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Abstract: Homologous recombination is a universal mechanism that allows DNA repair 

and ensures the efficiency of DNA replication. The substrate initiating the process of 

homologous recombination is a single-stranded DNA that promotes a strand exchange 

reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. 

The molecular mechanisms by which homologous recombination repairs a double-strand 

break have been extensively studied and are now well characterized. However, the 

mechanisms by which homologous recombination contribute to DNA replication in 

eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for 

the machinery of homologous recombination at replication forks. Here, we review our 

understanding of the molecular pathways involving the homologous recombination 

machinery to support the robustness of DNA replication. In addition to its role in  

fork-recovery and in rebuilding a functional replication fork apparatus, homologous 

recombination may also act as a fork-protection mechanism. We discuss that some of the 

fork-escort functions of homologous recombination might be achieved by loading of the 

recombination machinery at inactivated forks without a need for a strand exchange step; as 

well as the consequence of such a model for the stability of eukaryotic genomes. 

Keywords: homologous recombination; DNA replication; DNA repair; fork-restart;  
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1. Introduction 

The faithful and accurate transmission of the genome through successive cell divisions requires a 

precise network of pathways coordinating, among others, DNA replication with DNA repair and 

recombination. Homologous recombination is a mechanism common to all life, necessary for the 

maintenance of genome stability. Although it is not an essential process in unicellular organisms, it is 

vital for cell proliferation in metazoans. The final product of homologous recombination mechanism is 

an exchange of genetic information between DNA molecules. Homologous recombination thus 

promotes genetic diversity during various biological processes, such as bacterial conjugation, meiosis 

and gene targeting. Homologous recombination is also an efficient DNA repair mechanism necessary 

for cell survival when the DNA suffers various types of damage, including double-strand breaks 

(DSBs), single-stranded DNA gaps (ssDNA gaps) and nicks. The substrate initiating the process of 

homologous recombination is a single-stranded DNA (ssDNA)molecule coated with single-strand 

DNA-binding proteins (SSB in prokaryotes and RPA in eukaryotes) (Figure 1). With the assistance of 

recombination mediator proteins (RMPs), the recombinase protein (RecA family in prokaryotes or 

Rad51 family in eukaryotes) nucleates onto ssDNA to form a nucleoprotein filament. This 

RecA/Rad51/ssDNA structure is the competent intermediate for the initiation of genetic exchange 

between homologous DNA molecules (see Figure 1 for details). The nucleoprotein filament can invade 

a homologous DNA duplex, pairing the invading ssDNA with the complementary strand of the DNA 

duplex and displacing the non-complementary strand. The resulting three-stranded structure is called a 

displacement loop (D-loop, Figure 1). When performed in vitro with appropriate RMPs and two 

homologous DNA duplexes, the strand exchange reaction results in complete exchange of the two 

complementary strands (referred to as a 4-strand exchange reaction);this is the molecular basis for 

genetic exchange in vivo [1,2]. 

Any mechanism linked to DNA metabolism which generates ssDNA as an intermediate offers a 

potential starting point for homologous recombination. Therefore, to avoid superfluous genetic 

exchange, that is potentially detrimental for the stability of the genome, there is sophisticated 

regulation of various steps of homologous recombination during the cell cycle and in response to DNA 

damage [3]. Because of competition with alternative DSB repair as Non Homologous End Joining 

(NHEJ), regulation of homologous recombination is particularly sophisticated in mammalian cells. 

Indeed, signaling pathways (for example the Fanc pathway) have key caretaker functions for genome 

stability by ensuring that homologous recombination acts only on appropriate substrates and only 

during the appropriate phase of the cell cycle [4].  

  



Biomolecules 2013, 3            

 

 

41 

Figure 1. Early Steps of Homologous recombination during double-strand break repair 

(see text for details). (A) Single-Stranded Binding proteins are loaded onto 3'-overhanging 

single-stranded DNA (ssDNA) resulting from 5'-3' end resection by the concerted action of 

nucleases and helicases. Recombination mediator proteins help the recombinase Rad51  to 

nucleate on ssDNA and to form a structured nucleoprotein filament. Recombinases then 

promote the invasion of the 3' single-stranded end into a DNA duplex, to pair it with the 

complementary strand, and to displace the non-complementary strand. The resulting  

three-stranded structure is termed displacement loop (D-loop). The 3' end of the invading 

strand primes DNA synthesis to copy the DNA template. (B) The second extremity of the 

DSB is captured by annealing of the displaced strand, leading to the formation of double 

Holliday junctions (dHJs). Repair of the DSB is completed by the resolution of dHJs to 

form recombinant products that are associated, or not associated, with crossovers (COs, 

reciprocal exchange of genetic information). (C) Model of break-induced replication that 

can lead to establishment of a replication fork.  
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In addition to DSBs repair, homologous recombination is an essential mechanism for robust DNA 

replication. By promoting recombination between sister chromatids, homologous recombination 

ensures that any ssDNA gaps left behind moving replication forks are correctly sealed (Figures 2C and 3B). 

Homologous recombination is also involved in the rescue of replication forks impeded in their 

progression and in the repair of broken forks. In bacteria, homologous recombination contributes to 

reassembling a functional replisome at inactivated replication forks [5]. There is various evidence in 

eukaryotes that homologous recombination is involved in rebuilding replisomes, but details of the 

mechanism of origin-independent loading of the replisome at inactivated forks have only started to 

emerge. The mechanisms of genetic exchange during the repair of DSBs have been described by 

biochemical and molecular studies, whereas the mechanisms by which homologous recombination 

promotes the resumption of DNA synthesis at inactivated replication forks remain unclear. Recent 

investigations in human cells and in Xenopus show that homologous recombination has a fork-protection 

function [6]. The recombinase Rad51 and its recombination mediator partners might act at impeded 

replication forks to stabilize them by protecting newly synthesized strands from extensive end-resection. 

This fork-protection function appears genetically separable from the DSB-repair function of homologous 

recombination. Work in bacteria suggests a role for RecA and its associated recombination mediators 

in protecting damaged replication forks from extensive degradation by nucleases. Indeed, a 

multiplicity of recombination functions at halted forks has been described in E. coli and homologous 

recombination is not necessary only for fork reactivation but also acts as a fork-stabilizer until DNA 

synthesis is resumed [7]. In this review, we focus on the support function of homologous 

recombination for DNA replication, especially at inactivated replication forks.  

2. Homologous Recombination during DNA Replication in Bacteria 

Efficient repair of inactivated replication forks is vital to bacteria [8]. The genome of bacteria 

generally consists of a single chromosome, although several bacterial species have a genome divided 

into several molecules. However, in every case, each chromosome is replicated by a single pair of 

divergent replication forks initially built at a single origin (oriC). For circular chromosomes, the two 

divergent forks terminate their progression at a single termination region, located opposite to oriC. 

Thus, the duplication of the bacterial genome is a perilous process because neither initiation at 

alternative origins nor the progression of the opposite fork can rescue a halted replication fork. In cases 

of fork arrest, DNA replication can only be completed by resumption of the inactivated fork. 

Consequently, multiple pathways have evolved to ensure efficient restart of arrested forks: this 

includes removal and/or the repair of the damage responsible for the particular fork arrest, and 

mechanisms for re-assembling the replication machinery (the replisome) at inactivated forks [9,10]. 

Impediments to fork progression can arise from various causes and the multiplicity of fork-restart 

mechanisms corresponds to the need to rescue appropriately forks inactivated in a variety of pathways. 

In this review, we focus on the functions of homologous recombination at arrested forks in the 

bacterium Escherichia coli (E. coli) in which these pathways have been most extensively studied. The 

restart of inactivated replication forks requires the replisome to be rebuilt; this involves the loading of 

the replicative helicase DnaB onto the chromosome at a position other than oriC and independently of 

the replication initiator DnaA (Figure 2). To do so, the primosome (composed at least of the replicative 

helicase DnaBand the primase DnaG) is loaded by restart proteins, and then the holopolymerase III 
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(containing replicative DNA polymerases and theirs co-factors) is recruited to form the replisome. In 

E. coli, restart proteins require a helicase activity to load the primosome at arrested forks: either PriA 

or the PriC/Rep complex, PriA being the major pathway [10,11]. According to the structure of the 

arrested fork, it can be either restarted directly by PriA and PriC/Rep pathways, or handled by 

homologous recombination [12]. Many thermosensitive replication mutants have been studied to 

investigate the restart of replication forks inactivated following the loss of a functional replisome [5]. 

The recovery of DNA replication after the fork encounters DNA damage (caused by UV-C radiation) 

and has also been extensively studied. Investigations of homologous recombination in E. coli have 

revealed the pivotal functions of homologous recombination at inactivated forks, and particular roles 

have been identified according to the cause of the fork arrest. 

Figure2. Recombination function at replication forks in Bacteria (see text for details).  

(A) Model of fork reactivation at inactivated forks. (B) Model of fork-stabilization at 

damaged-forks, without a strand exchange step by the recombinase. (C) Model of  

post-replication repair of ssDNA gaps left behind moving forks. (D) Model of  

fork-clearance at damaged-forks, without a strand exchange step by the recombinase. 
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2.1. Restart of Inactivated Replication Forks by Homologous Recombination 

Homologous recombination plays a crucial role in the repair of blocked replication forks [5,8,13–15]. 

At an inactivated replication fork, the homologous recombination machinery remodels the forked 

structure creating a recombination intermediate recognized by PriA which recruits a replication restart 

complex; this allows the successive assembly of the primosome and of the replisome such that the fork 

restarts (Figure 2A and 2B). PriA is able to recognize a D-loop structure and allows the recruitment of 

the replicative helicase DnaB through its interaction with the restart-proteins PriB/DnaT and the 

helicase loader DnaC [11,16–21]. 

Recombination mediator proteins (RMPs) aid the nucleation ofRecA onto ssDNA coated by  

single-stranded DNA binding protein (SSB). SSB proteins play a dual role in the formation of RecA 

filament: they have a positive action by preventing the formation of secondary structures in ssDNA; 

however, RecA nucleation is prevented when ssDNA is covered by SSB [22,23]. Consequently, RMPs 

promote the formation of the RecA nucleofilament, either by facilitating the nucleation of RecA and/or 

by displacing SSB proteins from ssDNA [24–26]. The mechanism of RecA loading depends on the 

type of the substrate. The two major pathways of RecA loading are the RecFOR pathway for 

single-strand break lesions and the RecBCD pathway for double-strand break lesions [27–30]. Seven 

genes are involved in the RecFOR pathway: RecA, RecQ, RecJ, RecF, RecO, RecR and RecN. The 

loading of RecA at ssDNA gaps requires the concerted action of the 3'-5' DNA helicase RecQand the 

5'-3' exonuclease RecJ [31–34]. Then, the RMPs RecF, RecO and RecR form a complex facilitating 

RecA loading onto the ssDNA. RecFOR can load RecA at the junction between ssDNA-dsDNA, and 

prevents RecA filament extension on dsDNA beyond the ssDNA gap [35]. At double-strand breaks, 

the nuclease activities of RecBCD resect blunt-ends extremities, and at Chi sites, RecBCD generates a 

3' single-stranded end. RecBCD is also responsible for RecA loading onto ssDNA and helps its 

nucleation, but is not considered to be a formal RMP protein [28,36]. 

Replication defects due to the inactivation of one or more components of the replisome can result in 

chromosomal breakage [37–40]. It is estimated that around 1% of cells, in a population growing under 

normal conditions, experience either a double- or a single-strand break due to impediments to 

replication forks [28,41]. Replication-coupled dsDNA ends are produced either when the fork 

encounters a nick or a ssDNA gap, or during the processing of inactivated forks [5,28]. 

Thermosensitive mutants of the holopolymerase III (mutated for a component of the clamp loader 

HolD, the beta clamp DnaN or the replicative DNA-polymerase DnaE) and mutants of the replicative 

helicase DnaB require the RecBCD pathway for cell survival at semi-permissive temperature for 

growth, indicating the occurrence of dsDNA ends [5]. Similarly, Pulsed-Field Gel Electrophoresis 

(PFGE) experiments showed that defects in the holopolymerase III or DnaB lead to chromosomal 

breakage that results from the activity of the RuvABC complex, the bacterial resolvase [38,40,42]. 

Loss of a functional replisome at active replication forks leads to the annealing of the two nascent 

strands, resulting in a 4-branched structure called a reversed fork and resembling a Holliday junction 

(Figure 2A). The reversed fork is then cleaved by RuvABC, creating a DSB which is resected by 

RecBCD. The recombinase RecA is then recruited onto ssDNA generated by RecBCD and remodels 

the fork into a structure recognized by PriA, thus allowing the primosome and then the replisome to be 

loaded at the inactivated fork [5]. This fork-restart model involving cleavage of the reversed fork by 
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RuvABC applies to other mutations affecting DNA replication, for instance mutations in the accessory 

helicase Rep and mutations that specifically inactivate PriA helicase activity [42,43]. Alternatively, the 

dsDNA end of the reversed fork is resected by RecBCD to recruit PriA and the primosome directly, 

independent of the cleavage of the reversed fork by RuvABC and of RecA recruitment. This last 

model has also been proposed recently to explain the direct restart of replication forks that collapse 

following collision with the transcription machinery [44]. 

The reversal of the fork results either from topological stress, or is actively driven by enzymes. 

