mamore;	TAP,	Tapajós;	TPI,	Teles	Pires;	XAP,	Chapada	dos	Guimarães.
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all	the	while	maintained	closer	to	rivers.	Although	these	observa-
tions	remain	to	be	tested	explicitly,	our	patterns	of	high	diversity	
are	also	consistent	with	the	hypothesis	that	large	population	sizes	
of	 this	 species	 have	been	maintained	by	 continuous	 activities	 of	
human	cultivation,	likely	for	thousands	of	years	(Levis	et	al.,	2017).	
As	a	result,	outcrossing	would	be	favored	by	human	tending	and	a	
high	number	of	reproductive	individuals	would	be	maintained,	re-
sulting	in	a	higher	effective	population	size	and	thus	higher	genetic	
variation	(Frankham,	1996).

Our	 data	 on	 recent	 genetic	migration	 among	 populations	 also	
show	that	the	Juruena	river	(JUR)	population,	despite	being	located	
on	 the	 riverbank	and	having	several	other	populations	of	M. flexu-
osa	nearby,	is	mostly	a	result	of	self-	recruitment	(0.91).	Unlike	other	
populations	 in	our	sampling,	 this	high	value	could	be	explained	by	
this	 area	 being	 within	 an	 indigenous	 community,	 who	 have	 used	
and	managed	this	palm	intensively	for	human	consumption	and	for	
making	handcrafts	 for	hundreds	of	years	 (Albernaz-	Silveira,	2016),	
although	this	remains	to	be	tested	explicitly.

The	argument	that	the	distribution	of	many	species,	or	even	the	
composition	of	Amazonia,	 is	 the	result	of	domestication	from	pre-	
Columbian	peoples	who	altered	landscapes	for	thousands	of	years	
has	 been	 repeatedly	 raised	 by	 archeologists	 and	 anthropologists.	
Barlow,	Gardner,	Lees,	Parry,	and	Peres	(2012)	found	a	relationship	
between	sites	of	Amazonian	Dark	Earth	(ancient,	anthropogenic	fer-
tile	soils)	and	greater	plant	species	diversity	and	geographic	distribu-
tion	of	some	species	in	comparison	with	sites	without	anthropogenic	
effects.	 Clement	 (1999),	 Rull	 and	 Montoya	 (2014),	 and	 Thomas,	
Alcázar	Caicedo,	McMichael,	Corvera,	and	Loo	(2015)	have	shown	
that	human	populations	in	the	Amazon	have	transformed	its	physical	
landscape	and	transported	plant	species	large	distances.	The	genetic	
and	spatial	distribution	of	Bertholletia excelsa	(Brazil	nut),	for	exam-
ple,	 is	 strongly	 linked	 to	 areas	 populated	 by	 indigenous	 groups	 in	
Amazonia	(Thomas	et	al.,	2015).	Rull	and	Montoya	(2014)	found	the	
distribution	of	 pollen	of	M. flexuosa	 linked	 to	millenarian	 charcoal,	
suggesting	that	these	came	from	fires	made	by	local	communities	for	
hunting	and	food	preparation.

In	 the	Gran	Sabana	of	Venezuela	and	 likely	 in	 the	contiguous	
Roraima	savannas	of	Brazil	(e.g.,	BVI),	the	gallery	forest	was	more	
dominant	 than	 the	 savannas	 3,100–1,800	 Cal	 yr	 BP	(Leal	 et	al.,	
2016).	 The	 forest	 was	 open	 and	 disturbed	 and	Mauritia	pollen	
was	 present.	 From	 1,800	 Cal	 yr	 BP	up	 to	 the	 present,	 savannas	
ecosystems	have	been	dominant.	The	synergistic	effect	between	
anthropic	fires	and	climate	change	could	have	promoted	the	dom-
inance	of	savannas.	Our	results	suggest	that	the	BVI	population	is	
relatively	isolated	from	the	savanna	(0.845),	and	we	open	the	possi-
bility	that	it	has	adapted	to	re-	colonizing	habitats	disrupted	by	fire.

The	study	sites	from	this	work	are	currently	undergoing	increas-
ing	 deforestation	 and	 other	 modifications	 of	 forest	 landscapes.	
Hydrological	 connectivity	 in	 Amazonia	 is	 increasingly	 disrupted	
by	 dynamic	 and	 multifaceted	 drivers	 (Ritter	 et	al.,	 2017),	 includ-
ing	mining,	 and	 land-	use	changes	 that	have	modified	at	 least	20%	
of	Amazonia,	with	over	150	hydroelectric	 dams	 currently	 in	oper-
ation	and	hundreds	more	planned	 (Castello	&	Macedo,	2016).	The	

understanding	of	the	processes	related	to	the	maintenance	the	gene	
flow	throughout	different	environments,	such	as	that	in	M. flexuosa, 
could	aid	conservation	and	management	strategies.	Also,	the	impor-
tance	of	rivers	in	maintaining	population	connectivity	that	are	geo-
graphically	distant	is	here	shown	for	M. flexuosa,	which	can	act	as	an	
umbrella	 for	 associated	 species	 and	 the	environmental	 that	 thrive	
with	it.	Our	results	from	M. flexuosa	may	be	used	as	a	first	step	to-
ward	building	a	model	for	other	studies	of	plants	whose	dispersal	is	
heavily	influenced	by	rivers.
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