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Both Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are characterized by the deposition of hyperphosphorylated
forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to the umbrella term
“tauopathies” for these conditions, also emphasizing the central role of tau in AD and FTD. Generation of transgenic mouse
models expressing human tau in the brain has contributed to the understanding of the pathomechanistic role of tau in disease.
To reveal the physiological functions of tau in vivo, several knockout mouse strains with deletion of the tau-encoding MAPT gene
have been established over the past decade, using different gene targeting constructs. Surprisingly, when initially introduced tau
knockout mice presented with no overt phenotype or malformations. The number of publications using tau knockout mice has
recently markedly increased, and both behavioural changes and motor deficits have been identified in aged mice of certain strains.
Moreover, tau knockout mice have been instrumental in identifying novel functions of tau, both in cultured neurons and in vivo.
Importantly, tau knockout mice have significantly contributed to the understanding of the pathophysiological interplay between
A and tau in AD. Here, we review the literature that involves tau knockout mice to summarize what we have learned so far from

depleting tau in vivo.

1. Introduction

Alzheimer’s disease (AD) is the most common form of
dementia, characterized by a progressive decline of cognition
due to synaptic and neuronal loss [1]. Despite intensive
research into the cause of AD, there is no cure available to
date, and current treatment options are limited to symp-
tomatic relief [2]. This becomes even more alarming in the
light of over 35 million AD patients worldwide, a number
estimated to double by 2050 [3].

AD brains display two hallmark lesions upon autopsy:
amyloid f (Af)-containing plaques and neurofibrillary tan-
gles (NFTs). Af results from f3- and y-secretase-mediated
proteolytic cleavage of the AS-precursor protein (APP) [4,
5]. NFTs are made up of hyperphosphorylated forms of
the microtubule-associated protein tau [6]. In contrast to
AD, FTD presents with tau pathology in the absence of
an overt A pathology. FID is the second most prevalent
form of dementia occurring before the age of 65 [7-9].
FTD describes a heterogeneous group of neurodegenerative

disorders, including Pick’s disease (PiD), frontotemporal
dementia with Parkinsonism linked to chromosome 17
(FTDP-17), argyrophilic grain disease (AGD), corticobasal
degeneration (CBD), and progressive supranuclear palsy
(PSP). Sharing similar protein deposits, these disorders are
characterized by a broad spectrum of clinical symptoms
including behavioural changes, language abnormalities, and
motor dysfunction (reviewed in [7, 9]). While in familial
cases of AD (FAD), mutations were found in the APP- and
the presenilin genes 1 and 2 [10], the latter being part of the
y-secretase complex [11], mutations in the MAPT gene were
found in familial FTD [12, 13].

The tau protein has been discovered in 1975 as a protein
with the ability to induce microtubule (MT) formation [14].
The tau-encoding gene MAPT is located on human chromo-
some 17921 [15]. There are 6 tau isoforms, between 352 and
441 aminoacids in length, encoded by 11 exons in humans,
with alternative splicing of exons 2, 3, and 10 [16]. They
differ by either the presence or absence of up to two amino-
terminal inserts (2N) and by containing either three (3R) or
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four (4R) MT-binding repeats (MTB). While 3R isoforms
are predominant during embryonic brain development, the
normal adult brain has approximately equal levels of 3R and
4R isoforms [17]. Changes in this ratio have been linked to
the pathogenesis of tauopathies, with increased 4R levels in
AD and high amounts of 3R tau in PiD [18]. For comparison,
mice and rats express only three different 4R isoforms of tau,
but lack 3R tau [19].

Tau is expressed predominantly in neurons, where it is
enriched in axons. Tau is either bound to microtubules, the
inner side of the plasma membrane, or is unbound [20].
Besides stabilizing microtubules, tau has been implicated in
the regulation of motor-driven axonal transport [21, 22].
Other possible functions of tau include cellular signalling,
neuronal development, neuroprotection, and apoptosis [3,
23]. Furthermore, we have shown that tau is also present in
dendrites at low levels, where it is involved in postsynaptic
scaffolding [3, 24].