Several proteins have been shown to be able to reverse inactivated forks in vivo or in vitro: the 

helicases RuvAB and RecG, the recombinase RecA, and the beta clamp DnaN itself [37,38,40,43,45–48]. 

When the processivity of the replisome is compromised (in dnaE or dnaN mutants), the helicase UvrD 

favors fork reversal but mainly by promoting the disassembly of the RecA filament formed on ssDNA 

gaps at inactivated forks. In this case, RecA loading at replication forks requires the RecQJFOR 

pathway, consistent with RecA being recruited before the formation of DSB [49,50].  

In vitro, RecA is able to reverse a model forked structure containing assDNA gap on the leading 

strand. The reaction is stimulated by the presence of SSB proteins, but is inhibited by the presence of 

the recombination mediator proteins RecFOR [48]. In vivo, RecA causes fork reversal upon loss of a 

functional replicative helicase (in a dnaB mutant) and the ability of RecA to reverse the fork is 

independent of both known RecA loading mechanisms (RecFOR and RecBCD pathways) and 

independent of the induction of the SOS system [45]. The induction of the SOS system involves the 

formation of a RecA filament on ssDNA. Possibly, a small amount of RecA bound to ssDNA, below 

the threshold necessary to induce the SOS response, might be sufficient to reverse the replication fork. 

Alternatively, there may be a third uncharacterized RecA-loading pathway in E. coli. Indeed, both the 

genetics and the molecular details of replication fork reversal by RecA remain poorly understood.  

Thus, the machinery of homologous recombination is clearly involved in the restart of inactivated 

replication forks by a mechanism that involves a DSB (RecBCD pathway) resulting from the cleavage 

of reversed forks. RecA also acts at inactivated forks before the cleavage of the reversed fork, being 

recruited to ssDNA gaps with the assistance of the RecFOR pathway. In addition, RecA promotes the 

reversal of inactivated forks by an unknown mechanism. One possible function for the RecA/RecFOR 

recombination machinery at ssDNA gaps during DNA replication is to protect the inactivated fork 

from extensive DNA resection. The RecQJFOR pathway has been extensively studied in response to 

DNA damage and especially to UV-C irradiation.  

2.2. Replication Fork Protection by Homologous Recombination 

Replication forks are halted by many types of DNA damage and there have been numerous studies 

in E. coli to determine how DNA synthesis proceeds on a damaged template. UV-C irradiation induces 

predominantly pyrimidine dimers, which are repaired by nucleotide excision repair (NER) involving 

the excinuclease UvrABC, and has been widely used for such studies [51–54]. Pyrimidine dimers do 

not impede the replicative helicase but stop the DNA polymerase. The replisome acts as a molecular 

motor, catalyzing nucleotide polymerization and unwinding of the DNA template, and pyrimidine 

dimers may impede the progression of the replication fork and a transient uncoupling between the 

replicative helicase and DNA polymerase [51,55,56]. The excision of such lesions by the UvrABC 

pathway generates assDNA gap, and this may also impede the progression of the replication fork [57].  
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The consequences of DNA lesions encountered by the fork depend on the strand affected. It is 

thought that a blocking lesion on the lagging strand has little impact on the efficiency of DNA 

synthesis, because the repeated priming for Okazaki fragments allows DNA synthesis to be primed 

downstream from the lesion. AssDNA gap is then left behind the moving fork and is subsequently 

filled by the RecA/RecFOR recombination machinery acting in a post-replicative manner [33,58–61]. 

The consequences of a blocking lesion on the leading strand remainthe subject of debate. Until 

recently, the prevailing model was that the replisome cannot bypass a blocking lesion, and thus the 

resumption of DNA synthesis would require fork-restart mechanisms (either by homologous 

recombination or by a direct restart via the helicases PriA and PriC/Rep). Blocking lesions on the 

leading strand may also result in a transient uncoupling of the DNA synthesis of the leading strand 

from that on the lagging strand [62,63]. However, a recent in vitro study showed that the bacterial 

replisome is tolerant to DNA damage: the replisome is able to re-prime DNA synthesis downstream 

from a single pyrimidine dimer on the leading strand (Figure 2C). This re-priming on the leading 

strand does not require fork-restart proteins, including PriA or PriC/Rep, and does not involve 

dissociation of the replisome [64]. Re-initiation of DNA synthesis downstream from the DNA lesion 

on the leading strand thus results in a ssDNA gap left behind the moving fork that could be repaired by 

homologous recombination. Re-priming of this type may be sufficient for efficient DNA synthesis in 

situations of normal spontaneous DNA damage, but the intrinsic ability of the replisome to replicate on 

a damaged template might be overwhelmed when cells are exposed to exogenous DNA damage, for 

example when exposed to UV-C irradiation.  

Upon UV-C-induced DNA damage, DNA synthesis stops and then resumes synchronously after a 

delay of 15 to 20 minutes [65–68]. It has been suggested that this delay is the time needed to process 

impeded forks (i.e., repair of damaged nucleotides and/or restart of replication forks). The inhibition 

and the resumption of DNA synthesis after irradiation have been studied by following the 

incorporation of radio-labeled nucleotides post-irradiation. Several proteins are involved in the 

recovery of DNA replication, including NER proteins, the RecQJFOR recombination machinery, the 

recombinase RecA, the fork-restart proteins including PriA, and DnaC, the loader of the replicative 

helicase. Genetic analysis indicates that the resumption of DNA synthesis on a damaged template 

requires the excision of the lesion, the recruitment of homologous recombination machinery and the 

re-assembly of a replisome to restart inactivated forks [34,65–72]. The concomitant action of the RecQ 

helicase and the RecJ exonuclease at damaged replication forks allows the controlled resection of the 

lagging strand, resulting in RecA loading by RecFOR and regression of the fork (i.e., the two parental 

strands re-annealed together without annealing of the nascent strands). The regression of the fork 

allows the DNA lesion to be excised from duplex DNA by the NER. Finally, the reassembly of the 

replisome triggered by PriA permits the replication fork to restart [7,34,73] (Figure 2B). 

Homologous recombination appears to have an important function in addition to restarting 

inactivated forks and filling ssDNA gaps left behind the moving fork. It stabilizes inactivated forks by 

protecting nascent strands from extensive resection by RecQJ. The resection of nascent strands has 

been studied by radio-labeling before exposure to UV-C irradiation. In the absence of RecA or 

RecFOR, nascent strands at inactivated forks are extensively degraded and replication resumption is 

compromised [7,59,67–69,71]. Thus, the homologous recombination machinery is required to maintain 

the integrity of the damaged fork until the restart occurs. The resumption of DNA synthesis following 
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UV-C irradiation also requires restart-proteins (PriA, PriB or PriC) and the accessory replicative 

helicase (Rep). Nascent strands are transiently resected in the absence of restart-proteins, but there is 

no uncontrolled degradation of inactivated forks as observed in RecFOR mutants [72]. Therefore, the 

extensive resection of nascent forks cannot be merely the consequence of a defect in restarting the 

fork; RecA/RecFOR appear to have a specific role in protecting inactivated forks by limiting 

degradation of nascent strands. However, extensive degradation of nascent forks is observed in cells 

mutated for dnaC, the loader of the replicative helicase DnaB, in which inactivated forks are unable to 

resume DNA synthesis [68]. The extensive resection of nascent strands in the dnaC mutant is 

dependent on both the RecJ nuclease and the RecBCD pathway, indicating that there are DSBs, or at 

least dsDNA ends, formed in the absence of DnaC following UV-C irradiation. Thus, cells mutated for 

dnaC suffer from problems in addition to defects in restarting replication forks halted byDNA lesions. 

In the restart model proposed by J.Courcelle, and reinforced by other groups, homologous 

recombination has two functions at forks halted by DNA lesions: it facilitates the removal of the DNA 

lesion, and it has a fork-protection function (Figure 2B). Nonetheless, it is unclear whether excision of 

the lesion by the NER during DNA replication requires regression of the fork and its stabilization by 

the RecA/RecFOR machinery. Also, an interesting issue is whether the fork-protection function is 

necessary and sufficient for efficient restart of inactivated forks. It has been suggested that the 

RecA/RecFOR pathway acts at damage-induced halted forks to dislodge the holopolymerase III 

blocked by a DNA lesion on the leading strand [74]. The driving force of the RecA filament may be 

strong enough to allow protein-mediated displacement, such that RecA has a previously undescribed 

fork-clearance function (Figure 2D). While the fork-restart function of the homologous recombination 

machinery, especially when a DSB is involved, is mechanistically well understood, the fork-protection 

and the fork-clearance functions of RecA/RecFOR remain poorly characterized. It is also unclear 

whether these two functions are important for the resumption of DNA synthesis on a damaged 

template. The ability of RecA to restart a broken replication fork or to reverse an inactivated fork 

requires its ability to promote strand invasion and exchange. By contrast, the loading of RecA by 

RecFOR at ssDNA gaps might be sufficient for fork-protection and fork-clearance functions, without 

the need for a strand invasion step as previously suggested by J. Courcelle [75,76]. In this case, the 

fork-stabilization function by the recombination machinery might refer to a strand exchange-free 

mechanism (SEX-free fork-escort function). However, there is no direct evidence that the  

fork-stabilization function by recombination enzymes is independent of a strand invasion step.  

Interestingly, an old but intriguing RecA mutant has been characterized as a potential  

separation-of-function mutant: the recA433 mutant contains a single mutation leading to an arginine to 

histidine substitution at residue 243, located in the core region conserved in the Rad51-family 

homologue [77]. RecA
R243H

 supports conjugational and transductional recombination and the induction 

of the SOS system, suggesting that the mutated protein is able to bind ssDNA and to promote a strand 

exchange reaction. However, RecA
R243H

 is defective for resumption of DNA synthesis, resulting in a 

high sensitivity to UV-C. In the recA
R243H

mutant there is extensive degradation of nascent forks as in 

the absence of RecA/RecFOR [77]. Trans-lesion synthesis is in part compromised in recA
R243H

, but 

this defect is unlikely to explain the inability of the mutant to resume DNA replication after UV-C 

irradiation, because trans-lesion synthesis is not essential for resumption of DNA replication on a 

damaged template [66]. Thus, the single amino acid substitution in RecA
R243H

 seems to specifically 
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affect RecA function linked to the RecFOR pathway, but not the function linked to the RecBCD 

pathway. The details of the loss of function (either in protein-protein interactions or in biochemical 

properties) associated with the substitution in RecA
R243H

are unknown, but these observations suggest 

that the functions of RecA in restarting broken replication forks and in fork-clearance/stabilization are 

genetically separable.  

2.3. Homologous Recombination as an Escort of Fork Progression 

Over the last decade, cell imaging based on the use of fluorescent-protein fusions has contributed to 

elucidating the dynamics of fork-restart and repair mechanisms. The emerging view is that some 

components of the fork-restart machineries, including proteins of the homologous recombination 

pathway, are associated with the moving replication fork, whereas other factors, including the 

recombinase RecA, are recruited only once the fork has encountered a DNA lesion. In E. coli, RecA 

forms up to five foci in 10%–15% of a cell population growing under normal laboratory conditions. 

RecA foci are thought to correspond to sites of RecA nucleofilament bound to ssDNA. Following  

UV-C irradiation, RecA localizes at the cell center in most cells, suggesting that it is recruited by 

replication factories [78]. Similar observations were made in Bacillus subtilis (B. subtilis), in which 

establishment of a replication fork is necessary forRecA foci to form following DNA damage [79]. 

RecA focus assembly results from the redistribution of existing RecA molecules in the cell to the site 

of a halted replication fork, supporting the view that RecA is not pre-associated with the replication 

machinery, but is recruited at halted forks. By contrast, other recombination factors, particularly RecO, 

RecQ and RecJ, and restart-proteins, including PriA, are associated with the moving replication fork 

through their interaction with the SSB protein [80,81]. Thus, the replication fork appears to have a 

substantial escort of enzymes involved in DNA metabolism during its progression; this escort is thus 

available to deal with stretches of ssDNA. These fork-escort pathways include some component of the 

homologous recombination machinery, but not the recombinase itself. The SSB protein, with its 

interactome, might have a pivotal function in the orchestration of the appropriate response to  

fork-arrest according to the initial cause of the impediment to fork progression.  

3. Homologous Recombination during DNA Replication in Eukaryotes 

In eukaryotes, DNA replication of linear chromosomes is initiated at multiple replication origins 

that are activated with different efficiencies, according to a spatio-temporal program [82–84]. In  

S. cerevisiae, each origin is characterized by a defined efficiency and a related timing of firing. In 

mammalian cells, the firing of replication origins is more stochastic and origins are clustered into 

replication domains of 400–800 Kb that are replicated either early or late. Once activated, a replication 

origin gives birth to two replication forks that progress in bi-directional directions until they merge 

with a converging fork at a replication termination site, such that DNA synthesis of the replicon is 

completed. Replication termination in eukaryotes is thought to occur randomly. However, unlike 

replication initiation that has been extensively studied, little is known about how eukaryotic cells 

orchestrate DNA synthesis during fusion of converging forks. Once established, a single replication 

fork will replicate several tens of thousands of bases before meeting a converging fork. The fork does 

not progress at a constant rate and many obstacles slow transiently or robustly arrest fork movements. 
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Non-histone proteins tightly bound to DNA, structure-forming sequences, conflict with DNA 

metabolic processes including transcription, chromatin organization (at repressed genes for example) 

as well as DNA damage and are all liable to impede fork progression [85–87]. 