In AD and FTD, tau becomes increasingly phosphory-
lated at both physiological and pathological sites (referred
to as “hyperphosphorylated”) [25]. This aberrant phospho-
rylation detaches tau from microtubules, thereby probably
compromising its microtubule-stabilising functions (loss of
physiological function). At the same time, hyperphospho-
rylation of tau is the first step in the formation of toxic
aggregates (gain of toxic function) and eventually of NFTs
[26]. Hyperphosphorylated tau accumulates in the soma of
neurons, giving rise to increased dendritic levels of tau [24,
27, 28]. However, there is good evidence that elevated levels
of soluble tau already contribute to neuronal dysfunction
prior to its deposition [29, 30], including for example,
disruption of axonal transport [31-34] and impairment of
mitochondrial function [35, 36].

The identification of pathogenic mutations in AD and
FTD has led to the generation of multiple transgenic animal
models that recapitulate important aspects of the human
disease [37]. Transgenic mouse models, including those
with human tau expression, have become the major in vivo
tool in AD/FTD research (reviewed in [37]). In addition
to tau overexpressing mouse strains, several tau knockout
strains have been generated. Their contribution to the
understanding of tau is reviewed in this paper.

2. Tau Knockout Mice

Expression of tau in cell lines resulted in elongated process
formation, while tau reduction using antisense RNA sup-
pressed axon elongation in cultured neurons [38]. Based on
these findings in cells, tau depletion in mice was eagerly
awaited with expectations of marked effects on neuronal
systems in vivo. Surprisingly, four independently generated
(conventional) tau knockout lines presented with no overt
phenotype [39-42]. Only when aged did tau knockout
mice develop behavioral impairments and motor deficits
(43, 44].

In 1994, Harada and colleagues reported the first tau
knockout mouse line (Figure 1(a)) [39]. The mice are viable
and macroscopically normal. While immunohistochemical
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analysis did not show changes, electron microscopical analy-
sis revealed decreased microtubule density in axons, together
with reduced cross-bridging between parallel microtubules,
and between microtubules and the plasma membrane.
Interestingly, neurons from this particular strain showed
normal axonal development in culture [39, 45]. The lack
of tau was associated with an up to 2 fold increase in the
microtubule-associated protein 1A (MAP1A) expression in
7-day-old, and a 1.3 fold increase in adult tau knockout mice,
possibly compensating for the absence of tau [39]. Although
MAPI1B levels were reportedly normal in this tau knockout
line, cross-breeding of tau with MAP1B knockout mice
exacerbated hypoplastic axon tracts, disorganized neuronal
layering, and impaired maturation of primary neurons of
MAPI1B mice [45].

In 2001, two additional tau knockout lines have been
published. Tucker and colleagues generated tau knockout
mice by integrating GFP-encoding cDNA into exon 1 of
MAPT, resulting in expression of a GFP fusion protein
with aminoacids 1 to 31 of tau, together with deletion of
endogenous tau expression (Figure 1(b)) [41]. While the
original report did use heterozygote tau knockout mice to
image GFP expressing neurons, as well as sorting neurons
for in vitro analysis, tau function has not been studied.
Nevertheless, this particular strain has been used in several
subsequent studies to identify novel functions of tau [24, 46].

Dawson and colleagues generated tau knockout mice
by homologous recombination replacing exon 1 with a
neomycin expression cassette (Figure 1(c)) [40]. Again, these
mice are viable and display no overt anomalies. Similar
to previous tau knockout mice [39], MAP1A levels were
approximately 2-fold increased at birth, but declined with
brain maturation. In fact, MAP1A levels were similar in
wildtype and tau knockout mice at 12 months of age [40].
Hence, MAP1A may compensate for loss of tau during early
brain development, but not in the mature brain [39, 40, 42].
Contrary to previous studies, primary neurons obtained
from this tau knockout strain showed slowed maturation
with reduced neurite length throughout all developmental
stages and reduced axon length of stage 3 neurons [40].

The most recent tau knockout mouse has been estab-
lished by Fujio and colleagues in 2007 [42]. They intro-
duced a neomycin cassette in reverse orientation flanked by
flippase recognition targets (FRTs) into exon 1 of MAPT
(Figure 1(d)). Similar to previous tau knockout mice, they
are viable and show no overt anomalies. MAP1A levels were
increased as previously reported for other tau knockout
strains [40].

Taken together, in three of four independent tau knock-
out strains, MAPIA is increased around birth but not in
adult brain (NB: MAP1A levels have not been determined in
the fourth strain), suggesting early but not late compensation
for loss of tau by MAP1A [39, 40, 42]. On the other
hand, neuronal maturation has been examined in two of
four tau knockout lines, with different results [39, 40, 47].
Here, analysis of additional lines may provide clarification.
Differences between the different tau knockout strains may
be explained by different genetic backgrounds used.
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FiGgure 1: Homologous recombination strategies for the generation of different tau knockout mice reported by (a) Harada and collegues
[39], (b) Tucker and colleagues [41], (c) Dawson and colleagues [40], and (d) Fujio and colleagues [42].

3. Deficits in Tau Knockout Mice

Neuronal dysfunction and neurodegeneration in tauopathies
is due to the toxicity of pathologically modified tau and/or
loss of physiological tau function [48]. While the reported
tau knockout strains presented without overt phenotype
when young [39-42], one-year-old mice of one tau knock-
out strain [39] showed muscle weakness in the wire-
hanging test, reduced balancing in the rod-walking test,
hyperactivity in new environments and impaired contextual
fear conditioning [43]. Interestingly, muscle weakness was
already detectable in heterozygote tau knockout mice. The
spatial learning ability of this tau knockout strain, however,
presented normal, when tested in the eight-arm radial maze
and the Morris water maze [43]. Normal performance by 7-
and 12-month-old tau knockout mice in the Morris water
maze has since been independently confirmed in another
strain [49, 50]. The latter strain also performed normal in
the radial water arm maze and on the Rotarod at 12 months
of age [50]. However, Lei and colleagues recently identified
more complex motor deficits in the same tau knockout strain

at 12 months of age, with increased turn time in the pole
test, reduced performance on the Rotarod and decreased
locomotion in the open field test [44]. These deficits were
associated with reduced numbers of tyrosine hydroxylase-
positive substantia nigra (SN) neurons [44]. Interestingly,
mutant tau overexpression also results in a loss of SN neurons
in a mouse model of FTD with Parkinsonism [33], suggesting
that tau levels are critical for this neuronal population;
however, the exact role of tau herein remains unknown.
Taken together, tau knockout mice appear to develop motor
deficits with increasing age, suggesting that loss of physi-
ological tau function may contribute to the motor deficits
observed in tauopathy patients. Further, tau knockout mice
show no overt memory deficits in spatial memory tasks,
which is consistent with sole tau pathology in humans, such
as in FTD, where memory function is not or only mildly
compromised.

Cantero and colleagues examined the local field potential
from various cortical regions and hippocampus of tau
knockout mice to determine if delayed axonal maturation of
tau knockout neurons observed in vitro [40] could possibly



affect neuronal circuit formation in vivo [51]. They found
slower theta rhythms of the hippocampus and reduced
gamma synchronization between cortical brain regions in
tau knockout mice, which may suggest impaired circuit
formation. To this end, the morphological correlates of these
findings remain unknown, but dysfunctional neuronal net-
works have been implicated in the pathogenesis of AD
[52]. Furthermore, tau knockout mice have abnormal sleep-
wake cycle, with increased wakefulness periods and reduced
nonrapid eye movements [53]. Taken together, tau may play
a role in neuronal circuit formation.

4. Tau Knockout Mice with Human
Tau Expression

Overexpression of human tau derived from a human P1-
derived artificial chromosome (PAC) in mice results in
expression of all 6 human tau isoforms in mouse brains in the
absence of any neuropathology [54]. Interestingly, crossing
of PAC tau transgenic mice with tau knockout mice results
in accumulation of hyperphosphorylated tau and formation
of sarkosyl-insoluble 3R, but not 4R tau as early as 2 months
of age [46]. Furthermore, 12-month-old PAC tau transgenic
mice on a tau knockout background present with memory
deficits in the Morris water maze task and perturbed LTP
formation [55]. These aged mice are further characterized
by neuronal loss together with ventricle enlargement and
reduced cortical thickness [56]. Similarly, depletion of mouse
tau exacerbated tau pathology in transgenic mice expressing
double mutant human tau [57]. Together, this suggests that
endogenous mouse tau prevents pathological alteration of
transgenic human tau. The underlying mechanisms remain,
however, elusive.

Sennvik and colleagues generated knockin mice by
inserting cDNA that encodes the longest human tau isoform
(2N4R) into exon 1 of the MAPT gene [58]. Surprisingly,
neuronal numbers were increased in the hippocampus of
these mice, as a result of increased neurogenesis and neuronal
survival during development. This is accompanied by an
improved performance in the novel object recognition task.
Similar to other tau-deficient strains [40], maturation of
primary neurons is delayed in primary cultures from these
human tau knockin mice, probably because expression of
human tau is only detectable after 10 days in vitro (DIV).
Interestingly, at 4 DIV, human tau knockin neurons show
proliferative markers, which disappear at the onset of human
tau expression at 10 DIV and neuronal maturation [58].
Although mechanistically unclear, this may suggest anti-
proliferative and prodifferentiation effects of human 2N4R
tau.