A single halted fork does not necessarily prevent the completion of DNA replication because a fork 

progressing in the opposite direction from an adjacent origin will replicate up to the site of the fork 

arrest. Thus, unlike bacterial chromosome replication, where the rescue of impeded forks by 

fork-restart mechanisms is essential, activation of dormant origins in eukaryotes can complete 

chromosomal replication following fork arrest [88–91]. Indeed, eukaryotic genomes contain more 

origins than are needed to replicate the genome. Forks traveling long distances might be at greater risk 

of accident and therefore fork-restart mechanisms might be essential in regions poor in origins, like 

human fragile sites. The same applies to regions with unidirectional replication (as the ribosomal DNA 

locus, see below), or when two converging forks are impeded [92,93]. Hindrances to fork progression 

are factors for replisome malfunction, induction of recombination and genetic instability in yeast 

models. Therefore, as in bacteria, completion of DNA replication requires replication forks to be  

well-escorted to ensure their stability, reactivation and merging with converging forks. A multiplicity 

of fork-restart pathways has been described in yeast models and mammalian cells; both the DNA 

replication checkpoint and homologous recombination are pivotal mechanisms in escorting the 

progression of replication forks. Defects in homologous recombination pathways result in a decreased 

fork velocity, evidence that the recombination machinery acts as a fork-escort mechanism favoring 

robust DNA replication [94]. The integrity of replication forks is guaranteed by the DNA replication 

checkpoint that maintains DNA polymerases at the site of nucleotide incorporation to keep the 

replisomein a replication-competent state [95–97]. There is still debate about how the DNA replication 

checkpoint modulates replisome activities to maintain it in a functional state at halted forks. 

Nonetheless, the DNA replication checkpoint also regulates nuclease activities (such as Exo1, Mus81 

and Dna2) to preserve the integrity of forked structures [98–101]. In cases of replisome malfunction 

(referred to as collapsed forks in the literature) or loss of components of the replisome at broken forks, 

the replisomemust be rebuilt for DNA synthesis to resume (Figure 3A). No PriA or PriC homologues 

(or putative genes) have been identified in eukaryotes and the loading of components of the 

replisomeat sites other than replication origins is poorly documented. Nonetheless, in addition to 

sealing ssDNA gaps during DNA replication, the homologous recombination machinery in eukaryotes 

appears able to rebuild a replisome at inactivated forks. A fork-stabilizer function for the homologous 

recombination machinery has also recently been evidenced.  

3.1. Recombination Mediator Proteins in Eukaryotes 

As in bacteria, the nucleation of Rad51 onto RPA-coated ssDNAin eukaryotes requires RMP 

activities. In E. coli, RecFOR and RecBCD define two distinct pathways for RecA loading onto 

ssDNA gaps and dsDNA ends, respectively. In eukaryotes, Rad51 loading onto distinct substrates has 

not been so clearly established genetically and biochemically. Eukaryotic RMPs were recently 

reviewed in detail by Kreijci et al. so we focus here on the main activities of RMPs and their potential 

function in distinguishing between recombination substrates [3]. 
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Figure 3. Recombination function at replication forks in eukaryotes (see text for details). 

(A)Model of repair of broken forks. (B) Model of post-replication repair of ssDNA gaps 

left behind moving forks. (C) Model of polymerase-switch at damaged-forks 

(recombination independent). (D) Model of fork reversal at damaged forks (the role of 

recombination in this pathway remains unclear). (E) Model of fork-stabilization upon 

inhibition of the elongation step, without a strand exchange step by the recombinase. 

 

In yeasts, the main RMP is the Rad52 family protein (Rad52 in S. cerevisiae and Rad22 in  

S. pombe). Rad52 binds both RPA and Rad51, and helps Rad51 nucleation by displacing RPA  

from ssDNA [3]. Rad52 alsohas a ssDNA annealing activity which serves as a recombination  

function independently of Rad51, for example to capture the second DNA end during the repair of  

DSB(Figure 1B) [102,103]. In mammalian cells, the pivotal RMP is BRCA2: loss of BRCA2 function 

predisposes to breast and ovarian cancer. BRCA2 binds Rad51 and facilitates Rad51 nucleation onto 

ssDNA by inhibiting its ssDNA-dependent ATPase activity [104,105]. BRCA2 stabilizes the nascent 
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filament by blocking turnover of Rad51 from the DNA and thereby stimulating the strand exchange 

reaction. It is unclear whether the ability of BRCA2 to displace RPA from ssDNA is required for 

promoting Rad51 nucleation. Rad51 proteins have more affinity for dsDNA than does RecA, and a key 

function of BRCA2 is to prevent Rad51 nucleation onto dsDNA beyond the junction between ssDNA 

and dsDNA. Human cells also express a Rad52 homologue which has a strand annealing activity,  

but its RMP function is poorly documented and it seems to have only a minor role in Rad51  

nucleation [105]. Human Rad52 seems to make a larger contribution to homologous recombination 

mechanisms when DNA replication is compromised than during the repair of DSB, suggesting that in 

humans distinct ssDNA substrates might require different RMPs [106].  

In addition to Rad52 and BRCA2, RMP complexes containing paralogues of Rad51 have been 

identified from their homology with Rad51, and genetically as factors of homologous recombination 

both in yeast and human cells. For example, the yeast heterodimer Rad55/Rad57 binds Rad51 and 

helps to stabilize the Rad51 filament [3,107,108]. In mammals, two RAD51 paralogue complexes 

serve as RMPs: one composed of RAD51B/RAD51C/RAD51D/XRCC2 and the other 

RAD51C/XRCC3. The related RAD51D protein in C. elegans, RFS-1, is not essential for the repair of 

DSBs or broken replication forks but is required for Rad51 recruitment at ssDNA gaps induced by 

UV-C treatment or at forks halted by inter-cross-links or torsional strains [109]. RFS-1 may have a 

specific function in promoting recombination events at ssDNA gaps rather than at DSBs. Another 

identified RMP is the Shu complex, composed of Shu1/Shu2/Psy3/Csm2 in S. cerevisiae and of 

Sws1/Rdlp1/Rlp1 in S. pombe; this complex is probably conserved in mammals. The biochemical 

functions of the Shu complex are not well understood. Genetic studies indicate that loss of this 

complex leads to sensitivity to replication blocking agents but not to DSB-inducing agents; therefore 

the Shu complex may have a specific function in facilitating replication-induced homologous 

recombination [110–113]. Similarly, it has been suggested that the fission yeast Shu complex has a 

recombination mediator function dedicated to Rad51 loading onto ssDNA gaps [114]. 

Another strategy used by eukaryotes to discriminate between different recombination substrates is 

the regulation of homologous recombination by negative regulators and by post-translational 

modifications, especially phosphorylation and SUMOylation, of RMPs (see review [3] for an extensive 

list of post-translational modifications).Of particular interest is the anti-recombinase helicase Srs2 

involved in the disassembly of Rad51 filaments from ssDNA. The RMP complex Rad55/Rad57 forms 

a co-filament with Rad51 and the resulting filament is more resistant than the Rad51 filament itself to 

dissociation by Srs2 [115]. Thus, the RMPs used to stabilize Rad51-filament might influence its fate. 

In addition, Srs2 interacts with PCNA, the clamp loader of replicative DNA polymerases, an 

interaction that requires the SUMOylation of PCNA [116,117]. The SUMOylated form of PCNA may 

allow the recruitment of Srs2 at replication forks where the anti-recombinase prevents deleterious 

recombination events.Rad55 is phosphorylated on serines 2, 8 and 14by the checkpoint kinase Rad53 

in response to DNA damage and replication inhibition [118,119].This may enhance the recombination 

mediator function of Rad55. AnunphosphorylableRad55 mutant exhibits defects in the recovery of 

DNA damage-induced halted forks, but remains proficient in promoting repair of chromosomal DSBs 

and of gapped plasmids by homologous recombination [119]. These data suggest that phosphorylation 

of Rad55 affect its discrimination between different recombination substrates: ssDNA gaps at halted 

forks and ssDNA extremities. Understanding how Rad55 phosphorylation affects the activity of Srs2 
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at halted forks will provide important clues about the regulation of Rad51 loading during repair of 

replication-associated DNA lesions.  

3.2. Homologous Recombination Is Coupled to DNA Replication 

In mammalian cells, in situ immunofluorescence-based studies have shown that Rad51 and BRCA2 

form punctuate nuclear foci during S-phase. Following DNA damage or replication inhibition, Rad51 

and BRCA2 co-localize within foci at sites of ssDNA that also contain RPA [120–124]. These Rad51 

foci are called recombinational centers, because they are believed to be the sites of DNA repair by 

recombination. Recombination foci are preferentially associated with the replicative chromatin, 

consistent with the homologous recombination machinery acting during DNA replication and as a 

post-replication repair mechanism [125]. A subset of S-phase specific or damage-induced 

recombination foci also contains the replication factor PCNA, suggesting that recombination centers 

are also sites of DNA synthesis [126–128]. The association of Rad51-foci with a replication factor 

during S-phase led to the view that homologous recombination can be coupled to DNA replication. 

Recombination centers were then identified in yeast models and their dynamics investigated with 

fluorescently tagged proteins [107,129]. Genetic studies and real-time cell imaging indicate that 

recombination foci are sites of DNA repair, but it remains unclear whether each recombination repair 

event gives rise to a single recombination focus. Further evidence for a link between DNA replication 

and homologous recombination is that spontaneous Rad52 foci form mainly during S-phase in budding 

yeast and that defects in the DNA polymerase alpha increase the numbers of recombination foci in  

S-phase [130]. Work with conditional site-specific fork arrests in fission yeast showed that Rad22, the 

homologue of Rad52, is recruited at blocked forks to ensure their restart, establishing a direct 

connection between homologous recombination and DNA replication in eukaryotes [131–133]. 

Some of the first evidence of a physical link between homologous recombination and DNA 

replication was from a study in budding yeast by Rothstein's lab in 1997. Zou and Rothstein identified 

recombination structures resembling Holliday junctions at the ribosomal DNA (rDNA)array in  

S. cerevisiae [134]. The rDNA locus is organized as 100-200 direct repeats, each repeat containing the 

sequences encoding the 35S rRNA transcribed by RNA-polymerase I, the 5S rRNA transcribed by 

RNA polymerase III and a replication origin (ARS). To avoid head-on collisions between the 

transcription machinery of RNA-polymerase I and the replication fork apparatus, there is a polar 

replication fork barrier (RFB) within the non-transcribed region. This RFB blocks the progression of 

the replication fork moving in the opposite direction to the transcription bubble [135]. Such RFBs are 

potential substrates for homologous recombination. Zou and Rothstein therefore exploited the rDNA 

array for the analysis of the formation of potential recombination structures(or joint-molecules, JMs) 

using two-dimensional gel electrophoresis (2DGE). Defects in the DNA polymerases alpha or delta, 

but not epsilon, and thus in the DNA synthesis of the lagging strand, resulted in the accumulation of 

JMs during the replication of the rDNA. Surprisingly, accumulation of JMs was dependent on the main 

RMP Rad52 but not on the recombinase Rad51. Although it was not demonstrated in this study that 

accumulation of JMs was linked to the active RFB, this work provided experimental evidence for 

homologous recombination being active during DNA replication. It also supports the view that 

accumulation of ssDNA gaps on the lagging strand stimulates homologous recombination [134]. 
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A recent study has revealed in detail the contribution of the homologous recombination machinery 

to repairing DSB in S-phase [136]. In human cells, DSBs are repaired either by homologous 

recombination or by non-homologous end joining (NHEJ). NHEJ consists of the ligation of the two 

dsDNA ends at the break, a process that is mainly error-free. In view of the relative radiation 

sensitivities of cell lines defective for either homologous recombination or NHEJ, it was thought that 

DSBs are mainly repaired by NEHJ in mammals, in contrast to what is observed in yeast models. By 

analyzing recombination and NHEJ centers, Karanam and co-authors showed that NHEJ is indeed the 

major DSB repair pathway in G1 and G2 cells, whereas homologous recombination becomes gradually 

more important for the repair of DSBs as DNA replication activity increases [136].  

The connection between DNA replication and homologous recombination is now well established 

and, as in bacteria, the homologous recombination machinery probably serves as a fork-escort to 

ensure complete and faithful genome replication. Although several checkpoint mediators involved in 

fork stabilization escort the replication fork through physical interactions with components of the 

replisome, the potential interactions between recombination factors and the replication machinery 

remain poorly understood. Human Rad51 interacts with RPA and the N-terminal part of BRCA2 was 

reported to interact with RPA but this interaction was not confirmed by tests with the full-length 

BRCA2 [105,122,137]. Nonetheless, direct interaction between a RMP and the eukaryotic  

single-stranded DNA binding protein would support the view that homologous recombination proteins 

act as fork-escorts, available if there is an impediment to fork progression. The first interaction 

between recombination and replication factors was described by Shukla et al. They reported that 

purified human Rad51 and Rad52 interact with the MCM (Mini Chromosome Maintenance) complex, 

a component of the replicative helicase [138]. In fission yeast and human cells, interactions have also 

been described between Rad51 and MCM (MCM4 interacting with Rhp51 in S. pombe and MCM7 

interacting with Rad51 in Hela cells) [139]. These interactions occur either during normal S-phase or 

when DNA replication is slowed by treatment with replication inhibitors. It has been suggested that 

interaction between the recombinase Rad51 and the MCM helicase promotes the recovery of  

stalled forks, but the significance of these interactions remains to be established. Finally, in 

Trypanosome brucei, the essential replication factor Cdc45 interacts with the BRCA2 orthologue [140]. 

However, there is no evidence either in yeast or human cells that homologous recombination factors 

are associated with replication factories during normal cell growth. The current view is rather that 

homologous recombination enzymes are recruited at replication forks once their progression is 

impeded. It is unclear whether protein-protein interactions described above contribute to the 

recruitment of the homologous recombination machinery at the site of halted forks, or contribute to the 

recruitment of replication factors during rescue of halted forks by recombination to rebuild a replisome 

(see below).  

3.3. Post-Replication Repair by Homologous Recombination 

Homologous recombination efficiently sea lsssDNA gaps behind moving forks that have 

encountered DNA lesions(Figure 3B). Analysis of DNA fibers in budding yeast treated with methyl 

methane sulfonate (MMS, a base alkylating agent)shows that ssDNA gaps accumulate in the absence 

of Rad51, and therefore that the homologous recombination machinery is required to complete DNA 

replication when the parental DNA is damaged [141]. This damage tolerance pathway implies that 
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there is a re-priming event at the blocked leading strand. Analysis of purified damaged replication 

forks in vivo by electronic microscopy have shown that ssDNA gaps accumulate both just at and 

behind the moving fork on both sister-chromatids, especially in the absence of post-replication repair 

pathways, including homologous recombination [142,143]. These observations, both in budding yeast 

and Xenopus, support the existence of re-priming of the leading strand in eukaryotes, but the tolerance 

of eukaryotic replisome to DNA damage remains to be explored (Figure 3B–3D). 

To seal ssDNA gaps, the homologous recombination process copies the information from the 

undamaged sister-chromatid. This mechanism, often called template switching in the literature, is 

expected to involve the formation of recombination intermediates between sister-chromatids. Using 

2DGE, joint-molecules formed between sister-chromatids have been identified in S-phase cells 

replicating parental DNA damaged by MMS treatment [144,145]. Although the exact nature of these 

joint-molecules is not clearly understood, genetic analyses indicate that they correspond to 

recombination intermediates resulting from a strand exchange reaction driven by Rad51 between  

an intact and a gapped sister-chromatid behind replication forks. Sister-chromatid joint-molecules  

are believed to be resolved by the concerted action of the helicase Sgs1 and its partner  

topoisomerase 3 [146,147]. The mechanisms involved in post-replication repair of ssDNA gaps 

following UV-C irradiation and in the formation of sister-chromatid junctions have a common genetic 

requirement; this is also consistent with joint-molecules being formed behind moving forks and not at 

halted fork sperse [148]. RPA, the RMPs Rad52 and Rad55/Rad57, the 5'-3' nuclease Exo1 and the 

replicative DNA polymerase delta, but not epsilon, are all required for the formation of  

sister-chromatid junctions during the replication of damaged templates. Thus, as described in bacteria, 

it is possible that ssDNA gaps have to be firstly resected to recruit RMPs and to nucleate Rad51 on 

ssDNA gaps [149]. Following strand invasion (either by the Rad51-coated ssDNA gap itself or by the 

3' end of the newly synthesized strand of the gapped sister-chromatid), DNA polymerase delta and its 

accessory subunit Pol32 may then seal the gap by extending the 3' end. As stated above, although basic 

recombination mechanisms are conserved between bacteria and eukaryotes, there are differences in the 

signaling and the regulation of recombination processes. Indeed, post-replicative homologous 

recombination in eukaryotes is tightly regulated by the poly-ubiquitination and SUMOylation of 

PCNA [145,148]. However, it remains unclear if post-translational modifications of PCNA act as 

positive regulators by ensuring that homologous recombination enzymes are recruited to the right 

substrate at the right time, or if they act as negative regulators, for example by regulating the  

anti-recombinase helicase Srs2 to avoid undesirable recombination processes at replication forks. 

3.4. Replication Fork Restart and Repair by Homologous Recombination 

Homologous recombination is essential for restarting replication forks both in yeast models and 

mammalian cells. Fork passage over a ssDNA nick or gap in the parental DNA results in a broken fork 

with one sister chromatid becoming physically detached from the forked structure(Figure 3A). Such 

broken forks are efficiently repaired by the homologous recombination machinery [150–153].  

Inter-strand cross-link (ICL) is another kind of DNA damage that impedes the progression of the fork, 

by preventing unwinding of parental DNA ahead of the fork. The ICL at arrested forks are cleaved by 

endonucleases, resulting in a broken replication fork repaired by homologous recombination [154]. 
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There is evidence that fork can be restarted by homologous recombination independently of  

DSBs, and that DSBs at replication forks are not essential for recruitment of recombination  

factors [131–133,143,155–157]. In yeast models, recruitment of recombination factors at halted forks 

appears to be linked to replisome malfunction. Indeed, replication fork stalling due to hydroxyurea 

treatment (an inhibitor of the ribonucleotide reductase leading to defective bulk synthesis of dNTP 

during S-phase) is not sufficient for recombination factors to be recruited [107,158]. By contrast, 

disruption of the DNA replication checkpoint, which leads to replisome dysfunction at the site of 

nucleotide incorporation, leads to recruitment of recombination factors at stalled forks. More precisely, 

homologous recombination appears to be actively repressed upon inhibition of DNA synthesis by HU 

treatment, and this repression by the Mrc1-branch of the DNA replication checkpoint limits 

end-resection [141]. These data suggest that, at least in yeast models, recruitment of the homologous 

recombination machinery at stalled forks is undesirable while the replisome remains functional. This 

contrasts with the situation in mammals in which controlled exposure to HU induces the association of 

Rad51 with replicative chromatin [159,160]. In mammals, prolonged treatments with HU lead to 

replicative DSBs, a phenomenon that is observed only in the absence of the checkpoint pathway in 

yeast models [99,161–163]. HU-induced DSBs are thought to result from inactivation of replication 

forks followed by their breakage, a process also regulated by the DNA replication checkpoint and the 

endonuclease Mus81 [99,100,159,163]. It has been suggested that mammalian Rad51 first protects 

stalled forks and then repairs broken replication forks by mechanisms that are mechanistically and 

temporally distinct and separated [160]. 

In addition to repairing broken replication forks, the homologous recombination process is also 

required to rebuild replisomesat inactivated forks to allow DNA synthesis to resume. Genetic analysis 

of the break-induced replication (BIR) mechanism has improved our understanding of the ability of 

homologous recombination to build a replisome during repair of DSBs (Figures 1C and 3A). BIR 

efficiently repairs DSBs at which the homology with the donor molecule is limited to one end of the 

DSB. After strand invasion, extension of the 3' invaded-end leads to DNA synthesis over hundreds of 

kilo bases and can thereby restore the duplication of a full chromosome arm [164,165]. Because long 

stretches of DNA can be synthesized during BIR, it has been suggested that BIR may be able to repair 

a broken fork thus ensuring completion of DNA replication, and maintaining telomere length in the 

absence of telomerase [166]. BIR has mainly been studied in cells arrested in G2, although recent work 

supports the view that BIR can indeed act during DNA replication to repair forks encountering a single 

strand nick [150]. BIR requires homologous recombination factors—including the main RMP Rad52, 

the recombinase Rad51 and the RMPs Rad55/Rad57—and the leading and lagging strand apparatus. 

The DNA polymerases alpha and delta are necessary for the initial extension step, and the DNA 

polymerase epsilon is required subsequently, only after the first 30 Kb of DNA has been synthesized [167]. 

These observations suggest that the establishment of a fully functional replication fork apparatus at 

DSBs requires time after the initial steps and thus maturation. BIR requires all components of the 

replicative helicase (Cdc45, the MCM2-7and GINS complexes, the CMG helicase) but replication 

factors (ORC and cdc6) involved in pre-replication complex (Pre-RC) assembly at replication origins 

are not essential for DNA synthesis during BIR [168]. How replicative helicase is loaded onto DNA 

other than at replication origins remains unclear, but all factors necessary for the recruitment of the 

CMG helicase (except Cdc6), the initial unwinding of DNA and the initial elongation step are also 
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necessary for efficient DNA synthesis during BIR (Cdt1, Cdc7, Dpb11, Sld3, Mcm10 and Ctf4). Thus, 

BIR appears to be a mechanism for replication apparatus assembly away from replication origins. 

There are differences between replication forks built through BIR and replisomes assembled at 

replication origins: DNA synthesis associated with BIR requires Pol32, a subunit of the DNA 

polymerase delta, which is not required for conventional DNA replication [167]. More surprisingly, 

BIR results in the progression of a mutagenic fork, contrasting with canonical replication forks that are 

very much more error-free [169]. In fission yeast, fork shalted by a protein tightly bound to DNA are 

restarted by homologous recombination factors through a mechanism independent of a DSB. These 

restarted forks are also mutagenic and prone to replication slippage and template switches [170,171]. 

Therefore, the process of homologous recombination allows the assembly of a replisome, sufficiently 

functional to ensure synthesis of hundreds of kilo bases of DNA, but not accurate DNA synthesis.  

The dynamics of loss and reloading of replisome components at broken replication forks have been 

recently investigated in Xenopus [152]. Upon fork passage through a nick, only a subset of 

components of the fork apparatus is lost, challenging the view that the replisome needs to be 

completely rebuilt during the repair of broken forks. The GINS subunit (SLD5 and PSF2), and the 

DNA polymerase epsilon, but not alpha, are uncoupled from the forked structure. Their re-loading 

requires the repair of the broken fork by recombination mediated by Rad51 and Mre11. Mre11 

expresses the nuclease activity of the Mre11/Rad50/NBS1 complex essential for end-resection at  

DSBs [172]. Surprisingly, repair of the fork also leads to the recruitment of the trans-lesion-synthesis 

(TLS) DNA polymerase eta [152]. It is unclear whether this DNA polymerase is strictly required to 

initiate DNA synthesis after the strand invasion step or if its recruitment simply reveals that the 

restarted replisome has components not present in replisomes built at replication origins.  

The mechanisms by which recombination promotes the loading of a new replisomein eukaryotes 

have not been fully elucidated and many questions remain. Components of the fork apparatus itself 

appear to be involved: two mutated alleles of PCNA (pol30–89 carrying F248A and F249A 

substitutions and pol30–92 carrying a R80A substitution) are defective for supporting BIR [168]. 

These two PCNA mutations are associated with impaired recruitment of Rad51 and the DNA 

polymerase eta at broken forks in Xenopus [152]. These data suggest that PCNA has an early function 

in fork repair by recombination, and not solely a function later during replisome rebuilding after the 

strand-invasion step. 

3.5. A Fork-Protection Function for the Homologous Recombination Machinery 

The restart of replication forks provides the first clues to understanding the fork-escort function of 

the homologous recombination machinery. Recent investigations provide new insights by revealing a 

fork-stabilizer function for recombination proteins and how this function contributes to the robustness 

of replication fork progression. The first description of the role of BRCA2 in stabilizing halted 

replication forks came from the lab of Venkitaraman in 2003 [173]. In this study, the stability of 

unidirectional replication forks in the rDNA region in embryonic murine fibroblasts was examined by 

2DGE. Under normal replication condition, fork progression was not affected by the absence of 

BRCA2. However, inhibition of DNA replication by HU treatment led to forks being unstable and 

liable to breakage in the absence of BRCA2. Despite an analysis of the incorporation of radio-labeled 

nucleotides, the authors were unable to detect there section of stalled forks, and the occurrence of 
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neither localized nor limited resections could be excluded. Thus, a fork-stabilizer function for BRCA2 

was proposed but without mechanistic explanation. 

The fork-stabilizer function has been studied at the molecular level. Schlacher and co-authors used 

DNA fiber techniques to analyze the dynamics of DNA synthesis upon inhibition and resumption of 

the elongation step. Newly replicated DNA at the fork, synthesized before the inhibition of DNA 

synthesis, is extensively resected, at a rate of 1.8 Kb/hour, in the absence of BRCA2 or Rad51 [174]. 

Resection of the nascent strands is dependent on Mre11, but the nuclease activity itself was not shown 

to be directly involved; it is therefore possible that MRN regulates the activity of alternative nucleases 

at stalled forks. BRCA2 protects the fork by stabilizing the Rad51 filament, a function connected to the 

Fanconi anemia (Fanc) pathway [175]. These findings show that the homologous recombination 

machinery, in addition to repairing replicative-DNA lesions, has a specific function in protecting the 

integrity of nascent strands at halted replication forks. 

It has been suggested that Rad51 protects nascent strands in Xenopus [143]. Direct visualization of 

purified in vivo forked structures by electron microscopy shows that ssDNA gaps accumulate  

at replication forks upon Rad51 depletion: gaps are observed behind the moving fork and at the  

three-way branched structure of the fork. ssDNA gaps behind moving forks result from the activity of 

the MRN complex, involved in end-resection at DSBs. End-resection and homologous recombination 

compete with each other during DSB repair [176]. Thus, ssDNA gaps behind the moving fork are 

likely to result from defects in sealing by recombination and allow extensive resection by MRN. More 

surprising are the ssDNA gaps at the fork that are not dependent on the MRN complex; they may 

reflect the involvement of the recombination machinery in preventing uncoupling between leading and 

lagging strand synthesis. Even in the absence of exogenous DNA damage, 50% of replication forks 

contain ssDNA of at least 200 nt at the forked structure when Rad51 is depleted. How homologous 

recombination maintains the coupling between leading and lagging strand synthesis is unclear. 