5. Gene and Protein Regulation in Tau
Knockout Mice

Tau depletion is associated with a 2 fold increase in MAP1A
levels in newborn mice, but they are reduced to normal levels
thereafter [39, 40]. This possible early compensation of the
loss of tau by MAP1A has been reported together with the
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first tau knockout mice [39]. Since then, tau knockout mice
have been subjected to both educated guess approaches and
unbiased screening methods to identify additional genes and
proteins that are deregulated, to further understand tau’s role
in vivo.

Tau has been shown to interact with histone deacetylase 6
(HDACS), a tubulin deacetylase, via the microtubule binding
domain of tau and the SE14 domain of HDAC6 that mediates
its enzymatic activity [59]. Perez and colleagues showed that
tau, in particular aggregated tau, inhibits HDACG6 activity in
vitro, together with reduced levels of acetylated tubulin in
primary tau knockout neurons, suggesting that tau regulates
HDACES activity [60]. Another class of proteins that forms
complexes with tau is 14-3-3, a group of scaffolding proteins
[61-63]. However, the absence of changes in levels and
interaction with microtubules of different 14-3-3 isoforms
in tau knockout mice suggest that the interaction between
tau and 14-3-3 is rather only relevant under conditions
with increased levels of unbound tau [42], given that the
interaction involves the microtubule-binding domain of tau
that is normally preoccupied with tubulin [61].

Unbiased gene expression analysis revealed several genes
that are changed in tau knockout compared to wildtype
mouse brains [47, 64]. Oyama and colleagues identified
several mRNAs that are deregulated in brains of tau-deficient
mice [64]. Of those, Gem GTPase, a regulator of Rho
signaling and inducer of cellular process formation, was
significantly increased in tau knockout brains. In cells, tau
suppressed the activity of Gem GTPase via its microtubule-
binding domain, suggesting that tau may be involved in reg-
ulating Gem GTPase downstream signaling [64]. In another
mRNA screening, de Barreda and colleagues found increased
BAF57 mRNA and protein levels in the hippocampus of tau
knockout mice [47]. BAF57 interacts with coREST, which
in turn activates the transcriptional repressor REST and
consequently the expression of neuronal specific genes [65].
Here, tau may act as a nuclear regulator of gene expression.
Accordingly, tau can be isolated from nuclei of hippocampal
cells [47, 66].

Taken together, analysis of deregulated genes and pro-
teins in tau knockout mice proves valuable for the identifi-
cation of novel tau functions. Advanced screening methods,
such as next-generation sequencing, may provide further
insights into tau-dependent processes in the future.

6. Protection from Af Pathology

According to the amyloid cascade theory, A is upstream
of tau pathology in the pathogenesis of AD [67]. This has
been reproduced in mutant tau transgenic mouse models
with NFT formation, by crossing them with A-forming APP
transgenic mice [68], or injecting Af into their brains [69],
both resulting in increased NFT pathology. Interestingly, in
2002, Rapoport and colleagues provided the first evidence
that tau is also needed for Af to cause its toxicity in neurons
in vitro, as suggested by resistance of primary cultured
neurons from tau knockout mice to A3 exposure [70]. It
was not until 2007, when Roberson and colleagues repro-
duced this finding in vivo, by crossing Ap-forming APP
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transgenic mice, which display premature mortality and
memory deficits, on a tau knockout background [49]. Both
hetero- and homo-zygote tau deficiency rescued premature
mortality and prevented memory deficits in APP trans-
genic mice. Mechanistically, this protection appeared to be
conferred by reduced susceptibility to excitotoxicity in tau
knockout mice [49]. Excitotoxicity describes a signalling
cascade that is induced by overactivation of NMDA receptors
(NMDARSs) that results in neuronal damage and death, and
excitotoxicity has been implicated as a pathomechanism
underlying neurodegeneration induced by A in AD [71].
We reproduced the protection from Af-induced premature
mortality and memory deficits, using independent APP
transgenic, and tau knockout mice, also showing that
reduced susceptibility to excitotoxicity of the latter underlies
this protection [24]. Furthermore, we used expression of
a dominant-negative truncation mutant of tau to prevent
deficits in APP transgenic mice. Together with the tau knock-
out mice, we were able to show for the first time that tau
is critically involved in postsynaptic NMDAR downstream
signalling, by localizing the Src kinase Fyn to dendrites,
where it mediates coupling of NMDAR complexes to postsy-
naptic scaffolding proteins and therefore signalling cascades.
Reduced postsynaptic Fyn levels in tau-deficient or truncated
tau expressing mice results in uncoupling of NMDARs from
excitotoxic downstream signalling and therefore prevention
of AB mediated toxicity [3, 24]. Hence, Af, Fyn and tau
may orchestrate neuronal damage in AD mouse models [24,
72, 73], suggesting a critical role of tau in the pathogenesis
of AD [3]. This data is consistent with previous reports
on the preventive effects of Fyn depletion and accelerating
effects of Fyn expression on the deficits in APP transgenic
mice [74, 75]. Further, supporting the protective effects of
tau depletion, Shipton and colleagues showed recently that
AfB-mediated impairment of LTP in hippocampal slices of
wildtype mice is prevented in tau knockout mice [76]. LTP
formation per se was normal in tau knockout mice [76],
consistent with normal excitatory postsynaptic potential
(EPSP) recordings in two different tau knockout strains
[24, 73]. To this end, while several studies showed protection
from A toxicity by knocking out tau [24, 49, 70, 77], one
other study showed increased pathology in aged mice [50],
possibly reflecting different effects based on the usage of
different APP transgenic lines.

The exact downstream mechanisms involved in medi-
ating protection from Af toxicity in tau knockout mice
remains to be shown. These may include axonal transport,
which is known to be regulated by tau [22]. While basal
axonal transport rates are unaffected in tau knockout neu-
rons [77, 78], impairment of axonal transport of mitochon-
dria and TrkA-containing vesicles induced by Af is prevented
in tau-deficient neurons [77]. Furthermore, increased Af3-
formation is associated with increased activity of GSK3p,
a known tau kinase [79, 80]. GSK3f overexpression in
the brain of mice results in degeneration of the dentate
gyrus, but this is significantly ameliorated when crossed
with tau-deficient mice [81]. Tau knockout neurons also
show increased resistance to heat shock [82]. While Hsp70
levels were increased upon heat shock in both wildtype and

tau knockout neurons, Akt phosphorylation was delayed
together with a virtual absence of GSK3 activation. Whether
Akt/GSK3p signalling plays a role in preventing Af3 toxicity in
tau knockout mice remains to be shown. If other tau kinases
or phosphatases are involved also remains to be shown.
Furthermore, protection of tau knockout neurons may be
conferred by nuclear tau [83].

The protection from Af toxicity in tau knockout mice
seems to be rather specific, since it does not prevent deficits
in models of several other neurodegenerative disorders.
Accordingly, crossing of mutant SOD1 expressing mice, a
model of amyotrophic lateral sclerosis (ALS), on a tau
knockout background, does not prevent weight loss and
death [73]. Furthermore, motor deficits of mouse models of
Parkinson’s disease (PD) are not prevented on a tau-deficient
background [84]. The PD models used were striatal injection
of 6-hydroxydopamine and transgenic expression of a-
synuclein, neither of which showed improvement. Similarly,
tau depletion does not protect from deficits induced by
intracranial administration of prions [84]. Tau depletion is
associated with silver positive spheroids in yet another APP
transgenic mouse strain when aged [50]. Finally, knocking
out tau even exacerbated the phenotype of NPC deficient
mice, a model of Niemann-Pick disease type C, suggesting
a role of tau in regulation of autophagy [85].

Taken together, tau reduction prevents mice from specific
AfB-mediated deficits, supporting a central role of tau in
mediating Af toxicity in the early pathogenesis of AD.
However, tau depletion does not generally prevent from neu-
rodegenerative conditions, suggesting distinct mechanisms.

7. Concluding Remarks

To this end, tau knockout mice have significantly contributed
to unraveling novel functions of tau under physiological con-
dition and its role in disease. While key findings have been
reproduced in independent tau-deficient strains, others, such
as delayed axonal maturation [40], remain to be confirmed in
alternative strains. Differences may also be due to the usage
of different genetic backgrounds with possible confounding
effects. Understanding the differences might contribute to a
broader knowledge about the physiologic function of tau,
which may be translated to understanding the mechanisms
of tauopathies.
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