Nevertheless, these observations support the view that the recombination machinery escorts fork 

progression to ensure robust DNA replication, and provide hints about themolecular basis for the 

decreased fork speed in recombination-defective cells [94].  

How important is the fork-stabilizer function of homologous recombination? Replication-associated 

DSBs are often observed in cells defective for homologous recombination. The initial view was  

that recombination is required to repair spontaneous DSBs associated with the process of DNA  

replication [177]. However, incomplete DNA replication due to accumulation of halted forks might 

result in secondary DNA damage as DSB during the next round of replication [178]. Thus, 

homologous recombination proteins may prevent DNA breaks by stabilizing replication forks, rather 

thanmerely repairing them.  

Stabilization of halted replication forks may be important for the completion of DNA replication. In 

budding yeast, replication termination zones (TER), which are binding sites for the topoisomerase 2 

(Top2), overlap with elements that impedes fork movements [179]. Among the 71 TERs identified, 67 

contain one or more fork-pausing elements and 55 are also binding sites for Top2. Top2 is involved in 

many DNA transactions during S-phase, and mediates topological transitions at replication forks to 

ensure their movement and stability. Top2 also facilitates the merging of converging forks that could 

potentially interfere with each other [180]. The observation that TERs overlap both with known RFBs 

and Top2-binding sites suggests that fork pausing is relevant to the fusion of converging forks, with 
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the movement of one incoming fork being slowed to provide a suitable topology for forks to merge at 

termination sites. Thus, stabilizing a halted replication fork might facilitate its merging with a 

converging fork. Note that in fission yeast, homologous recombination restarts forks blocked by a 

polar RFB mediated by DNA-bound protein. In the absence of recombination, fork restart is impaired 

and merging of converging forks has been observed by 2DGE. However, this resulted in cell death, 

showing that the progression of the opposite fork was not sufficient to rescue the defect in fork  

restart [131,132]. One possible explanation is that recombination stabilizes the impeded fork to 

maintainit in a structure allowing its merging with the opposite fork. It is also relevant that termination 

sites, when not correctly processed, are hot spots of recombination [181]. 

3.6. A Possible Separation of Function  

Several studies have tried to uncouple the function of recombination in supporting robustness of 

DNA replication from its DNA repair function. For example, in Ustilagomaydis, distinct domains of 

Brh2, the orthologue of BRCA2, are involved in the regulation of homologous recombination; the role 

of Brh2 in promoting recombination in response to UV-C irradiation can be uncoupled from its role in 

promoting recombination in response to replication inhibition [182]. 

The DSB-repair and the fork stabilizer functions of the homologous recombination machinery are 

genetically separable. BRCA2 contains several functional domains: a domain containing BRC repeats 

and binding to Rad51, a DNA-binding domain (DBD) and a C-terminal part also interacting with 

Rad51. The contribution of these domains to the DSB repair and the fork stabilization functions of 

BRCA2 have been investigated [174,175]. The DBD domain is neither required for DSB repair nor for 

fork-stabilization functions. It appears that the ability of BRCA2 to load Rad51 onto ssDNA is 

sufficient to promote DSB repair but not to stabilize replication forks. By contrast, Rad51-filament 

stabilization by the BRCA2 C-terminal domain is not required for DSB repair but is required to protect 

stalled forks. The overexpression of a Rad51 mutant defective for its ATPase activity (K133R) is 

sufficient to protect nascent strands from end-resection in the absence of BRCA2. Therefore, BRCA2 

may stabilize Rad51 filaments at stalled forks by regulating its ATPase activity. The stability of the 

Rad51 filament, guaranteed by BRCA2, is thus essential for fork stabilization but not for DSB repair 

functions. The mechanisms by which BRCA2 ensures efficient repair of a DSB are thus different from 

the mechanisms by which it protects nascent forks from degradation. The fork stabilizer properties of 

Rad51 and BRCA2 do not involve the RMP Rad54. The exact recombination mediator functions of 

Rad54 are not clear, although it plays a crucial role after the strand invasion step during the repair of 

DSB (post-synaptic function) [183]. In mammals, it is possible to uncouple the essential function of 

Rad51 in cell proliferation from its function in promoting strand exchange to repair DNA lesions. 

Indeed, dominant negative forms of Rad51 have been identified that strongly inhibit spontaneous, 

DNA-damage induced and replication-associated recombination events, without affecting the ability of 

cells to proliferate [184]. 

Because the DSB repair function and the fork-stabilizer function of homologous recombination are 

genetically separable, it is possible, as proposed in bacteria, that fork-stabilization by recombination 

proteins refers to a strand exchange-free mechanism (SEX-free fork escort function). The use of the 

recombination machinery to recover or stabilize inactivated forks without a strand exchange step being 

engaged might support the robustness of DNA replication while limiting deleterious non allelic 
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homologous recombination. Indeed, human chromosomes contain up to 10% of repeated sequences 

dispersed throughout the genome. Non allelic homologous recombination between low copy number 

repeats is responsible for recombination-mediated chromosomal rearrangements included 

translocations, deletions, inversions and loss of heterozygosity both in mitosis and meiosis [185]. In 

fission yeast, a single collapsed fork can trigger translocation and genomic deletion in a 

recombination-dependent manner, showing that homologous recombination proteins allow fork restart 

but at the expense of genome instability [132,170]. Thus, a mechanism permitting the recruitment of 

recombination proteins at halted forks to stabilize them while preventing a strand exchange  

reaction might help to alleviate the double-edge sword effect of homologous recombination on  

genome maintenance.  

4. Concluding Remarks 

The homologous recombination machinery acts as a replication fork-escort to support the efficiency 

of DNA replication by multiple mechanisms, including sealing of ssDNA gaps within newly replicated 

DNA, rebuilding of replisome at inactivated forks, and stabilization of halted forks. We propose that 

some fork-escort functions of the homologous recombination machinery might involve only the 

loading of recombination proteins onto single-stranded DNA without a strand exchange step. 

Activation of the DNA damage response has been observed in precancerous cells and during  

early-stages of malignancies, due to endogenous replication stress resulting from unbalanced DNA 

replication [186]. Initiation of DNA replication while all the conditions necessary for efficient DNA 

synthesis are not combined, such as a well-balanced dNTP pool, results ultimately in the slowdown 

of fork progression, fork collapse and breakage [187,188]. The completion and robustness  

of chromosome replication in such stress conditions are likely to rely on fork-escort  

mechanisms including checkpoint pathways and homologous recombination. Consistent with  

this, defects or malfunctions of the homologous recombination machinery are associated with cancer  

predisposition [189]. The homologous recombination pathway becomes a drug target for anti-cancer 

therapy. Thus, it remains of high importance to decipher the molecular mechanisms by which the 

homologous recombination machinery ensures efficient DNA synthesis at defective replication forks 

in order to optimize inhibitors to target cell proliferation of cancers cells without inducing replication 

defects in healthy tissues. 

Acknowledgments 

We thank members of Lambert's lab, Patrice Polard and Vincenzo Costanzo for helpful discussions 

and comments on the manuscript. Research in Lambert's lab is supported by funding from the Institute 

Curie, the CNRS, ANR grants ANR-Piribio09-44854 and ANRJCJC10-1203 01, and la Liguecontre le 

cancer (comitéEssonne). AC is funded by l'Association pour la Recherche sur le Cancer (ARC).  

 

 

 

 



Biomolecules 2013, 3            

 

 

60 

References 

1. West, S.C. Molecular views of recombination proteins and their control. Natl. Rev. Mol. Cell 

Biol. 2003, 4, 435–445. 

2. Cox, M.M. Regulation of bacterial reca protein function. Crit. Rev. Biochem. Mol. Biol. 2007,  

42, 41–63. 

3. Krejci, L.; Altmannova, V.; Spirek, M.; Zhao, X. Homologous recombination and its regulation. 

Nucleic Acids Res. 2012, 40, 5795–5818. 

4. Deakyne, J.S.; Mazin, A.V. Fanconi anemia: At the crossroads of DNA repair.  

Biochem. Biokhimiia 2011, 76, 36–48. 

5. Michel, B.; Boubakri, H.; Baharoglu, Z.; LeMasson, M.; Lestini, R. Recombination proteins and 

rescue of arrested replication forks. DNA Repair 2007, 6, 967–980. 

6. Costanzo, V. Brca2, rad51 and mre11: Performing balancing acts on replication forks.  

DNA Repair 2011, 10, 1060–1065. 

7. Courcelle, J.; Hanawalt, P.C. Reca-dependent recovery of arrested DNA replication forks.  

Annu. Rev. Genet. 2003, 37, 611–646. 

8. Cox, M.M.; Goodman, M.F.; Kreuzer, K.N.; Sherratt, D.J.; Sandler, S.J.; Marians, K.J. The 

importance of repairing stalled replication forks. Nature 2000, 404, 37–41. 

9. Heller, R.C.; Marians, K.J. Replication fork reactivation downstream of a blocked nascent 

leading strand. Nature 2006, 439, 557–562. 

10. Heller, R.C.; Marians, K.J. Replisome assembly and the direct restart of stalled replication forks. 

Nat.Rev. Mol. Cell Biol. 2006, 7, 932–943. 

11. Gabbai, C.B.; Marians, K.J. Recruitment to stalled replication forks of the pria DNA helicase and 

replisome-loading activities is essential for survival. DNA Repair 2010, 9, 202–209. 

12. Heller, R.C.; Marians, K.J. The disposition of nascent strands at stalled replication forks dictates 

the pathway of replisome loading during restart. Mol. Cell 2005, 17, 733–743. 

13. Kowalczykowski, S.C. Initiation of genetic recombination and recombination-dependent 

replication. Trends Biochem. Sci. 2000, 25, 156–165. 

14. Lusetti, S.L.; Cox, M.M. The bacterial reca protein and the recombinational DNA repair of 

stalled replication forks. Annu. Rev. Biochem. 2002, 71, 71–100. 

15. Kuzminov, A. DNA replication meets genetic exchange: Chromosomal damage and its repair by 

homologous recombination. Proc. Natl. Acad. Sci. USA 2001, 98, 8461–8468. 

16. Liu, J.; Marians, K.J. Pria-directed assembly of a primosome on d loop DNA. J. Biol. Chem. 

1999, 274, 25033–25041. 

17. Ng, J.Y.; Marians, K.J. The ordered assembly of the phix174-type primosome. Ii. Preservation of 

primosome composition from assembly through replication. J. Biol. Chem. 1996, 271, 15649–15655. 

18. Liu, J.; Nurse, P.; Marians, K.J. The ordered assembly of the phix174-type primosome. III Prib 

facilitates complex formation between pria and dnat.J. Biol. Chem. 1996, 271, 15656–15661. 

19. Xu, L.; Marians, K.J. Pria mediates DNA replication pathway choice at recombination 

intermediates. Mol. Cell 2003, 11, 817–826. 

20. Nurse, P.; Liu, J.; Marians, K.J. Two modes of pria binding to DNA. J. Biol. Chem. 1999, 274, 

25026–25032. 



Biomolecules 2013, 3            

 

 

61 

21. McGlynn, P.; Al-Deib, A.A.; Liu, J.; Marians, K.J.; Lloyd, R.G. The DNA replication protein 

pria and the recombination protein recg bind d-loops. J. Mol. Biol. 1997, 270, 212–221. 

22. Kowalczykowski, S.C.; Krupp, R.A. Effects of escherichia coli ssb protein on the  

single-stranded DNA-dependent atpase activity of escherichia coli reca protein. Evidence that 

ssb protein facilitates the binding of reca protein to regions of secondary structure within  

single-stranded DNA. J. Mol. Biol. 1987, 193, 97–113. 

23. Roy, R.; Kozlov, A.G.; Lohman, T.M.; Ha, T. Ssb protein diffusion on single-stranded DNA 

stimulates reca filament formation. Nature 2009, 461, 1092–1097. 

24. Umezu, K.; Kolodner, R.D. Protein interactions in genetic recombination in escherichia coli. 

Interactions involving reco and recr overcome the inhibition of reca by single-stranded  

DNA-binding protein. J. Biol. Chem. 1994, 269, 30005–30013. 

25. Umezu, K.; Chi, N.W.; Kolodner, R.D. Biochemical interaction of the escherichia coli recf, reco, 

and recr proteins with reca protein and single-stranded DNA binding protein. Proc. Natl. Acad. 

Sci. USA 1993, 90, 3875–3879. 

26. Beernink, H.T.; Morrical, S.W. Rmps: Recombination/replication mediator proteins.  

Trends Biochem. Sci. 1999, 24, 385–389. 

27. Kuzminov, A.; Stahl, F.W. Double-strand end repair via the recbc pathway in escherichia coli 

primes DNA replication. Genes Dev. 1999, 13, 345–356. 

28. Dillingham, M.S.; Kowalczykowski, S.C. Recbcd enzyme and the repair of double-stranded 

DNA breaks. Microbiol. Mol. Biol. Rev. 2008, 72, 642–671. 

29. Yeeles, J.T.; Dillingham, M.S. The processing of double-stranded DNA breaks for 

recombinational repair by helicase-nuclease complexes. DNA Repair 2010, 9, 276–285. 

30. Sakai, A.; Cox, M.M. Recfor and recor as distinct reca loading pathways. J. Biol. Chem. 2009, 

284, 3264–3272. 

31. Lovett, S.T.; Kolodner, R.D. Identification and purification of a single-stranded-DNA-specific 

exonuclease encoded by the recj gene of escherichia coli. Proc. Natl. Acad. Sci. USA 1989,  

86, 2627–2631. 

32. Umezu, K.; Nakayama, K.; Nakayama, H. Escherichia coli recq protein is a DNA helicase.  

Proc. Natl. Acad. Sci. USA 1990, 87, 5363–5367. 

33. Tseng, Y.C.; Hung, J.L.; Wang, T.C. Involvement of recf pathway recombination genes in 

postreplication repair in uv-irradiated escherichia coli cells. Mut. Res.1994, 315, 1–9. 

34. Courcelle, J.; Hanawalt, P.C. Recq and recj process blocked replication forks prior to the 

resumption of replication in uv-irradiated escherichia coli. Mol. Gen. Genet. 1999, 262, 543–551. 

35. Webb, B.L.; Cox, M.M.; Inman, R.B. Recombinational DNA repair: The recf and recr proteins 

limit the extension of reca filaments beyond single-strand DNA gaps. Cell 1997, 91, 347–356. 

36. Anderson, D.G.; Kowalczykowski, S.C. The translocating recbcd enzyme stimulates 

recombination by directing reca protein onto ssdna in a chi-regulated manner. Cell 1997, 90, 77–86. 

37. Baharoglu, Z.; Petranovic, M.; Flores, M.J.; Michel, B. Ruvab is essential for replication forks 

reversal in certain replication mutants. EMBO J. 2006, 25, 596–604. 

38. Flores, M.J.; Bierne, H.; Ehrlich, S.D.; Michel, B. Impairment of lagging strand synthesis 

triggers the formation of a ruvabc substrate at replication forks. EMBO J. 2001, 20, 619–629. 



Biomolecules 2013, 3            

 

 

62 

39. Michel, B.; Ehrlich, S.D.; Uzest, M. DNA double-strand breaks caused by replication arrest. 

EMBO J. 1997, 16, 430–438. 

40. Grompone, G.; Seigneur, M.; Ehrlich, S.D.; Michel, B. Replication fork reversal in DNA 

polymerase III mutants of escherichia coli: A role for the beta clamp. Mol. Microbiol. 2002,  

44, 1331–1339. 

41. Pennington, J.M.; Rosenberg, S.M. Spontaneous DNA breakage in single living escherichia coli 

cells. Nat.Genet. 2007, 39, 797–802. 

42. Seigneur, M.; Bidnenko, V.; Ehrlich, S.D.; Michel, B. Ruvab acts at arrested replication forks. 

Cell 1998, 95, 419–430. 

43. Grompone, G.; Ehrlich, D.; Michel, B. Cells defective for replication restart undergo replication 

fork reversal. EMBO Rep. 2004, 5, 607–612. 

44. De Septenville, A.L.; Duigou, S.; Boubakri, H.; Michel, B. Replication fork reversal after 

replication-transcription collision. PLoS Genet. 2012, 8, doi:10.1371/journal.pgen.1002622. 

45. Seigneur, M.; Ehrlich, S.D.; Michel, B. Ruvabc-dependent double-strand breaks in dnabts 

mutants require reca. Mol. Microbiol. 2000, 38, 565–574. 

46. McGlynn, P.; Lloyd, R.G. Genome stability and the processing of damaged replication forks by 

recg. Trends Genet. 2002, 18, 413–419. 

47. McGlynn, P.; Lloyd, R.G.; Marians, K.J. Formation of holliday junctions by regression of 

nascent DNA in intermediates containing stalled replication forks: Recg stimulates regression 

even when the DNA is negatively supercoiled. Proc. Natl. Acad. Sci. USA 2001, 98, 8235–8240. 

48. Robu, M.E.; Inman, R.B.; Cox, M.M. Reca protein promotes the regression of stalled replication 

forks in vitro. Proc. Natl. Acad. Sci. USA 2001, 98, 8211–8218. 

49. Flores, M.J.; Bidnenko, V.; Michel, B. The DNA repair helicase uvrd is essential for replication 

fork reversal in replication mutants. EMBO Rep. 2004, 5, 983–988. 

50. Flores, M.J.; Sanchez, N.; Michel, B. A fork-clearing role for uvrd. Mol. Microbiol. 2005,  

57, 1664–1675. 

51. Setlow, R.B. Cyclobutane-type pyrimidine dimers in polynucleotides. Science 1966, 153, 379–386. 

52. Koehler, D.R.; Courcelle, J.; Hanawalt, P.C. Kinetics of pyrimidine(6–4)pyrimidone 

photoproduct repair in escherichia coli. J. Bacteriol. 1996, 178, 1347–1350. 

53. Howard-Flanders, P.; Boyce, R.P.; Theriot, L. Three loci in escherichia coli k-12 that control the 

excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics 1966,  

53, 1119–1136. 

54. Howard-Flanders, P.; Theriot, L. Mutants of escherichia coli k-12 defective in DNA repair and 

in genetic recombination. Genetics 1966, 53, 1137–1150. 

55. Smith, D.W.; Hanawalt, P.C. Repair replication of DNA in ultraviolet irradiated mycoplasma 

laidlawii b. J. Mol. Biol. 1969, 46, 57–72. 

56. Villani, G.; Spadari, S.; Boiteux, S.; Defais, M.; Caillet-Fauquet, P.; Radman, M. Replication of 

chemically modified DNA. Biochimie 1978, 60, 1145–1150. 

57. Truglio, J.J.; Karakas, E.; Rhau, B.; Wang, H.; DellaVecchia, M.J.; Van Houten, B.; Kisker, C. 

Structural basis for DNA recognition and processing by uvrb. Nat. Struct. Mol. Biol. 2006,  

13, 360–364. 



Biomolecules 2013, 3            

 

 

63 

58. Wang, T.C.; Smith, K.C. Mechanisms for recf-dependent and recb-dependent pathways of 

postreplication repair in uv-irradiated escherichia coli uvrb. J. Bacteriol. 1983, 156, 1093–1098. 

59. Donaldson, J.R.; Courcelle, C.T.; Courcelle, J. Ruvabc is required to resolve holliday junctions 

that accumulate following replication on damaged templates in escherichia coli. J. Biol. Chem. 

2006, 281, 28811–28821. 

60. Rupp, W.D.; Wilde, C.E., III.; Reno, D.L.; Howard-Flanders, P. Exchanges between DNA 

strands in ultraviolet-irradiated escherichia coli. J. Mol. Biol. 1971, 61, 25–44. 

61. Howard-Flanders, P.; Rupp, W.D. Recombinational repair in uv-irradiated escherichia coli. 

Johns Hopkins Med. J. 1972, 1, 212–225. 

62. Pages, V.; Fuchs, R.P. Uncoupling of leading- and lagging-strand DNA replication during lesion 

bypass in vivo. Science 2003, 300, 1300–1303. 

63. Higuchi, K.; Katayama, T.; Iwai, S.; Hidaka, M.; Horiuchi, T.; Maki, H. Fate of DNA replication 

fork encountering a single DNA lesion during oric plasmid DNA replication in vitro. Genes to  

Cells: Devoted to Molecular and Cellular Mechanisms 2003, 8, 437–449. 

64. Yeeles, J.T.; Marians, K.J. The Escherichia coli replisome is inherently DNA damage tolerant. 

Science 2011, 334, 235–238. 

65. Khidhir, M.A.; Casaregola, S.; Holland, I.B. Mechanism of transient inhibition of DNA synthesis 

in ultraviolet-irradiated E. coli: Inhibition is independent of reca whilst recovery requires reca 

protein itself and an additional, inducible sos function. Mol. Gen. Genet. 1985, 199, 133–140. 

66. Courcelle, C.T.; Belle, J.J.; Courcelle, J. Nucleotide excision repair or polymerase v-mediated 

lesion bypass can act to restore uv-arrested replication forks in escherichia coli. J. Bacteriol. 

2005, 187, 6953–6961. 

67. Rudolph, C.J.; Upton, A.L.; Lloyd, R.G. Replication fork stalling and cell cycle arrest in uv-

irradiated escherichia coli. Genes Dev. 2007, 21, 668–681. 

68. Rudolph, C.J.; Upton, A.L.; Lloyd, R.G. Maintaining replication fork integrity in uv-irradiated 

escherichia coli cells. DNA Repair 2008, 7, 1589–1602. 

69. Courcelle, J.; Carswell-Crumpton, C.; Hanawalt, P.C. Recf and recr are required for the 

resumption of replication at DNA replication forks in escherichia coli. Proc. Natl. Acad. Sci. 

USA 1997, 94, 3714–3719. 

70. Courcelle, J.; Crowley, D.J.; Hanawalt, P.C. Recovery of DNA replication in uv-irradiated 

escherichia coli requires both excision repair and recf protein function. J. Bacteriol. 1999,  

181, 916–922. 

71. Chow, K.H.; Courcelle, J. Reco acts with recf and recr to protect and maintain replication forks 

blocked by uv-induced DNA damage in escherichia coli. J. Biol. Chem. 2004, 279, 3492–3496. 

72. Courcelle, C.T.; Landstrom, A.J.; Anderson, B.; Courcelle, J. Cellular characterization of the 

primosome and rep helicase in processing and restoration of replication following arrest by  

uv-induced DNA damage in escherichia coli. J. Bacteriol. 2012, 194, 3977–3986. 

73. Hishida, T.; Han, Y.W.; Shibata, T.; Kubota, Y.; Ishino, Y.; Iwasaki, H.; Shinagawa, H. Role of 

the escherichia coli recq DNA helicase in sos signaling and genome stabilization at stalled 

replication forks. Genes Dev. 2004, 18, 1886–1897. 

74. McInerney, P.; O'Donnell, M. Replisome fate upon encountering a leading strand block and 

clearance from DNA by recombination proteins. J. Biol. Chem. 2007, 282, 25903–25916. 



Biomolecules 2013, 3            

 

 

64 

75. Courcelle, J.; Hanawalt, P.C. Participation of recombination proteins in rescue of arrested 

replication forks in uv-irradiated escherichia coli need not involve recombination. Proc. Natl. 

Acad. Sci. USA 2001, 98, 8196–8202. 

76. Courcelle, J.; Ganesan, A.K.; Hanawalt, P.C. Therefore, what are recombination proteins there 

for? BioEssays 2001, 23, 463–470. 

77. Al-Hadid, Q.; Ona, K.; Courcelle, C.T.; Courcelle, J. Reca433 cells are defective in  

recf-mediated processing of disrupted replication forks but retain recbcd-mediated functions.  

Mut. Res. 2008, 645, 19–26. 

78. Renzette, N.; Gumlaw, N.; Nordman, J.T.; Krieger, M.; Yeh, S.P.; Long, E.; Centore, R.; 

Boonsombat, R.; Sandler, S.J. Localization of reca in escherichia coli k-12 using reca-gfp.  

Mol. Microbiol. 2005, 57, 1074–1085. 

79. Simmons, L.A.; Grossman, A.D.; Walker, G.C. Replication is required for the reca localization 

response to DNA damage in bacillus subtilis. Proc. Natl.Acad. Sci. USA 2007, 104, 1360–1365. 

80. Lecointe, F.; Serena, C.; Velten, M.; Costes, A.; McGovern, S.; Meile, J.C.; Errington, J.; 

Ehrlich, S.D.; Noirot, P.; Polard, P. Anticipating chromosomal replication fork arrest: Ssb targets 

repair DNA helicases to active forks. EMBO J. 2007, 26, 4239–4251. 

81. Costes, A.; Lecointe, F.; McGovern, S.; Quevillon-Cheruel, S.; Polard, P. The c-terminal domain 

of the bacterial ssb protein acts as a DNA maintenance hub at active chromosome replication 

forks. PLoS Genet.2010, 6, doi:10.1371/journal.pgen.1001238. 

82. Mechali, M. Eukaryotic DNA replication origins: Many choices for appropriate answers.  

Nat. Rev. Mol. Cell Biol. 2010, 11, 728–738. 

83. Cayrou, C.; Coulombe, P.; Mechali, M. Programming DNA replication origins and chromosome 

organization. Chrom. Res. 2010, 18, 137–145. 

84. Kelly, T.J.; Brown, G.W. Regulation of chromosome replication. Annu. Rev. Biochem. 2000,  

69, 829–880. 

85. Lambert, S.; Froget, B.; Carr, A.M. Arrested replication fork processing: Interplay between 

checkpoints and recombination. DNA Repair 2007, 6, 1042–1061. 

86. Mirkin, E.V.; Mirkin, S.M. Replication fork stalling at natural impediments. Microbiol. Mol. Biol. Rev. 

2007, 71, 13–35. 

87. Szilard, R.; Jacques, P.; Laramée, L.; Cheng, B.; Galicia, S.; Bataille, A.; Yeung, M.; Mendez, 

M.; Bergeron, M.; Robert, F.; et al. Systematic identification of fragile sites via genome-wide 

location analysis of gamma-h2ax. Nat. Struct. Mol. Biol. 2010, 17, 299–305. 

88. Helleday, T. Homologous recombination in cancer development, treatment and development of 

drug resistance. Carcinogenesis 2010, 31, 955–960. 

89. Kawabata, T.; Luebben, S.W.; Yamaguchi, S.; Ilves, I.; Matise, I.; Buske, T.; Botchan, M.R.; 

Shima, N. Stalled fork rescue via dormant replication origins in unchallenged s phase promotes 

proper chromosome segregation and tumor suppression. Mol. Cell 2011, 41, 543–553. 

90. Woodward, A.M.; Gohler, T.; Luciani, M.G.; Oehlmann, M.; Ge, X.; Gartner, A.; Jackson, D.A.; 

Blow, J.J. Excess mcm2–7 license dormant origins of replication that can be used under 

conditions of replicative stress. J. Cell Biol. 2006, 173, 673–683. 

91. Ge, X.Q.; Jackson, D.A.; Blow, J.J. Dormant origins licensed by excess mcm2–7 are required for 

human cells to survive replicative stress. Genes Dev. 2007, 21, 3331–3341. 



Biomolecules 2013, 3            

 

 

65 

92. Le Tallec, B.; Dutrillaux, B.; Lachages, A.M.; Millot, G.A.; Brison, O.; Debatisse, M. Molecular 

profiling of common fragile sites in human fibroblasts. Nat. Struc. Mol. Biol. 2011, 18, 1421–1423. 

93. Letessier, A.; Millot, G.A.; Koundrioukoff, S.; Lachages, A.M.; Vogt, N.; Hansen, R.S.; Malfoy, 

B.; Brison, O.; Debatisse, M. Cell-type-specific replication initiation programs set fragility of the 

fra3b fragile site. Nature 2011, 470, 120–123. 

94. Daboussi, F.; Courbet, S.; Benhamou, S.; Kannouche, P.; Zdzienicka, M.Z.; Debatisse, M.; 

Lopez, B.S. A homologous recombination defect affects replication-fork progression in 

mammalian cells. J. Cell Sci. 2008, 121, 162–166. 

95. Branzei, D.; Foiani, M. Maintaining genome stability at the replication fork. Nat. Rev. Mol. 

Cell Biol. 2010, 11, 208–219. 

96. Katou, Y.; Kanoh, Y.; Bando, M.; Noguchi, H.; Tanaka, H.; Ashikari, T.; Sugimoto, K.; 

Shirahige, K. S-phase checkpoint proteins tof1 and mrc1 form a stable replication-pausing 

complex. Nature 2003, 424, 1078–1083. 

97. De Piccoli, G.; Katou, Y.; Itoh, T.; Nakato, R.; Shirahige, K.; Labib, K. Replisome stability at 

defective DNA replication forks is independent of s phase checkpoint kinases. Mol. Cell 2012, 

45, 696–704. 

98. Cotta-Ramusino, C.; Fachinetti, D.; Lucca, C.; Doksani, Y.; Lopes, M.; Sogo, J.; Foiani, M. 

Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective 

cells. Mol. Cell 2005, 17, 153–159. 

99. Froget, B.; Blaisonneau, J.; Lambert, S.; Baldacci, G. Cleavage of stalled forks by fission yeast 

mus81/eme1 in absence of DNA replication checkpoint. Mol. Biol. Cell 2008, 19, 445–456. 

100. Kai, M.; Boddy, M.N.; Russell, P.; Wang, T.S. Replication checkpoint kinase cds1 regulates 

mus81 to preserve genome integrity during replication stress. Genes Dev. 2005, 19, 919–932. 

101. Hu, J.; Sun, L.; Shen, F.; Chen, Y.; Hua, Y.; Liu, Y.; Zhang, M.; Hu, Y.; Wang, Q.; Xu, W.; et al. 

The intra-s phase checkpoint targets dna2 to prevent stalled replication forks from reversing. Cell 

2012, 149, 1221–1232. 

102. Nimonkar, A.V.; Sica, R.A.; Kowalczykowski, S.C. Rad52 promotes second-end DNA capture 

in double-stranded break repair to form complement-stabilized joint molecules. Proc. Natl. Acad. 

Sci. USA 2009, 106, 3077–3082. 

103. McIlwraith, M.J.; West, S.C. DNA repair synthesis facilitates rad52-mediated second-end 

capture during dsb repair. Mol. Cell 2008, 29, 510–516. 

104. Carreira, A.; Hilario, J.; Amitani, I.; Baskin, R.J.; Shivji, M.K.; Venkitaraman, A.R.; 

Kowalczykowski, S.C. The brc repeats of brca2 modulate the DNA-binding selectivity of rad51. 

Cell 2009, 136, 1032–1043. 

105. Jensen, R.B.; Carreira, A.; Kowalczykowski, S.C. Purified human brca2 stimulates rad51-

mediated recombination. Nature 2010, 467, 678–683. 

106. Wray, J.; Liu, J.; Nickoloff, J.A.; Shen, Z. Distinct rad51 associations with rad52 and bccip in 

response to DNA damage and replication stress. Cancer Res. 2008, 68, 2699–2707. 

107. Lisby, M.; Barlow, J.H.; Burgess, R.C.; Rothstein, R. Choreography of the DNA damage 

response: Spatiotemporal relationships among checkpoint and repair proteins. Cell 2004,  

118, 699–713. 



Biomolecules 2013, 3            

 

 

66 

108. Sung, P. Yeast rad55 and rad57 proteins form a heterodimer that functions with replication 

protein a to promote DNA strand exchange by rad51 recombinase. Genes Dev. 1997, 11, 1111–1121. 

109. Ward, J.D.; Barber, L.J.; Petalcorin, M.I.; Yanowitz, J.; Boulton, S.J. Replication blocking 

lesions present a unique substrate for homologous recombination. EMBO J. 2007, 26, 3384–3396. 

110. Mankouri, H.W.; Ngo, H.P.; Hickson, I.D. Shu proteins promote the formation of homologous 

recombination intermediates that are processed by sgs1-rmi1-top3. Mol. Biol Cell 2007,  

18, 4062–4073. 

111. Shor, E.; Weinstein, J.; Rothstein, R. A genetic screen for top3 suppressors in saccharomyces 

cerevisiae identifies shu1, shu2, psy3 and csm2: Four genes involved in error-free DNA repair. 

Genetics 2005, 169, 1275–1289. 

112. Ball, L.G.; Zhang, K.; Cobb, J.A.; Boone, C.; Xiao, W. The yeast shu complex couples error-free 

post-replication repair to homologous recombination. Mol. Microbiol. 2009, 73, 89–102. 

113. Choi, K.; Szakal, B.; Chen, Y.H.; Branzei, D.; Zhao, X. The smc5/6 complex and esc2 influence 

multiple replication-associated recombination processes in saccharomyces cerevisiae. Mol. Biol Cell 

2010, 21, 2306–2314. 

114. Martin, V.; Chahwan, C.; Gao, H.; Blais, V.; Wohlschlegel, J.; Yates, J.R. III.; McGowan, C.H.; 

Russell, P. Sws1 is a conserved regulator of homologous recombination in eukaryotic cells. 

EMBO J. 2006, 25, 2564–2574. 

115. Liu, J.; Renault, L.; Veaute, X.; Fabre, F.; Stahlberg, H.; Heyer, W.D. Rad51 paralogues  

rad55-rad57 balance the antirecombinase srs2 in rad51 filament formation. Nature 2011,  

479, 245–248. 

116. Papouli, E.; Chen, S.; Davies, A.A.; Huttner, D.; Krejci, L.; Sung, P.; Ulrich, H.D. Crosstalk 

between sumo and ubiquitin on pcna is mediated by recruitment of the helicase srs2p. Mol. Cell 

2005, 19, 123–133. 

117. Pfander, B.; Moldovan, G.L.; Sacher, M.; Hoege, C.; Jentsch, S. Sumo-modified pcna recruits 

srs2 to prevent recombination during s phase. Nature 2005, 436, 428–433. 

118. Bashkirov, V.I.; King, J.S.; Bashkirova, E.V.; Schmuckli-Maurer, J.; Heyer, W.D. DNA repair 

protein rad55 is a terminal substrate of the DNA damage checkpoints. Mol. Cell. Biol. 2000,  

20, 4393–4404. 

119. Herzberg, K.; Bashkirov, V.I.; Rolfsmeier, M.; Haghnazari, E.; McDonald, W.H.; Anderson, S.; 

Bashkirova, E.V.; Yates, J.R., III.; Heyer, W.D. Phosphorylation of rad55 on serines 2, 8, and 14 

is required for efficient homologous recombination in the recovery of stalled replication forks. 

Mol. Cell. Biol. 2006, 26, 8396–8409. 

120. Haaf, T.; Golub, E.I.; Reddy, G.; Radding, C.M.; Ward, D.C. Nuclear foci of mammalian rad51 

recombination protein in somatic cells after DNA damage and its localization in synaptonemal 

complexes. Proc. Natl. Acad. Sci. USA 1995, 92, 2298–2302. 

121. Tashiro, S.; Kotomura, N.; Shinohara, A.; Tanaka, K.; Ueda, K.; Kamada, N. S phase specific 

formation of the human rad51 protein nuclear foci in lymphocytes. Oncogene 1996, 12, 2165–2170. 

122. Golub, E.I.; Gupta, R.C.; Haaf, T.; Wold, M.S.; Radding, C.M. Interaction of human rad51 

recombination protein with single-stranded DNA binding protein, rpa. Nucleic Acids Res. 1998, 

26, 5388–5393. 



Biomolecules 2013, 3            

 

 

67 

123. Raderschall, E.; Golub, E.I.; Haaf, T. Nuclear foci of mammalian recombination proteins are 

located at single-stranded DNA regions formed after DNA damage. Proc. Natl. Acad. Sci. USA 

1999, 96, 1921–1926. 

124. Mizuta, R.; LaSalle, J.M.; Cheng, H.L.; Shinohara, A.; Ogawa, H.; Copeland, N.; Jenkins, N.A.; 

Lalande, M.; Alt, F.W. Rab22 and rab163/mouse brca2: Proteins that specifically interact with 

the rad51 protein. Proc. Natl. Acad. Sci.USA 1997, 94, 6927–6932. 

125. Tashiro, S.; Walter, J.; Shinohara, A.; Kamada, N.; Cremer, T. Rad51 accumulation at sites of 

DNA damage and in postreplicative chromatin. J. Cell Biol. 2000, 150, 283–291. 

126. Chen, J.; Silver, D.P.; Walpita, D.; Cantor, S.B.; Gazdar, A.F.; Tomlinson, G.; Couch, F.J.; 

Weber, B.L.; Ashley, T.; Livingston, D.M.; et al. Stable interaction between the products of the 

brca1 and brca2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell 1998, 2, 317–328. 

127. Scully, R.; Chen, J.; Plug, A.; Xiao, Y.; Weaver, D.; Feunteun, J.; Ashley, T.; Livingston, D.M. 

Association of brca1 with rad51 in mitotic and meiotic cells. Cell 1997, 88, 265–275. 

128. Scully, R.; Chen, J.; Ochs, R.L.; Keegan, K.; Hoekstra, M.; Feunteun, J.; Livingston, D.M. 

Dynamic changes of brca1 subnuclear location and phosphorylation state are initiated by DNA 

damage. Cell 1997, 90, 425–435. 

129. Meister, P.; Poidevin, M.; Francesconi, S.; Tratner, I.; Zarzov, P.; Baldacci, G. Nuclear factories 

for signalling and repairing DNA double strand breaks in living fission yeast. Nucleic Acids Res. 

2003, 31, 5064–5073. 

130. Lisby, M.; Rothstein, R.; Mortensen, U.H. Rad52 forms DNA repair and recombination centers 

during s phase. Proc. Natl. Acad. Sci. USA 2001, 98, 8276–8282. 

131. Lambert, S.; Mizuno, K.; Blaisonneau, J.; Martineau, S.; Chanet, R.; Fréon, K.; Murray, J.M.; 

Carr, A.M.; Baldacci, G. Homologous recombination restarts blocked replication forks at the 

expense of genome rearrangements by template exchange. Mol. Cell 2010, 39, 346–359. 

132. Lambert, S.; Watson, A.; Sheedy, D.M.; Martin, B.; Carr, A.M. Gross chromosomal 

rearrangements and elevated recombination at an inducible site-specific replication fork barrier. 

Cell 2005, 121, 689–702. 

133. Mizuno, K.; Lambert, S.; Baldacci, G.; Murray, J.M.; Carr, A.M. Nearby inverted repeats fuse to 

generate acentric and dicentric palindromic chromosomes by a replication template exchange 

mechanism. Genes Dev. 2009, 23, 2876–2886. 

134. Zou, H.; Rothstein, R. Holliday junctions accumulate in replication mutants via a reca  

homolog-independent mechanism. Cell 1997, 90, 87–96. 

135. Tsang, E.; Carr, A. Replication fork arrest, recombination and the maintenance of ribosomal 

DNA stability. DNA Repair 2008, 7, 1613–1623. 

136. Karanam, K.; Kafri, R.; Loewer, A.; Lahav, G. Quantitative live cell imaging reveals a gradual 

shift between DNA repair mechanisms and a maximal use of hr in mid s phase. Mol. Cell 2012, 

47, 320–329. 

137. Wong, J.M.; Ionescu, D.; Ingles, C.J. Interaction between brca2 and replication protein a is 

compromised by a cancer-predisposing mutation in brca2. Oncogene 2003, 22, 28–33. 

138. Shukla, A.; Navadgi, V.M.; Mallikarjuna, K.; Rao, B.J. Interaction of hrad51 and hrad52 with 

mcm complex: A cross-talk between recombination and replication proteins. Biochem. Biophys. 

Res. Commun. 2005, 329, 1240–1245. 



Biomolecules 2013, 3            

 

 

68 

139. Bailis, J.M.; Luche, D.D.; Hunter, T.; Forsburg, S.L. Minichromosome maintenance proteins 

interact with checkpoint and recombination proteins to promote s-phase genome stability.  

Mol. Cell. Biol. 2008, 28, 1724–1738. 

140. Oyola, S.O.; Bringaud, F.; Melville, S.E. A kinetoplastid brca2 interacts with DNA replication 

protein cdc45. Int. J. Parasitol. 2009, 39, 59–69. 

141. Alabert, C.; Bianco, J.; Pasero, P. Differential regulation of homologous recombination at DNA 

breaks and replication forks by the mrc1 branch of the s-phase checkpoint. EMBO J. 2009,  

28, 1131–1141. 

142. Lopes, M.; Foiani, M.; Sogo, J.M. Multiple mechanisms control chromosome integrity after 

replication fork uncoupling and restart at irreparable uv lesions. Mol. Cell 2006, 21, 15–27. 

143. Hashimoto, Y.; Ray Chaudhuri, A.; Lopes, M.; Costanzo, V. Rad51 protects nascent DNA from 

mre11-dependent degradation and promotes continuous DNA synthesis. Nat. Struc. Mol. Biol. 

2010, 17, 1305–1311. 

144. Liberi, G.; Maffioletti, G.; Lucca, C.; Chiolo, I.; Baryshnikova, A.; Cotta-Ramusino, C.; Lopes, 

M.; Pellicioli, A.; Haber, J.E.; Foiani, M. Rad51-dependent DNA structures accumulate at 

damaged replication forks in sgs1 mutants defective in the yeast ortholog of blm recq helicase. 

Genes Dev. 2005, 19, 339–350. 

145. Branzei, D.; Vanoli, F.; Foiani, M. Sumoylation regulates rad18-mediated template switch. 

Nature 2008, 456, 915–920. 

146. Branzei, D.; Sollier, J.; Liberi, G.; Zhao, X.; Maeda, D.; Seki, M.; Enomoto, T.; Ohta, K.; Foiani, 

M. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged 

replication forks. Cell 2006, 127, 509–522. 

147. Mankouri, H.W.; Ashton, T.M.; Hickson, I.D. Holliday junction-containing DNA structures 

persist in cells lacking sgs1 or top3 following exposure to DNA damage. Proc. Nat. Acad.  

Sci. USA 2011, 108, 4944–4949. 

148. Branzei, D. Ubiquitin family modifications and template switching. FEBS Lett. 2011, 585, 2810–2817. 

149. Vanoli, F.; Fumasoni, M.; Szakal, B.; Maloisel, L.; Branzei, D. Replication and recombination 

factors contributing to recombination-dependent bypass of DNA lesions by template switch. 

PLoS Genet. 2010, 6, doi:10.1371/journal.pgen.1001205. 

150. Moriel-Carretero, M.; Aguilera, A. A postincision-deficient tfiih causes replication fork breakage 

and uncovers alternative rad51- or pol32-mediated restart mechanisms. Mol. Cell 2010, 37, 690–701. 

151. Roseaulin, L.; Yamada, Y.; Tsutsui, Y.; Russell, P.; Iwasaki, H.; Arcangioli, B. Mus81 is 

essential for sister chromatid recombination at broken replication forks. EMBO J. 2008,  

27, 1378–1387. 

152. Hashimoto, Y.; Puddu, F.; Costanzo, V. Rad51- and mre11-dependent reassembly of uncoupled 

cmg helicase complex at collapsed replication forks. Nat. Struc. Mol. Biol. 2011, 19, 17–24. 

153. Clemente-Ruiz, M.; Prado, F. Chromatin assembly controls replication fork stability. EMBO Rep. 

2009, 10, 790–796. 

154. Long, D.T.; Raschle, M.; Joukov, V.; Walter, J.C. Mechanism of rad51-dependent DNA 

interstrand cross-link repair. Science 2011, 333, 84–87. 

155. Bjergbaek, L.; Cobb, J.A.; Tsai-Pflugfelder, M.; Gasser, S.M. Mechanistically distinct roles for 

sgs1p in checkpoint activation and replication fork maintenance. EMBO J. 2005, 24, 405–417. 



Biomolecules 2013, 3            

 

 

69 

156. Nakahara, M.; Sonoda, E.; Nojima, K.; Sale, J.E.; Takenaka, K.; Kikuchi, K.; Taniguchi, Y.; 

Nakamura, K.; Sumitomo, Y.; Bree, R.T.; et al. Genetic evidence for single-strand lesions 

initiating nbs1-dependent homologous recombination in diversification of ig v in chicken b 

lymphocytes. PLoS Genet. 2009, 5, doi:10.1371/journal.pgen.1000356. 

157. Paek, A.L.; Kaochar, S.; Jones, H.; Elezaby, A.; Shanks, L.; Weinert, T. Fusion of nearby 

inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric 

chromosomes that cause genome instability in budding yeast. Genes Dev. 2009, 23, 2861–2875. 

158. Meister, P.; Taddei, A.; Vernis, L.; Poidevin, M.; Gasser, S.M.; Baldacci, G. Temporal 

separation of replication and recombination requires the intra-s checkpoint. J. Cell Biol. 2005, 

168, 537–544. 

159. Sorensen, C.S.; Hansen, L.T.; Dziegielewski, J.; Syljuasen, R.G.; Lundin, C.; Bartek, J.; 

Helleday, T. The cell-cycle checkpoint kinase chk1 is required for mammalian homologous 

recombination repair. Nat. Cell Biol. 2005, 7, 195–201. 

160. Petermann, E.; Orta, M.L.; Issaeva, N.; Schultz, N.; Helleday, T. Hydroxyurea-stalled replication 

forks become progressively inactivated and require two different rad51-mediated pathways for 

restart and repair. Mol. Cell 2010, 37, 492–502. 

161. Saintigny, Y.; Delacote, F.; Vares, G.; Petitot, F.; Lambert, S.; Averbeck, D.; Lopez, B.S. 

Characterization of homologous recombination induced by replication inhibition in mammalian 

cells. EMBO J. 2001, 20, 3861–3870. 

162. Raveendranathan, M.; Chattopadhyay, S.; Bolon, Y.T.; Haworth, J.; Clarke, D.J.; Bielinsky, 

A.K. Genome-wide replication profiles of s-phase checkpoint mutants reveal fragile sites in 

yeast. EMBO J. 2006, 25, 3627–3639. 

163. Hanada, K.; Budzowska, M.; Davies, S.L.; van Drunen, E.; Onizawa, H.; Beverloo, H.B.; Maas, 

A.; Essers, J.; Hickson, I.D.; Kanaar, R. The structure-specific endonuclease mus81 contributes 

to replication restart by generating double-strand DNA breaks. Nat. Struc. Mol. Biol. 2007,  

14, 1096–1104. 

164. Bosco, G.; Haber, J.E. Chromosome break-induced DNA replication leads to nonreciprocal 

translocations and telomere capture. Genetics 1998, 150, 1037–1047. 

165. Llorente, B.; Smith, C.E.; Symington, L.S. Break-induced replication: What is it and what is it 

for? Cell Cycle 2008, 7, 859–864. 

166. Kraus, E.; Leung, W.Y.; Haber, J.E. Break-induced replication: A review and an example in 

budding yeast. Proc. Natl. Acad. Sci. USA 2001, 98, 8255–8262. 

167. Lydeard, J.R.; Jain, S.; Yamaguchi, M.; Haber, J.E. Break-induced replication and telomerase-

independent telomere maintenance require pol32. Nature 2007, 448, 820–823. 

168. Lydeard, J.R.; Lipkin-Moore, Z.; Sheu, Y.J.; Stillman, B.; Burgers, P.M.; Haber, J.E.  

Break-induced replication requires all essential DNA replication factors except those specific for 

pre-rc assembly. Genes Dev. 2010, 24, 1133–1144. 

169. Deem, A.; Keszthelyi, A.; Blackgrove, T.; Vayl, A.; Coffey, B.; Mathur, R.; Chabes, A.; 

Malkova, A. Break-induced replication is highly inaccurate. PLoS Biol. 2011, 9, 

doi:10.1371/journal.pbio.1000594. 



Biomolecules 2013, 3            

 

 

70 

170. Iraqui, I.; Chekkal, Y.; Jmari, N.; Pietrobon, V.; Freon, K.; Costes, A.; Lambert, S.A. Recovery 

of arrested replication forks by homologous recombination is error-prone. PLoS Genet. 2012, 8, 

doi:10.1371/journal.pgen.1002976. 

171. Mizuno, K.; Miyabe, I.; Schalbetter, S.A.; Carr, A.M.; Murray, J.M. Recombination-restarted 

replication makes inverted chromosome fusions at inverted repeats. Nature 2012, 

doi:10.1038/nature11676. 

172. Stracker, T.H.; Petrini, J.H. The mre11 complex: Starting from the ends. Nat. Rev. Mol. Cell Biol. 

2011, 12, 90–103. 

173. Lomonosov, M.; Anand, S.; Sangrithi, M.; Davies, R.; Venkitaraman, A.R. Stabilization of 

stalled DNA replication forks by the brca2 breast cancer susceptibility protein. Genes Dev. 2003, 

17, 3017–3022. 

174. Schlacher, K.; Christ, N.; Siaud, N.; Egashira, A.; Wu, H.; Jasin, M. Double-strand break  

repair-independent role for brca2 in blocking stalled replication fork degradation by mre11. Cell 

2011, 145, 529–542. 

175. Schlacher, K.; Wu, H.; Jasin, M. A distinct replication fork protection pathway connects fanconi 

anemia tumor suppressors to rad51-brca1/2. Cancer Cell 2012, 22, 106–116. 

176. Tinline-Purvis, H.; Savory, A.P.; Cullen, J.K.; Dave, A.; Moss, J.; Bridge, W.L.; Marguerat, S.; 

Bahler, J.; Ragoussis, J.; Mott, R.; et al. Failed gene conversion leads to extensive end 

processing and chromosomal rearrangements in fission yeast. EMBO J. 2009, 28, 3400–3412. 

177. Sonoda, E.; Sasaki, M.S.; Buerstedde, J.M.; Bezzubova, O.; Shinohara, A.; Ogawa, H.; Takata, 

M.; Yamaguchi-Iwai, Y.; Takeda, S. Rad51-deficient vertebrate cells accumulate chromosomal 

breaks prior to cell death. EMBO J. 1998, 17, 598–608. 

178. Venkitaraman, A.R. Chromosome stability, DNA recombination and the brca2 tumour 

suppressor. Curr. Opin. Cell Biol. 2001, 13, 338–343. 

179. Fachinetti, D.; Bermejo, R.; Cocito, A.; Minardi, S.; Katou, Y.; Kanoh, Y.; Shirahige, K.; 

Azvolinsky, A.; Zakian, V.A.; Foiani, M. Replication termination at eukaryotic chromosomes is 

mediated by top2 and occurs at genomic loci containing pausing elements. Mol. Cell 2010,  

39, 595–605. 

180. Nitiss, J. DNA topoisomerase ii and its growing repertoire of biological functions. Natl.Rev. 

Cancer 2009, 9, 327–337. 

181. Steinacher, R.; Osman, F.; Dalgaard, J.Z.; Lorenz, A.; Whitby, M.C. The DNA helicase pfh1 

promotes fork merging at replication termination sites to ensure genome stability. Genes Dev. 

2012, 26, 594–602. 

182. Kojic, M.; Holloman, W.K. Brh2 domain function distinguished by differential cellular 

responses to DNA damage and replication stress. Mol. Microbiol. 2012, 83, 351–361. 

183. Heyer, W.D.; Li, X.; Rolfsmeier, M.; Zhang, X.P. Rad54: The swiss army knife of homologous 

recombination? Nucleic Acids Res. 2006, 34, 4115–4125. 

184. Lambert, S.; Lopez, B.S. Characterization of mammalian rad51 double strand break repair using 

non-lethal dominant-negative forms. EMBO J. 2000, 19, 3090–3099. 

185. Liu, P.; Carvalho, C.M.; Hastings, P.; Lupski, J.R. Mechanisms for recurrent and complex 

human genomic rearrangements. Curr. Opin. Genet. Dev. 2012, 22, 211–220. 



Biomolecules 2013, 3            

 

 

71 

186. Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for 

cancer development. Science 2008, 319, 1352–1355. 

187. Chabosseau, P.; Buhagiar-Labarchede, G.; Onclercq-Delic, R.; Lambert, S.; Debatisse, M.; 

Brison, O.; Amor-Gueret, M. Pyrimidine pool imbalance induced by blm helicase deficiency 

contributes to genetic instability in bloom syndrome. Nat. Commun. 2011, 2, 368. 

188. Bester, A.C.; Roniger, M.; Oren, Y.S.; Im, M.M.; Sarni, D.; Chaoat, M.; Bensimon, A.; Zamir, 

G.; Shewach, D.S.; Kerem, B. Nucleotide deficiency promotes genomic instability in early stages 

of cancer development. Cell 2011, 145, 435–446. 

189. Evers, B.; Helleday, T.; Jonkers, J. Targeting homologous recombination repair defects in 

cancer. Trends Pharmacol. Sci. 2010, 31, 372–380. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an openaccess article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


